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The representation theory of semisimple Lie algebras plays a central role in modern mathematics with
motivation coming from many areas of mathematics and physics, for example, the Langlands program. The
methods involved in the theory are diverse and include remarkable interactions with algebraic geometry, as
in the proofs of the Kazhdan-Lusztig and Jantzen conjectures.

The course will cover the basics of finite dimensional representations of semisimple Lie algebras (e.g., the
Cartan-Weyl highest weight classification, Weyl’s character and dimension formulas) in the framework of the
larger Bernstein-Gelfand-Gelfand category O.

These notes are based on J. Bernstein’s “Lectures on Lie algebras” [Be], supplemented by material from
[Di], [Hu1], [Hu2], [FH].

1. The universal enveloping algebra of a Lie algebra

1.1. Lie algebras. Let k be a field.

Definition 1.1. A Lie algebra g over k is a k-vector space with a bilinear operation [ , ] : g× g→ g (called
the Lie bracket) that satisfies the following identities:

(1) (alternating) [x, x] = 0 for all x ∈ g. (When fc k 6= 2, this is equivalent with “skew-symmetry”:
[x, y] = −[y, x], x, y ∈ g.)

(2) (Jacobi identity): for all x, y, z ∈ g,

[x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0.

A Lie algebra is a non-associative algebra, and the Jacobi identity replaces the associativity condition.
There are a few basic examples to keep in mind.

Example 1.2. (1) Let A be an associative algebra. Then we may define a Lie algebra structure on g = A
by setting the bracket to equalded the commutator in A; [x, y] = xy − yx. One verifies immediately
that the Jacobi identity is satisfied because of the associativity of the multiplication in A.
(a) Let V be a k-vector space and A = Endk(V ). Applying the construction above to this setting,

we obtain the Lie algebra gl(V ) whose elements are the endomorphisms of V and the bracket is
the commutator.

(b) If V is finite dimensional and we fix a basis of V , we may identify V ∼= kn and Endk(V ) with
n × n matrices with coefficients in k. Then the Lie algebra is gl(n, k), the general linear Lie
algebra of n× n matrices with the Lie bracket given by the commutator.

0Notes for Oxford’s Part C course C2.3 “Representations of semisimple Lie algebras”.
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(2) Let V be a k-vector space, and consider sl(V ) = {x : V → V | tr(x) = 0} with the Lie bracket given
by the commutator in gl(V ). (Recall that the commutator of any two linear maps has trace 0.) If V
is finite dimensional and we fix a basis as before, we obtain the special linear Lie algebra sl(n, k) of
n × n matrices of trace 0. Notice that this algebra is not an example of (1): in order to define the
bracket in sl(V ), we invoke the commutator in a larger algebra, gl(V ). In fact, one may prove that in
general there is no associative algebra A such that sl(2) is isomorphic with the Lie algebra obtained
from A via the construction in (1).

(3) (Classical Lie algebras) Let V be a finite dimensional vector space over k and B : V × V → k be a
bilinear form. Define

Der(B) = {x ∈ gl(V ) | B(xu, v) +B(u, xv) = 0, for all u, v ∈ V }. (1.1.1)

Thi is a Lie subalgebra of gl(V ), consisting of the linear maps that preserve B. Suppose that B is
nondegenerate.
(a) If B is symmetric, we obtain the orthogonal Lie algebra with respect to B, denoted by so(V,B).

When k = C, all nondegenerate symmetric bilinear forms are equivalent, hence there is only
one (up to isomorphism) orthogonal Lie algebra over C. On the other hand, if k = R, then
the nondegenerate symmetric bilinear forms are classified by their signatures, and so are the
orthogonal Lie algebras over R.

(b) If B is skew-symmetric, we obtain the symplectic Lie algebra with respect to B, denoted by
sp(V,B). Since B is nondegenerate, dimV must be even. Recall that, unlike the case of sym-
metric bilinear forms, the classification of skew-symmetric bilinear forms is independent of the
field. In particular, there exists only one (up to equivalence) nondegenerate skew-symmetric
bilinear form and thus, only one symplectic Lie algebra (up to isomorphism).

(4) Let g = gl(n, k) be the general linear Lie algebra. We denote by n+, h, n− the Lie subalgebras of strictly
upper triangular matrices, diagonal matrices, and strictly lower triangular matrices, respectively. The
vector space decomposition g = n+ ⊕ h⊕ n− will play an important role in the theory. We emphasize
that this is not a Lie algebra decomposition.

1.2. Lie algebra representations.

Definition 1.3. A representation of the Lie algebra g over k is a k-vector space V together with a linear
map ρ : g→ Endk(V ) (the action) such that

ρ([x, y]) = ρ(x)ρ(y)− ρ(y)ρ(x), for all x, y ∈ g. (1.2.1)

An equivalent way is to say that the map ρ : g→ gl(V ) is a homomorphism of Lie algebras.

Example 1.4. (1) Let g = gl(V ) act on V in the usual way, i.e., the map ρ is the identity. In terms
of matrices, if g = gl(n) and V = kn, then the action is just matrix multiplication: an n× n matrix
times a column vector.

(2) If g is any Lie algebra, the adjoint representation is ad : g→ gl(g), ad(x)(y) = [x, y], for all x, y ∈ g.
The fact that this is a representation is equivalent with the Jacobi identity.

(3) If g is any Lie algebra, the trivial representation is the one dimensional representation ρ0 : g→ gl(C),
given by ρ0(x) = 0 for all x ∈ g. More generally, if (ρ, V ) is any g-representation, we write

V g = {v ∈ V | ρ(x)v = 0, for all x ∈ g}. (1.2.2)

This is a subrepresentation of V consisting of all the copies of the trivial representation that occur in
V .

If (ρ, V ) is a representation of g, we will often write x · v in place of ρ(x)(v) for the action, x ∈ g, v ∈ V .
Later in the course we will specialize to certain types of representations.

1.3. Tensor products. Recall that the tensor product of two k-vector spaces U, V is a k-vector space U⊗V
which satisfies a bilinearity property:

(1) (u1 + u2)⊗ v = u1 ⊗ v + u2 ⊗ v, u1, u2 ∈ U , v ∈ V ;
(2) u⊗ (v1 + v2) = u⊗ v1 + u⊗ v2, u ∈ U , v1, v2 ∈ V ;
(3) (λu)⊗ v = u⊗ (λv) = λ(u⊗ v, λ ∈ k, u ∈ U , v ∈ V .
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A typical element in U ⊗ V is
∑n

i=1 ui ⊗ vi, where ui ∈ U and vi ∈ V . If {ei | i ∈ I} is a basis of
U and {fj | j ∈ J} is a basis of V , then {ei ⊗ fj | i ∈ I, j ∈ J} is a basis of U ⊗ V . In particular,
dimk(U ⊗ V ) = dimk U · dimk V.

More generally, if V1, . . . , Vn are k-vector spaces, we may define recursively the tensor product V1 ⊗ V2 ⊗
· · ·⊗Vk. Since the tensor product of vector spaces is associative, we can ignore the order in which we construct
this tensor product, e.g., (V1 ⊗ V2)⊗ V3

∼= V1 ⊗ (V2 ⊗ V3).
In particular, we can speak about the n-fold tensor product of a vector space V , Tn(V ) = V ⊗ V ⊗ · · · ⊗ V︸ ︷︷ ︸

n times

.

If U and V are g-representations, then we define an action of g on U ⊗ V by:

x · (u⊗ v) = (x · u)⊗ v + u⊗ (x · v), x ∈ g, u, v ∈ V. (1.3.1)

One verifies easily that this is indeed a Lie algebra action:

x · (y · (u⊗ v)) = x · ((y · u)⊗ v + u⊗ (y · v))

= (x · (y · u))⊗ v + (y · u)⊗ (x · v) + (x · u)⊗ (y · v) + u⊗ (x · (y · v)).

Writing the similar equation for y · (x · (u ⊗ v)) and substracting, we see that the middle terms cancel and
we find:

[x, y] · (u⊗ v) = [x, y] · u⊗ v + u⊗ [x, y] · v.

We can extend this definition to an action on tensor products V1⊗ V2⊗ · · · ⊗ Vn, as the sum of actions on
one component at a time.

Definition 1.5. V be a k-vector space. Set

T (V ) =
∑

n≥0

Tn(V ). (1.3.2)

By convention, T 0(V ) = k. Endow T (V ) with the multiplication given by the tensor product: T i(V )×T j(V )→
T i+j(V ), (x, y) 7→ x⊗ y. This makes T (V ) into an associative k-algebra with unity, called the tensor algebra
of V . (The element 1 comes from k = T 0(V ).)

If V is a g-representation, then T (V ) is a g-representation with the action on each Tn(V ) as before.

The symmetric algebra S(V ) of V is defined as the quotient of T (V ) by the two-sided ideal generated by
all elements x⊗y−y⊗x, x, y ∈ V . Since the generators are homogeneous, S(V ) is also automatically graded
S(V ) = ⊕n≥0S

n(V ). If {xi | i ∈ I} is a basis of V where (I,≤) is an ordered set, then a basis of Sn(V ) is
given by {xi1xi2 . . . xin | i1 ≤ i2 ≤ · · · ≤ in, ij ∈ I}.

The exterior algebra
∧
V of V is defined as the quotient of T (V ) by the two-sided ideal geberated by all

the elements x ⊗ x, x ∈ V . Also
∧
V is a graded algebra. If {xi | i ∈ I} is a basis of V where (I,≤) is an

ordered set, then a basis of
∧n

V is given by {xi1 ∧ xi2 ∧ · · · ∧ xin | i1 < i2 < · · · < in, ij ∈ I}. In particular,
if n > dimV , then

∧n
V = 0.

When V is a g-module, the symmetric and exterior algebras S(V ),
∧
V inherit a g-action from T (V ).

Example 1.6. Suppose the characteristic of the field k is not 2. We can decompose V ⊗ V as a direct sum:

V ⊗ V = S2(V )⊕
∧2

V,

where we embed S2(V ) into V ⊗ V via:

xy 7→
1

2
(x⊗ y + y ⊗ x),

and we embed
∧2

V into V ⊗ V via:

x ∧ y 7→
1

2
(x⊗ y − y ⊗ x).

If V is a g-representation, then this decomposition of g-invariant, in other words, it is a decomposition as
g-representations.
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1.4. The universal enveloping algebra: definition. Let g be a Lie algebra. The goal is to assign to g

an associative k-algebra with 1 such that the representation theory of g is equivalent with the representation
theory of this associative algebra.

Definition 1.7. Let T (g) be the tensor algebra of g. Let J be the two-sided ideal of T (g) generated by all the
elements x⊗ y − y ⊗ x− [x, y], with x, y ∈ g. The universal enveloping algebra of g is the associative unital
k-algebra:

U(g) = T (g)/J. (1.4.1)

There is a canonical linear map ι : g → U(g) obtained by composing the identity map g → T 1(g) with the
quotient map T (g)→ U(g).

The adjective “universal” is motivated by the following universal property whose proof is straightforward.

Lemma 1.8. Let A be an associative unital algebra together with a linear map τ : g→ A such that τ(x)τ(y)−
τ(y)τ(x) = τ([x, y]), for all x, y ∈ g. There exists one and only one algebra homomorphism τ ′ : U(g) → A
such that τ ′(1) = 1 and

τ ′ ◦ ι = τ.

In particular, notice that the lemma says that every Lie algebra representation of g can be lifted to a
representation of the associative algebra U(g). Indeed, if we have ρ : g→ gl(V ) a Lie algebra representation,
take A = Endk(V ) and τ = ρ and the claim follows from the universal property. Conversely, given any
representation of U(g), we obtain a Lie algebra representation of g by composing with the canonical map ι.
Therefore, Lie algebra representations of g are the same thing as representations of U(g).

Example 1.9. If g is a commutative Lie algebra (so the bracket is identically zero), then U(g) = S(g), the
symmetric algebra generated by (the vector space) g.

1.5. Filtration by degree and the associated graded algebra. We assume from now on that k has
characteristic 0 and that g is a finite dimensional Lie algebra over k.

The tensor algebra T (g) has a natural filtration by degree via the subspaces Tn(g) =
∑n

i=0 T
i(g). Let

Un(g) denote the image of Tn(g) in U(g). Then {Un(g)} is a filtration by subspaces of U(g):

U0(g) ⊂ U1(g) ⊂ · · · ⊂ Un(g) ⊂ . . . , U(g) = ∪n≥0Un(g). (1.5.1)

Definition 1.10. The associated graded algebra grU(g) is defined as follows. As a vector space, it equals
G0⊕G1⊕G2⊕ . . . , where Gn = Un(g)/Un−1(g). (The convention is that U−1(g) = 0.) The multiplication in
U(g) defines bilinear maps Gn×Gm → Gn+m and therefore a multiplication on grU(g). This makes grU(g)
into an associative unital algebra.

Lemma 1.11. Let a1, a2, . . . , am be elements of g and let σ be a permutation of {1, . . . , n}. Then

ι(a1)ι(a2) . . . ι(am)− ι(aσ(1))ι(aσ(2)) . . . ι(aσ(m)) ∈ Um−1(g).

Proof. Since every permutation can be written as a product of simple transpositions, it is sufficient to prove
the claim when σ = (j, j + 1). But in this case, the claim is immediate from the identity

ι(aj)ι(aj+1)− ι(aj+1)ι(aj) = ι([aj , aj+1]),

which shows the drop in degree by one. �

As a consequence, we see that

Lemma 1.12. grU(g) is commutative.

Proof. This is immediate from the previous lemma since in grU(g), we consider succesive quotients. �

Fix an ordered basis {x1, . . . , xn} of g. Denote the image of this basis in U(g) by {y1, . . . , yn}. For every
finite sequence I = (i1, . . . , im) of integers between 1 and m, let yI = yi1yi2 . . . yim ∈ U(g).

Lemma 1.13. The vector space Um(g) is generated by yI for all increasing sequences I of length at most m.

Proof. The claim is clear without the adjective “increasing”. Lemma 1.11 shows that indeed we may take
only increasing sequences. �
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We wish to show that the canonical map ι : g→ U(g) is injective and to understand the structure of the
commutative algebra grU(g). The main technical result that we need is next.

Let P = C[z1, . . . , zn] be the algebra of polynomials in n indeterminates z1, . . . , zn. Let Pm denote the
subspace of polynomials of total degree less than or equal to m. If I = (i1, . . . , im) is a sequence of integers,
denote zI as before. It will be convenient to use the notation i ≤ I whenever i ≤ ik for all k = 1, . . . ,m.

Lemma 1.14 (Dixmier). For every m ≥ 0, there exists a unique linear map fm : g⊗ Pm → P such that:

(Am) fm(xi ⊗ zI) = zizI for i ≤ I, zI ∈ Pm;
(Bm) fm(xi ⊗ zI)− zizI ∈ Pk for zI ∈ Pk, k ≤ m;
(Cm) fm(xi ⊗ fm(xj ⊗ zJ)) = fm(xj ⊗ fm(xi ⊗ zJ)) + fm([xi, xj ] ⊗ zJ), for zJ ∈ Pm−1. (The terms in

(Cm) make sense by virtue of (Bm).)

Moreover, the restriction of fm to g⊗ Pm−1 is fm−1.

Notice that this lemma simply says that there exists a canonical representation of U(g) on the space of
polynomials P .

Proof. 1 (Dixmier, page 68) The last assertion follows from the uniqueness of the maps fm since the restriction
of fm to g⊗ Pm−1 satisfies (Am−1), (Bm−1), and (Cm−1).

The proof is by induction on m. For m = 0, set f0(xi ⊗ 1) = zi, which by (A0) is the only possibility.
Then (B0) and (C0) are also satisfied. Now assume the existence and uniqueness of fm−1. We need to prove
that fm−1 has one and only one extension fm to g⊗ Pm satisfying (Am), (Bm), and (Cm).

Let I be an increasing sequence of m integers between 1 and n. We define fm(xi ⊗ zI). If i ≤ I, then
(Am) determines it. Otherwise, write I = (j, J) with j < i and j ≤ J . Then

fm(xi ⊗ zI) = fm(xi ⊗ fm−1(xj ⊗ zJ)) by (Am−1)

= fm(xj ⊗ fm−1(xi ⊗ zJ)) + fm−1([xi, xj ]⊗ zJ) by (Cm−1).

Moreover, by (Bm−1): fm−1(xi ⊗ zJ) = zizJ + w for some w ∈ Pm−1. Thus

fm(xi ⊗ fm−1(xj ⊗ zJ)) = zjzizJ + fm−1(xj ⊗ w) from (Am)

= zizI + fm−1(xj ⊗ w).

This defines fm uniquely, and with this definition, fm satisfies (Am) and (Bm). It remains to prove that fm
also satisfies (Cm). Condition (Cm) is satisfied by construction if j ≤ i and j ≤ J . Using [xj , xi] = −[xi, xj ],
it is also satisfied is i ≤ j and i ≤ J . So (Cm) holds if i ≤ J or j ≤ J.

Otherwise, write J = (k,K) with k ≤ K, k < i, k < j. To simplify notation, write xz := fm(x ⊗ z), for
x ∈ g and z ∈ Pm. By induction, we have:

xjzJ = xj(xkzK) = xk(xjzK) + [xj , xk]zK .

Now xjzK = zjzK + w for some w ∈ Pm−2. Apply (Cm) to xi(xk(zjzK)) since k ≤ K and k < j and to
xi(xkw) from the induction hypothesis, hence to xi(xk(xjzK)). Then:

xi(xjzJ) = xk(xi(xjzK)) + [xi, xk](xjzK) + [xj , xk](xizK) + [xi, [xj , xk]]zK .

Interchange i and j and perform the cancellations to get

xi(xjzJ)− xj(xizJ) = [xi, xj ]xkzK = [xi, xj ]zK .

This proves the claim.
�

Proposition 1.15. The set {yI | I increasing sequence} is a basis of U(g).

Proof. Lemma 1.14 can be rephrased as saying that there is a representation ρ : g → End(P ) such that
ρ(xi)zI = zizI for all i ≤ I. By the universal property, there exists a unique algebra homomorphism
φ : U(g)→ End(P ) such that

φ(yi)zI = zizI , for all i ≤ I.

From this, we deduce recursively that, if I is an increasing sequence, then φ(yI)1 = zI . Since {zI} are linearly
independent in P , it follows that {yI} is a linearly independent set in U(g). But we already know that it is
also a generating set, hence a basis. �

1This proof is non-examinable.
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Corollary 1.16. The canonical map ι : g→ U(g) is injective.

Proof. Clear from Proposition 1.15. �

In light of this result, from now on identify g with its image in U(g) and drop ι (and the y’s) from notation.

Corollary 1.17. Let (x1, . . . , xn) be an ordered basis of g. Then xk1

1 xk2

2 . . . xkn
n , ki ∈ N form a basis of U(g).

Proof. This is just a rephrasing of Proposition 1.15. �

Since ι : g → grU(g) (g ∼= G1) is an injection, we can uniquely extend it to a canonical homomorphism
ι : S(g)→ grU(g). (Both algebras are commutative!) Clearly, ι(Sn(g)) ⊂ Gn.

Theorem 1.18 (Poincaré-Birkhoff-Witt Theorem). The canonical homomorphism ι : S(g) → grU(g) is an
isomorphism of graded algebras.

Proof. Let (x1, . . . , xn) be an ordered basis of g. For k = (k1, . . . , kn) ∈ Nn, let |k| = k1+ · · ·+kn and denote

Xk = xk1

1 . . . xkn
n ∈ S(g) and xk = xk1

1 . . . xkn
n ∈ U(g). Let xk = xk1

1 . . . xkn
n denote the image of xk in G|k|.

Since φ(Xk = xk and {xk} form a basis of G|k| (since {xk} is a basis of U|k|(g) by Corollary 1.17), it
follows that φ is bijective. �

Remark 1.19. The PBW theorem allows us to identify canonically grU(g) with S(g).

Let symm′ : S(g)→ T (g) be the symmetrizing map:

x1x2 . . . xm 7→
1

m!

∑

σ∈Sm

xσ(1) ⊗ · · · ⊗ xσ(m). (1.5.2)

Denote symm : S(g) → U(g) the composition of the map symm′ with the projection onto U(g). The results
we have proved so far show that symm is an isomorphism of linear spaces. We emphasize that it is not an
isomorphism of algebras! This is obvious, since S(g) is commutative, but U(g) is not.

Remark 1.20. One can show that symm is in fact an isomorphism of g-modules (homework). If we accept
this, then by taking the g-invariants (the copies of the trivial representation), we obtain a linear isomorphism
symm : S(g)g → Z(g), where Z(g) = U(g)g is the center of U(g). But again, symm is just an isomorphism
of linear spaces and not of algebras in general, even though now both algebras are commutative.

1.6. The principal anti-automorphism of U(g). The principal anti-automorphism of U(g) is an algebra
anti-automorphism T : U(g)→ U(g) defined by

(x1x2 . . . xn)
T = (−1)nxnxn−1 . . . x1. (1.6.1)

It is the unique anti-automorphism of U(g) such that xT = −x for all x ∈ g.
If ρ is a Lie algebra representation of g, ρ : g→ gl(V ), we have the contragredient representation ρ∗ : g→

gl(V ∗). The mapping

u 7→ tρ(uT ), u ∈ U(g),

is a representation of U(g) which extends ρ∗.

2. Representations of sl(2)

From now on, the field is assumed to be k = C. In this section, we study finite dimensional representations
of g = sl(2).

2.1. Weights and weight vectors. The Lie algebra sl(2) consists of matrices

(
a b
c d

)
such that a+ d = 0

(trace zero). The standard basis of sl(2) is

e =

(
0 1
0 0

)
, h =

(
1 0
0 −1

)
, f =

(
0 0
1 0

)
. (2.1.1)

The relations between the basis elements are

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h.
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Lemma 2.1. The following identities hold in U(sl(2)):

[h, ek] = 2kek, [h, fk] = −2kfk, [e, fk] = kfk−1(h− (k − 1)),

for all integers k ≥ 1.

Proof. Straightforward, by induction on k. �

An important role in the representation theory of sl(2) is played by the Casimir element. Define

C = h2 + 2h+ 4fe ∈ U(sl(2)). (2.1.2)

We will refer to this element as the Casimir element of U(sl(2)), but it is unique only up to a scalar multiple,
as we will see when we discuss the general theory for a semisimple Lie algebra.

Lemma 2.2. The Casimir element C belongs to the center of U(sl(2)).

Proof. By the results of the previous section, U(sl(2)) is generated by e, h, f , therefore it is sufficient to check
that C commutes with e and f (as h is the commutator of e and f). This is a direct calculation. For example

[C, e] = [h2, e] + 2[h, e] + 4[fe, e],

and [h2, e] = h2e − eh2 = h([h, e] + eh) − ([e, h] + he)h = 2he + 2eh = 4he − 4e. Moreover, [h, e] = 2e and
[fe, e] = fe2 − efe = ([f, e] + ef)e− efe = −he. This shows that the sum above is zero indeed. �

Definition 2.3. Let V be an sl(2)-module. A vector v ∈ V is called a weight vector if it is an eigenvector
for the action of h, i.e., h · v = λv for some λ ∈ C. If v 6= 0 is a weight vector, we call the corresponding
eigenvalue λ a weight. Denote

V ss
λ = {v ∈ V | (h− λ)v = 0}, Vλ = {v ∈ V | ∃N > 0 such that (h− λ)Nv = 0},

and call them the λ-weight space and the generalized λ-weight space, respectively.
Clearly V s

λ s ⊆ Vλ. If V ss
λ = Vλ for all λ, we say that h acts semisimply on V .

Lemma 2.4. Let V be an sl(2)-module. Then:

(1) e · Vλ ⊆ Vλ+2;
(2) f · Vλ ⊆ Vλ−2.

The same formulas hold with V ss
λ in place of Vλ.

Proof. Suppose v ∈ Vλ is given. Then there exists N > 0 such that (h− λ)Nv = 0. Notice that in U(sl(2)),
(h − 2)e = eh which means that (h − 2)je = ehj for all j. Then (h − λ − 2)Ne · v = [(h − 2) − λ]Ne · v =
e(h− λ)Nv = 0, which means that e · v ∈ Vλ+2.

The case of V ss
λ is when N = 1. The statement about f is completely similar. �

Definition 2.5. A vector v 6= 0 in V is called a highest weight vector if v ∈ V ss
λ for some λ and e · v = 0.

If V is a finite dimensional sl(2)-module, then Lemma 2.4 implies that highest weight vectors do exist.

Lemma 2.6. Let V be an sl(2)-module and v ∈ V a highest weight vector of weight λ. Consider the sequence
of vectors v0 = v, vk = fk · v, for k ≥ 0. Then:

(a) h · vk = (λ− 2k)vk, e · v0 = 0, e · vk+1 = (k + 1)(λ− k)vk, f · vk = vk+1, for k ≥ 0.
(b) The subspace L ⊂ V spanned by the vectors {vk | k ≥ 0} is an sl(2)-submodule and all nonzero

vectors vk are linearly independent.
(c) Suppose that vk = 0 for some k. Then there exists ℓ ∈ Z≥0 such that λ = ℓ, vk 6= 0 for 0 ≤ kleℓ and

vk = 0 for all k > ℓ.

Proof. Part (a) follows by induction on k, using the commutation relations between e, h, and f . Part (b)
follows from (a) since the eigenvectors vk have distinct eigenvalues. For (c), let ℓ be the first index such that
vℓ+1 = 0. Then 0 = e · vℓ+1 = (ℓ+ 1)(λ− ℓ)vℓ, so λ = ℓ.

�
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2.2. Irreducible finite dimensional sl(2)-modules. For every ℓ ≥ 0, we construct an irreducible repre-
sentation V (ℓ) of dimension ℓ+ 1 generated by a highest weight vector of weight ℓ.

Algebraic construction. The relations in Lemma 2.6 tell us how to define the module V (ℓ). Let V (ℓ) be
the span of {v0, v1, . . . , vℓ} and define the sl(2)-action by:

h · vk = (ℓ− 2k)vk, e · v0 = 0, e · vk+1 = (k + 1)(l − k)vk, f · vk = vk+1, k ≥ 0. (2.2.1)

(By convention, vℓ+1 = 0 in the above equations.)
From Lemma 2.6, we know that the actions of h, e, f are compatible with the relations between these

elements, and hence, define an action of sl(2) indeed.

Lemma 2.7. The module V (ℓ) just defined is irreducible.

Proof. Suppose that M 6= 0 is a submodule of sl(2). Let 0 6=
∑ℓ

i=0 aivi be a vector in M . Apply f to it:

f ·
∑ℓ

i=0 aivi =
∑ℓ

i=1 ai−1vi, which has to be an element of M too. Applying f repeatedly, we get that a0vℓ
belongs to M and so vℓ ∈M . Then also

∑ℓ−1
i=0 aivi is in M and repeat the process to show that all vi are in

M . So M = V (ℓ). �

Geometric construction.2 Consider the action of g = sl(2) on polynomials in two variables x and y via the
operators

e 7→ x∂y, h 7→ x∂x − y∂y, f 7→ y∂x. (2.2.2)

One may verify directly that these assignments respect the sl(2) relations. It is clear that these three operators
preserve the total degree of any monomial. Therefore, the subspace V (ℓ) of homogeneous polynomials of
degree ℓ is invariant under this action.

Notice that V (ℓ) is the span of {xℓ, xℓ−1y, xℓ−2y2, . . . , yℓ}, so it is ℓ + 1 dimensional. It is easy to verify
that

e · xℓ = 0, h · (xℓ−iyi) = (ℓ− 2i)xℓ−iyi, f · (xℓ−iyi) = (ℓ− i)xℓ−i−1yi+1,

so that the correspondence

xℓ−iyi ←→ (ℓ− i)!vi

defines an isomorphism between this realization of the module of V (ℓ) and the algebraic one defined before.

Theorem 2.8. (1) Every finite dimensional (nonzero) sl(2)-module V contains a submodule isomorphic
to one of the V (ℓ)’s.

(2) The Casimir element C acts on V (ℓ) by ℓ(ℓ+ 2).
(3) The modules V (ℓ) are irreducible, distinct, and exhaust all (isomorphism classes of) finite dimensional

irreducible sl(2)-modules.

Proof. (1) Consider all eigenvalues of V with respect to the action of h. Since V is finite dimensional, there
exists an eigenvalue λ such that λ + 2 is not an eigenvalue. Let v0 6= 0 be an eigenvector for this λ. By
Lemma 2.6, λ = ℓ for some ℓ and L = V (ℓ) ⊂ V .

(2) We compute directly that C ·v0 = ℓ(ℓ+2)v0. If v is some other vector in V (ℓ), there exists x ∈ U(sl(2))
such that v = x · v0. Then C · v = Cx · v0 = xC · v0 = ℓ(ℓ+ 2)x · v0 = ℓ(ℓ+ 2)v.

(3) We have already proved that the modules V (ℓ) are irreducible. Since the scalar by which C acts on
each V (ℓ) determines ℓ uniquely, it follows that these modules are non-isomorphic.

�

Remark 2.9. From the construction of the modules V (ℓ), we see that on every V (ℓ), the element h acts
semisimply and the weights are {ℓ, ℓ− 2, ℓ− 4, . . . ,−ℓ+ 2,−ℓ} and each weight space is one dimensional.

2The reason we refer to this construction as geometric is the following. Consider the group G = SL(2,C) of 2× 2 matrices
of determinant one acting via matrix multiplication on the space C2 = {(x, y)}. There is an induced action on polynomials in

x and y and the action of the Lie algebra g defined ad-hoc in this paragraph is in fact the differential (in the Lie groups sense)
of the natural action of G on polynomials.
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2.3. Complete reducibility. In this subsection, we prove directly that every finite dimensional sl(2)-module
is completely reducible. This completes the classification of finite dimensional sl(2,C)-modules.

Proposition 2.10. Every finite dimensional sl(2)-module V is isomorphic to a direct sum of modules V (ℓ),
ℓ ≥ 0. In particular, V is completely reducible.

Proof. (Bernstein) We’ll use a general criterion whose proof is an exercise: if every module of length 2 is
completely reducible, then every module of finite length is completely reducible. This reduces the proof to
the case when V has length 2 with simple submodule S = V (ℓ) and simple quotient Q = V/S ∼= V (k).

If k 6= ℓ, then the Casimir element acts with different eigenvalues on S and Q. Therefore, V splits into a
direct sum of two generalized eigenspaces for C, one with eigenvalue ℓ(ℓ + 1) and the other with eigenvalue
k(k + 1). Since C is central in U(sl(2)), both of these eigenspaces are sl(2)-submodules and we are done.

Assume k = ℓ. Decompose V into generalized h-eigenspaces V = ⊕Vi. By assumption, i ∈ {−ℓ, ℓ +
2, . . . , ℓ − 2, ℓ} and dimVi = 2. We claim that f ℓ : Vℓ → V−ℓ is a linear isomorphism. Let 0 6= v ∈ Vℓ be
given. If v ∈ S, then v is a highest weight vector with weight ℓ and so f ℓv 6= 0. Otherwise, v + S 6= S in
Q = V/S, but v + S ∈ Qℓ, so f ℓ(v + S) 6= S, implying that f ℓv /∈ S.

Now consider the identity
ef ℓ+1 − f ℓ+1e = f ℓ(h− ℓ)

acting on Vℓ. Since the left hand side is 0, the right hand side must be 0 too. But f ℓ is invertible on Vℓ as
we argued before, which means that h = ℓ · Id on Vℓ. In other words, Vℓ = V ss

ℓ . But this gives two linearly
independent highest weight vectors with weight ℓ in V , and V decomposes as the sum of the sl(2)-submodules
that these two vectors generate.

�

Corollary 2.11. Let V be a finite dimensional sl(2)-module. Then h acts semisimply on V and for every
weight i ≥ 0, f i : Vi → Vi and ei : V−i → Vi are linear isomorphisms.

Proof. Both claims follow from the complete reducibility of V and the corresponding statements (which we
know are true) for the modules V (ℓ). �

3. Some basic facts about semisimple Lie algebras

In this section, we recall a few basic definitions and results about the structure of semisimple Lie algebras.
These results will be used in the sequel. We do not give proofs of these facts, but a complete treatment
(including proofs) can be found in Kevin McGerty’s notes for the Michaelmas course in Lie algebras C2.1.

In this section, g is a finite dimensional Lie algebra over C.

3.1. Nilpotent and solvable Lie algebras. The lower central series of g is the decreasing chain of ideals
C0g ⊇ C1g ⊇ C2g ⊇ · · · ⊇ Cig ⊇ . . . defined inductively by C0g = g and Cig = [g, Ci−1g] for i ≥ 1. We say
that g is nilpotent if there exists N > 0 such that CNg = 0.

The derived series of g is the decreasing chain of ideals D0g ⊇ D1g ⊇ D2g ⊇ · · · ⊇ Dig ⊇ . . . defined
inductively by D0g = g and Dig = [Di−1g, Di−1g] for i ≥ 1. We say that g is solvable if there exists N > 0
such that DNg = 0. The ideal D1g = [g, g] is called the derived subalgebra of g, and it is also denoted by
Dg.

Since for every i, Dig ⊆ Cig, it is clear that every nilpotent Lie algebra is solvable. The converse is false,
as we may see from the following example.

Example 3.1. Let V be a vector space of dimension n. A complete flag F in V is a collection of vector
subspaces F = (V0 ⊂ V1 ⊂ · · · ⊂ Vn), where dimVi = i. Define

nF = {x ∈ gl(V ) | x(Vi) ⊂ Vi−1}, bF = {x ∈ gl(V ) | x(Vi) ⊂ Vi}. (3.1.1)

The algebra bF is called the stabilizer of the flag F . Then one can show that bF is a solvable Lie algebra (but
not nilpotent), nF is nilpotent, and nF is the derived subalgebra of bF .

If we choose a basis {e1, . . . , en} of V and set Vi = span{e1, . . . , ei}, then bF is identified with the algebra
of upper triangular matrices with respect to this basis, while nF is the algebra of strictly upper triangular
matrices.

It is easy to see that if I and J are two solvable ideals of g, then I+J is also a solvable ideal. This implies
that there exists a unique maximal solvable ideal in g, called the radical of g, rad(g).
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Definition 3.2. A Lie algebra g is called semisimple if rad(g) = 0. Recall that a Lie algebra g is called
simple if g doesn’t have any proper ideals.3

3.2. The Killing form. The Killing form of g is the pairing

κ : g× g→ C, κ(x, y) = tr(ad(x) ◦ ad(y)), x, y ∈ g. (3.2.1)

It is a symmetric, bilinear form on g and it is g-invariant, meaning that

κ([x, y], z) + κ(y, [x, z]) = 0, x, y, z ∈ g. (3.2.2)

An important criterion is the following:

Theorem 3.3 (Cartan’s criterion for semisimplicity). A Lie algebra g is semisimple if and only if the Killing
form κ is nondegenerate.

Using this criterion, one can prove that g is semisimple if and only if it is a direct sum of simple ideals.
(Moreover, the decomposition into a sum of simple ideals is unique.)

Example 3.4. The classical Lie algebras sl(V ), so(V ) (defined with respect to a nondegenerate symmetric
bilinear form), and sp(V ) (with respect to a nondegenerate skew-symmetric bilinear form) are all simple,
hence semisimple, Lie algebras.

3.3. Cartan subalgebras. A Lie subalgebra h of a Lie algebra g is called a Cartan subalgebra if it has the
following properties:

(1) h is nilpotent;
(2) h is self-normalizing, i.e.,

h = Ng(h) = {x ∈ g | ad(x)(h) ⊂ h, for all x ∈ g}.

Cartan subalgebras exist. To construct them, consider subalgebras g0,x = {y ∈ g | ad(x)Ny = 0, for some N >
0}, in other words, the generalized eigenspaces of ad(x), for some x ∈ g. An element x is called regular if
dim g0,x is minimal among all such subalgebras. One can show that every subalgebra g0,x, where x is regular,
is a Cartan subalgebra.

Proposition 3.5. Let g be a semisimple Lie algebra. The following are equivalent:

(a) h is a Cartan subalgebra;
(b) h is a maximal abelian subalgebra of g which is toral, i.e., the adjoint action of h on g is semisimple.

Moreover, any two Cartan subalgebras are conjugate (under the adjoint action).

Example 3.6. If g = sl(n), then the usual choice of Cartan subalgebra is h consisting of diagonal, trace 0,
matrices.

3.4. Cartan decomposition. From now on, g is a semisimple Lie algebra and h is a fixed Cartan subalgebra.
The main tool for the structure of g is the Cartan decomposition.

Decompose g with respect to the adjoint action of h. Since h is abelian, basic linear algebra tells us that
g decomposes into a direct sum of generalized h-eigenspaces:

g =
⊕

χ∈h∗

gχ, gχ = {x ∈ g | for all h ∈ h there exists N > 0 such that (ad(h)− χ(h))Nx = 0}.

Since h acts semisimply, the generalized eigenspaces are just the usual eigenspaces: gχ = {x ∈ g | [h, x] =
χ(h)x, h ∈ h}.

One can show first that g0 = h. Denote Φ = {α ∈ h∗ \ {0} | gα 6= 0} and call it the set of roots of g (with
respect to h). The Cartan (or root) decomposition of g is then:

g = h⊕
⊕

α∈Φ

gα. (3.4.1)

The spaces gα are called root spaces and every nonzero vector in gα is called a root vector. Here is a list of
the main facts about this decomposition. The main tool for proving the nontrivial statements is the Cartan
criterion for semisimplicity.

3Because of the skew-symmetry of the Lie bracket in g, left ideals are the same as right ideals and are the same as two-sided
ideals.
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(1) [gα, gβ ] ⊆ gα+β , α, β ∈ Φ ∪ {0}.
(2) κ(gα, gβ) = 0 unless β = −α. Moreover, κ gives a nondegenerate pairing of gα with g−α and the

restriction of κ to h× h is nondegenerate. The Killing form on h can be computed by the formula

κ(h, h′) =
∑

α∈Φ

α(h)α(h′), h, h′ ∈ h. (3.4.2)

(3) Φ spans h∗.
(4) dim gα = 1 for all α ∈ Φ.
(5) For every α ∈ Φ, there exist vectors eα ∈ gα, e−α ∈ gα, hα = [eα, e−α] ∈ h such that {eα, hα, e−α}

satisfy the sl(2)-relations. The element hα is called the coroot corresponding to α and the content
of the claim is that α(hα) = 2. The coroots {hα | α ∈ Φ} span h.

(6) If α + β /∈ Φ then [eα, eβ ] = 0 (obviously). If α + β ∈ Φ, then [eα, eβ ] = Ceα+β for some nonzero
scalar C.

Remark 3.7. If we regard g as an sl(2)-module via the adjoint action, for the sl(2) spanned by {eα, hα, e−α},
then we know that the weights of this representation must be integers. But every β(hα), β ∈ Φ is a weight,
thus β(hα) ∈ Z for all α, β ∈ Φ.

Definition 3.8. Define:

Q∨ = {
∑

α∈Φ

aαhα | aα ∈ Z} ⊂ h;

Q = {
∑

α∈Φ

aαα | aα ∈ Z} ⊂ h∗;

P = {χ ∈ h∗ | χ(hα) ∈ Z for all α ∈ Φ}.

(3.4.3)

These groups are called the coroot, root, weight lattice, respectively. In light of the previous remark, we have
Q ⊆ P , but in general, they are not equal.

Example 3.9. Let g = sl(n) and h be the diagonal matrices of trace 0. In coordinates, we may think of h as
h = {(a1, . . . , an) ∈ Cn |

∑
i ai = 0}. The dual space h∗ is naturally identified with h∗ = C〈ǫ1, . . . , ǫn〉/〈ǫ1 +

ǫ2 + · · ·+ ǫn〉, where ǫi : h→ C is defined by ǫi(a1, a2, . . . , an) = ai.
The roots are Φ = {ǫi − ǫj | 1 ≤ i 6= j ≤ n} ⊂ h∗. The Cartan decomposition is g = h⊕

⊕
i6=j gǫi−ǫj , with

gǫi−ǫj = C · Eij , where Eij is the elementary matrix that has 1 on the (i, j) position and 0 everywhere else.
The lattices in the previous definition are:

Q∨ = {(a1, . . . , an) ∈ Zn |
∑

i

ai = 0};

Q = {
n∑

i=1

aiǫi | ai ∈ Z,
∑

i

ai = 0}/〈ǫ1 + ǫ2 + · · ·+ ǫn〉;

P = Z〈ǫ1, . . . , ǫn〉/〈ǫ1 + ǫ2 + · · ·+ ǫn〉.

(3.4.4)

In this case, Q ( P and, in fact, one may show that P/Q ∼= Z/nZ.

The Killing form is nondegenerate on h, and therefore it induces a nondegenerate bilinear form 〈 , 〉 on
h∗. The coroot hα is uniquely determined by the property

χ(hα) =
2〈χ, α〉

〈α, α〉
, for all χ ∈ h∗.

Moreover, since κ(h, h) =
∑

α∈Φ α(h)2, it follows that κ is positive definite on Q∨. Dually, 〈 , 〉 is positive
definite on P .

3.5. The Weyl group. For every α ∈ Φ, define the reflection in the hyperplane perpendicular to α:

sα : h∗ → h∗, sα(χ) = χ− χ(hα)α. (3.5.1)

By the usual abuse of notation, we also denote by sα the corresponding reflection in h:

sα : h→ h, sα(h) = h− α(h)hα. (3.5.2)
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Then s2α = Id and det(sα) = −1. The Weyl group W is the subgroup of GL(h∗) (respectively, GL(h))
generated by sα. In fact, since all sα’s preserve the Killing form, W is a subgroup of the orthogonal group
O(h∗, 〈 , 〉) (respectively, O(h, κ)).

In order to use Euclidean geometry, introduce the real vector spaces a = R⊗Z Q∨ ⊂ h and a∗ = R⊗Z Q.
These spaces are endowed with positive definite forms coming from κ on a, and 〈 , 〉 on a∗.

If α ∈ Φ, denote the hyperplane perpendicular to α by Hα = {χ ∈ a∗ | χ(hα) = 0}.

Definition 3.10. The connected components of a∗ \∪α∈ΦHα are called Weyl chambers. Fix a Weyl chamber
C and let C denote its closure in a∗.

Proposition 3.11. C is a fundamental domain for the action of W on a∗, meaning that:

(1) if χ ∈ a∗ then there exists w ∈W such that wχ ∈ C;
(2) if χ,wχ ∈ C then χ = wχ.

Moreover, if χ ∈ C and χ = wχ, then w = 1.

From this result, it follows that W permutes the (open) Weyl chambers transitely and in particular, the
number of Weyl chambers equals |W |.

We are now in position to define positive and simple roots (with respect to our fixed choice of Weyl
chamber C).

Definition 3.12. A root α ∈ Φ is called positive if 〈χ, α〉 > 0 for all χ ∈ C. This means that α makes acute
angles with every vector in C. Denote by Φ+ the subset of positive roots and let Φ− = −Φ+ be the negative
roots. Of course, Φ = Φ+ ⊔ Φ−. Notice that Φ+ is closed under addition.

A positive root α is called a simple root if it cannot be written as a sum of more than one positive roots.
Let Π ⊂ Φ+ denote the set of simple roots.

The basic facts about positive and simple roots are the following:

(1) Π is a Z-basis of Q (resp., R-basis of a∗, resp., C-basis of h∗). Every positive root α can be written
as a sum of simple roots with nonnegative integer coefficients.

(2) A positive root α is simple if and only if Hα is a wall of the fundamental chamber C.
(3) W is generated by sα, α ∈ Π.
(4) If α, β are simple root and α 6= β then 〈α, β〉 ≤ 0.

We define a partial order on h∗ that we will use later. Let Q+ denote the Z≥0-span of Π. Then we say
that χ1 ≤ χ2 if χ2 − χ1 ∈ Q+.

A weight χ ∈ P is called dominant if χ(hα) ∈ Z≥0 for all α ∈ Π. This is equivalent with sα(χ) ≤ χ for all
α ∈ Π. Denote by P+ the semigroup of dominant weights. Clearly, Q+ ⊆ P+.

Example 3.13. Denote

ρ =
1

2

∑

α∈Φ+

α ∈ h∗. (3.5.3)

One may show that ρ(hα) = 1 for all α ∈ Π. In particular, ρ ∈ P+.

Example 3.14. In the sl(n) example, the usual choice of positive roots is Φ+ = {ǫi − ǫj | i < j}. The
corresponding simple roots are Π = {ǫi − ǫi+1 | 1 ≤ i ≤ n − 1}. The Weyl group is the symmetric group Sn

acting on coordinates in the standard way. The weight ρ equals in coordinates ρ = (n−1
2 , n−3

2 , . . . ,−n−1
2 ).

3.6. Some more Weyl group combinatorics. Let Π be a base of Φ. The proof of the following lemma is
left as an exercise.

Lemma 3.15. If α ∈ Π, then the reflection sα permutes the roots in Φ+ \ {α}.

We prove a basic result about Weyl group elements.

Lemma 3.16. Suppose α1, α2, . . . , αm are in Π, not necessarily distinct. Write si = sαi
. If

s1 · . . . · sm−1(αm) ∈ Φ−

then for some index 1 ≤ k < m, s1 · . . . · sm = s1 · . . . · sk−1sk+1 · . . . · sm−1.
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Proof. Write βi = si+1 · . . . · sm−1(αm), 0 ≤ i ≤ m− 2 and βm−1 = αm. Then β0 ∈ Φ− and βm−1 ∈ Φ+. Let
k be the smallest index such that βk ∈ Φ+. Then βk−1 = sk(βk) ∈ Φ−. But sk permutes all positive roots
except αk, hence βk = αk. So αk = sk+1 ·. . .·sm−1(αm and therefore sk = (sk+1 ·. . .·sm−1)sm(sm−1 ·. . .·sk+1),
from which the lemma follows. �

Since W is generated by {sα | α ∈ Π}, we may write each w as a product of simple reflections. If
w = sα1

· · · sαm
, αi ∈ Π, such that m is minimal, then we say that this is a reduced expression for w, and we

call m the length of w. Write ℓ(w) = m. Clearly, ℓ(1) = 0, ℓ(sα) = 1 for α ∈ Π, and ℓ(w) = ℓ(w−1).

Lemma 3.17. For all w ∈W , ℓ(w) = #{β ∈ Φ+ | w(β) < 0}.

Proof. The proof is by induction of ℓ(w), the base case w = 1 being clear. Denote n(w) = #{β ∈ Φ+ |
w(β) < 0}. Suppose w = sα1

· · · sαm
is a reduced expression. Set α = αm. Then w(α) < 0. On the other

hand, n(wsα) = n(w)− 1, because sα permutes all positive roots except α. Also ℓ(wsα) = ℓ(w)− 1 < ℓ(w),
so by induction ℓ(wsα) = n(wsα), hence ℓ(w) = n(w). �

Proposition 3.18. Suppose λ, µ ∈ C. If wλ = µ for some w ∈ W then w is a product of simple reflections
each of which fixes λ. In particular, λ = µ.

Proof. We prove the claim by induction on ℓ(w). If ℓ(w) > 0, there exists β ∈ Φ+ such that w(β) ∈ Φ−, so
there exists a simple root α such that w(α) ∈ Φ−. Then

0 ≥ 〈µ,w(α)〉 = 〈w−1(µ), α〉 = 〈λ, α〉 ≥ 0,

hence 〈λ, α〉 = 0. This means that sα(λ) = λ and (wsα)(λ) = µ. Since ℓ(wsα) = ℓ(w) − 1, we can continue
by induction. �

4. The category O

Let g be a semisimple Lie algebra over C. Fix a Cartan subalgebra h and let Φ be the roots of h in g

and g = h ⊕
⊕

α∈Φ gα be the Cartan decomposition. Fix a choice of positive roots Φ+ and let Π be the
corresponding simple roots. We retain all the other notation from the previous section. Denote

n+ =
∑

α∈Φ+

gα, n− =
∑

α∈Φ+

g−α, b = h⊕ n+. (4.0.1)

It is easy to prove the following lemma by using the commutation relations between h, eα, α ∈ Φ+.

Lemma 4.1. The subalgebras n+ and n− are nilpotent. The subalgebra b is solvable and its derived subalgebra
is n+.

As a consequence of the PBW theorem, we have the following triangular decomposition of U(g):

U(g) ∼= U(n−)⊗ U(h)⊗ U(n+). (4.0.2)

We will use this decomposition repeatedly in this section.

4.1. Definitions. Let V be an g-module. For λ ∈ g∗, denote by Vλ the generalized λ-weight space and by
V ss
λ the λ-weight space. Recall that:

Vλ = {v ∈ V | for every h ∈ h there is N > 0 such that (h− λ(h))Nv = 0}.

The same argument as in sl(2) shows that

eα · Vλ ⊆ Vλ+α, eα · V
ss
λ ⊆ V ss

λ+α, α ∈ Φ. (4.1.1)

We say that V is h-semisimple if Vλ = V ss
λ for all λ ∈ h∗ and V =

⊕
λ∈h∗ Vλ. The set

Ψ(V ) = {λ ∈ h∗ | Vλ 6= 0} (4.1.2)

is called the set of weights of V .

Definition 4.2. The category O of g is the full subcategory of (left) U(g)-modules whose objects M satisfy
the following conditions:

(O1) M is a finitely generated U(g)-module;
(O2) M is h-semisimple;
(O3) M is locally n+-finite, i.e., for every v ∈M , the subspace U(n+) · v is finite dimensional.
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Example 4.3. Recall the modules constructed for sl(2), M(λ) = span{v0, v1, . . . , vn, . . . }. Given the explicit
construction, we can see immediately that these modules are in the category O.

Lemma 4.4. Every finite dimensional g-module is in O.

Proof. If M is finite dimensional, then (O1) and (O3) are automatic. For (O2), recall that h is the span of
the coroots {hα | α ∈ Φ}. Since hα commute, a standard linear algebra fact implies that the action of h is
semisimple (diagonalizable) if and only if every hα is semisimple. So it is sufficient to prove that the action
of hα for a single α ∈ Φ is semisimple. Regard hα as part of the Lie triple {eα, hα, e−α} which spans an sl(2).
Regarding V as a finite dimensional sl(2)-module, the results from sl(2) tell us that V is hα-semisimple. �

Recall the semigroup Q+ and the partial order <.

Lemma 4.5. Let M be a module in O.

(1) For every λ ∈ Ψ(M), the weight space Mλ is finite dimensional.
(2) There exist finitely many weights λ1, . . . , λk ∈ Ψ(M) such that for every λ ∈ Ψ(M), λ < λi for some

i.

Proof. Using (O2) we can take a generating set of M to consist of weight vectors. To prove (1) and (2),
it then suffices to consider the case when M = U(g) · vλ, where vλ is a λ-weight vector. We’ll use the
triangular decomposition of U(g) = U(n−)U(h)(U(n+). Notice first that V := U(n+) ·vλ is finite dimensional
(O3) and spanned by weight vectors for weights in λ+Q+. Let {vλ1

, . . . , vλk
} be a basis of V consisting of

weight vectors. Next V is stable under the action of U(h). The action of U(n−) produces weights lower than

λ1, . . . , λk. More precisely, the weight vectors are all of the form ei1−α1
· · · eiℓ−αℓ

·vλi
with corresponding weight

µ = λi −
∑m

j=1 ijαj . Here all ij are nonnegative integers.
Finally, to see that all weight spaces are finite dimensional, notice that there are only finitely many ways

to write µ in the above form. �

4.2. Basic properties. We record some of the immediate properties of O in the next proposition.

Proposition 4.6. (1) O is a Noetherian category, i.e., every M ∈ O is a Noetherian U(g)-module.
(2) O is closed under taking submodules, quotients, and finite direct sums. Hence O is an abelian category.
(3) If M ∈ O and L is finite dimensional, then L⊗M ∈ O.
(4) If M ∈ O, them M is Z(g)-finite, i.e., for every v ∈M , span{z · v | z ∈ Z(g)} is finite dimensional.
(5) If M ∈ O, then M is finitely generated as a U(n−)-module.

Proof. (1) U(g) is Noetherian4 and M is a finitely generated U(g)-module. Therefore M is Noetherian.
(2) The only statement that needs explanation is the fact that (O1) holds for submodules. But this is

precisely because of the Noetherian property from (1): every submodule of a finitely generated module is
finitely generated.

(3) The tensor product L ⊗M satisfies (O2) and (O3). To prove finite generation, let {v1, . . . , vn} be a
basis of L and let m1, . . . ,mk generate M . Then {vi ⊗ mj} generates L ⊗M . To see this, let N be the
submodule this set generates. Since every v ∈ L can be written as v =

∑
aivi, we see that all simple tensors

of the form v ⊗mj , v ∈ L, are also in N . If x ∈ g, we calculate

x · (v ⊗mj) = x · v ⊗mj + v ⊗ x ·mj ∈ N.

The first term is in N , so v ⊗ x ·mj ∈ N . Repeating this, we see that v ⊗ u ·mj ∈ N for all u ∈ U(g). But
then L⊗M ⊂ N , which concludes the proof.

(4) If v ∈M we may write v as a sum of weight vectors. It is sufficient to prove the claim when v ∈ Mλ.
Since z ∈ Z(g) commutes with h, we see that z · v ∈Mλ as well. But Mλ is finite dimensional, so Z(g) · v is
finite dimensional.

(5) Because of the axioms, we see that M is generated by a finite dimensional U(b)-module V . By the
PBW theorem, a basis of V generates M as a U(n−)-module. �

Example 4.7. We can verify that when g = sl(2), the tensor product M(λ)⊗M(µ) is not in O.

4This is proved in the “Noncommutative rings” lectures using the PBW theorem, so we won’t repeat the proof here.
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4.3. Highest weight modules.

Definition 4.8. Let M be a U(g)-module. A nonzero vector v ∈ M is called a highest weight vector (of
weight λ) if v ∈ Mλ for some λ ∈ Ψ(M) and n+ · v = 0. The last condition is equivalent with eα · v = 0 for
all α ∈ Φ+.

From Lemma 4.5, every M ∈ O has a highest weight vector. (Pick λ a maximal weight with respect to
<.) Therefore, it makes sense to make the following definition.

Definition 4.9. A U(g)-module M is called a highest weight module of weight λ if there exists v ∈Mλ such
that M = U(g) · v. The last condition is equivalent with M = U(n−) · v by the triangular decomposition.

We list several immediate properties of highest weight modules.

(a) Choose an ordering of the positive roots: α1, α2, . . . , αm. Then M is spanned by the vectors

ei1−α1
· · · eim−αm

· v. Each such vector has weight λ−
∑m

j=1 ijαj . Hence M is h-semisimple.

(b) Arguing as in the proof of Proposition 4.6(5), we see that if µ ∈ Ψ(M), then µ ≤ λ. Moreover, each
Mµ is finite dimensional and, in particular, dimMλ = 1. Therefore M ∈ O. (Axiom (O3) follows
from the fact that eα, α ∈ Φ+ maps Mµ to Mµ+α.)

(c) Each nonzero quotient of M is also a highest weight module of weight λ.

Proposition 4.10. Let M ∈ O be a highest weight module.

(1) M has a unique maximal submodule and hence a unique simple quotient. In particular, M is inde-
composable.

(2) Let λ ∈ h∗ be given. All simple highest weight modules of weight λ are isomorphic. If M is a simple
highest weight module of weight λ, then dimEndU(g)(M) = 1.

Proof. (1) If N is a proper submodule of M then N ∈ O (as M ∈ O), hence N is h-semisimple. Write
N =

⊕
µ∈Ψ(N)⊂Ψ(M) Nν . Since Mλ is one-dimensional and every vector in Mλ generated M , it follows that

λ /∈ Ψ(N). This implies that the sum of all proper submodules of M is still proper (λ is not a weight for any
of them), and therefore there is a unique maximal submodule.

(2) Suppose M1 and M2 are two simple highest weight modules of the same weight λ. Let v1, v2 be
highest weight vectors for M1 and M2, respectively. Then v = v1 + v2 is also a highest weight vector in
M = M1 ⊕M2. Denote N = U(g) · v ⊂ M . Then N is a highest weight module of weight λ. The two
canonical projections give projections N →M1 and N →M2. Hence M1 and M2 are both simple quotients
of N . By (1), M1

∼= M2.
For the second part, let M be a simple highest weight module of weight λ and let φ : M → M be a

nonzero g-homomorphism. Since M is simple, φ must be an isomorphism. Then it maps Mλ to Mλ. Fix a
highest weight vector v ∈Mλ. Since Mλ is one-dimensional, φ(v) = cv for some constant c ∈ C. But since v
generates M , it follows that φ = c · Id. �

As a consequence, we can see that the highest weight modules are the building blocks of category O.

Corollary 4.11. Let M 6= 0 be a module in O. There exists a finite filtration

0 ⊂M1 ⊂M2 ⊂ · · · ⊂Mn = M

of modules in O such that Mi/Mi+1 is a highest weight module.

Proof. M is generated by finitely many weight vectors vλ1
, . . . , vλℓ

. Set V = U(n+) · 〈vλ1
, . . . , vλℓ

〉. Because
of (O3), V is finite dimensional and, of course, M = U(g) · V = U(n−) · V . We proceed by induction on V .

If dimV = 1, then M is a highest weight module itself. Otherwise, take v ∈ V a weight vector for a
maximal weight (among the weights that occur in V ). Then v must be a highest weight vector in M . Set
M1 = U(n−) · v which is a submodule of M and a highest weight module. Next M̄ = M/M1 is generated by
V̄ = V/〈v〉. Since dim V̄ < dimV , we can finish the proof by induction. �

4.4. Verma modules. Recall the Borel subalgebra b = h ⊕ n+. Since n+ is an ideal in b, we have the
natural projection b → b/n+ ∼= h, which is a Lie algebra homomorphism. For every λ ∈ fh∗, denote by Cλ

the one-dimensional b-representation pulled back via this projection. Then on Cλ, n
+ acts by 0. We can also

regard Cλ as a U(b)-module.
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Definition 4.12. Let λ ∈ h∗ be given. Define

M(λ) = U(g)⊗U(b) Cλ,

a left U(g)-module under the natural action (left multiplication) of U(g). This is called the Verma module of
highest weight λ.

Notice that M(λ) ∼= U(n−)⊗Cλ as left U(n−)-modules. This follows again from the triangular decompo-
sition of U(g). In other words, M(λ) is a free U(n−)-module of rank 1.

Define the vector v = 1 ⊗ 1 ∈ M(λ). This is a highest weight vector of weight λ and M(λ) = U(n−) · v.
This means that M(λ) is indeed a highest weight module of weight λ.

Lemma 4.13. The weights of M(λ) are Ψ(M(λ)) = λ−Q+.

Proof. We know that Ψ(M(λ)) ⊆ λ−Q+ since we’ve seen that this holds for any highest weight module. The

equality follows from the fact that M(λ) is a free U(n−)-module of rank 1, hence all elements ei1−α1
· · · eim−αm

·v
are linearly independent and they “cover” all the weights in λ−Q+. �

An alternative definition goes as follows. Define the left ideal I of U(g) generated by n+ and {h−λ(h) ·1 |
h ∈ h}. Then

M(λ) ∼= U(g)/I. (4.4.1)

Lemma 4.14 (Universal property). Suppose M is a highest weight module of weight λ. Then there exists a
projection p : M(λ)→M .

Proof. Let v′ ∈ M be a highest weight vector. The assignment v 7→ v′ extends to a U(g)-homomorphism
M(λ)→M which is surjective since v′ generates M .

Or differently, start with the projection p̃ : U(g)→M , 1 7→ v. Since the ideal I kills M , p̃ factors through
U(g)/I →M. �

By the properties of highest weight modules, M(λ) has a unique maximal submodule N(λ) and a unique
simple quotient L(λ) = M(λ)/N(λ).

Theorem 4.15. Every simple module in O is isomorphic to a module L(λ) for some λ ∈ h∗. Moreover,

dimHomU(g)(L(λ), L(µ)) =

{
1, λ = µ

0, λ 6= µ.

Proof. Every simple module L in O is a highest weight module of weight λ where λ is a maximal weight in
Ψ(L). By the universal property, L is a quotient of the Verma module of M(λ), hence L ∼= L(λ). The second
claim is just a particular case of Proposition 4.10. �

Remark 4.16. Every simple module in category O is uniquely determined by its highest weight. In particular,
this is true for simple finite dimensional g-modules.

4.5. Finite dimensional modules. In light of the results in the previous subsection, we have a one-to-one
correspondence

h∗ −→ {simple modules in O}, λ 7→ L(λ).

We would like to determine which modules L(λ) are finite dimensional.
Recall that for every α ∈ Φ+, we have the Lie triple {eα, hα, e−α}. Denote by slα the span of this

triple. This is a Lie algebra isomorphic to sl(2), and we will make use repeatedly of our knowledge of
sl(2)-representation theory applied to slα.

Theorem 4.17. (1) The simple module L(λ) ∈ O is finite dimensional if and only if λ ∈ P+ = {χ ∈
h∗ | χ(hα) ≥ 0, for all α ∈ Φ+}.

(2) This is the case if and only if dimL(λ)µ = dimL(λ)w(µ), for all µ ∈ Ψ(L(λ) and all w ∈W.

Proof of the necessary condition in (1). It is easy to see that if L(λ) is finite dimensional, then λ ∈ P+.
Indeed, let α ∈ Φ+ be arbitrary and regard L(λ) as a finite dimensional slα-module. If v is a highest weight
vector of L(λ) with highest weight λ, then in particular, eα · v = 0 and hα · v = λ(hα)v. This means that v
is a highest weight vector for a finite dimensional slα-module, and therefore λ(hα) ∈ Z≥0. �
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For the rest of the proof, we need to analyze first the structure of M(λ). More precisely, if µ is a weight
of M(λ) then µ ≤ λ, i.e., µ ∈ λ−Q+. We look for highest weight vectors in M(λ) with weight µ < λ. (We
have seen this idea already in the case of sl(2).) The key calculation is in the following proposition.

Proposition 4.18. Let M(λ) be a Verma module, λ ∈ h∗, and let v ∈ M(λ) be a highest weight vector of
weight λ. Let α be a simple root. If n := λ(hα) ∈ Z≥0, then en+1

−α · v is a highest weight vector of weight
µ = λ− (n+ 1)α < λ.

Proof. Denote v′ = en+1
−α · v. Then

h · v′ = hen+1
−α · v = [h, en+1

−α ] · v + en+1
−α h · v

= −α(h)(n+ 1)en+1
−α · v + λ(h)en+1

−α h · v = (λ− (n+ 1)α)(h)v′.

This shows that v′ is a µ-weight vector. Next we need to check that n+ · v′ = 0. It is sufficient to verify that
eβ · v

′ = 0 for all β ∈ Π. (Every positive root vector can be written as a repeated commutator of simple root
vectors.)

If β 6= α, then eβ · v
′ = eβ · e

n+1
−α · v = en+1

−α eβ · v = 0. Here we used that eα and eβ commute, because
β − α is not a root.

If β = α, then eα · v
′ = eαe

n+1
−α · v = [eα, e

n+1
−α ] · v + en+1

−α eα · v = (n + 1)en−α(hα − n) · v + 0 = 0, since
λ(hα) = n. �

Corollary 4.19. In the notation of Proposition 4.18, if n = λ(hα) ∈ Z≥0 then there exists an injective
homomorphism M(µ) → M(λ), µ = λ − (n + 1)α, whose image lies in the unique maximal submodule of
M(λ).

Proof. If v′ is a highest weight vector of M(µ) of weight µ, then the homomorphism is defined by sending
v′ 7→ en+1

−α ·v, where v is a highest weight vector of weight λ in M(λ) and extending as a U(g)-homomorphism.
The fact that this is injective follows from the fact that the two Verma modules are free of rank one over
U(n−).

Since the image of the homomorphism is a submodule of M(λ), it must lie in the unique maximal sub-
module. �

Remark 4.20. The condition on µ in Proposition 4.18 becomes more transparent if we notice that µ =
sα(λ+ ρ)− ρ. Thus the condition can be rephrased as µ := sα(λ+ ρ) < λ+ ρ. The shift by ρ will make sense
when we discuss the Harish-Chandra homomorphism later.

Before we return to the proof of Theorem 4.17, we need one more definition and a lemma.

Definition 4.21. Let a be an algebra. An a-module M is called a-finite if it is a sum of finite dimensional
a-modules.

We have already encountered this notion in axiom (O3) for category O. The idea behind a-finite module
is that we can extend to this setting the local properties of finite dimensional modules.

Lemma 4.22. Let α ∈ Π be given and suppose that M ∈ O is an slα-finite module. Then dimMµ =
dimMsα(µ) for every weight µ of M .

Proof. Decompose M =
⊕

k∈Z
Mk with respect to the action of hα. Here Mk is the k-eigenspace of hα.

From the representation theory of finite dimensional sl(2)-modules (applied to slα) we know that ekα induces
a linear isomorphism between the k-eigenspace and the (−k)-eigenspace of a finite dimensional module. But
then this is also true for slα-modules so it can be applied to M . Denote jk : Mk →M−k the resulting linear
isomorphism induced by the action of ek−α. We can decompose

Mk =
⊕

µ∈h∗,µ(hα)=k

Mµ, M−k =
⊕

µ′∈h∗,µ′(hα)=−k

Mµ′ =
⊕

µ∈h∗,µ(hα)=k

Msα(µ).

Now, if vµ ∈Mµ, we have h · ek−α · vµ = [h, ek−α] · vµ + ek−αh · vµ = (µ− kα)(h)ek−α · vµ = sα(µ)e
k
−α · vµ, since

k = µ(hα). This shows that jk maps Mµ to Msα(µ). But then it has to induce a linear isomorphism between
Mµ to Msα(µ). �

Now we are in position to finish the proof of Theorem 4.17.
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Proof of Theorem 4.17. Suppose λ ∈ P+ and fix an arbitrary α ∈ Π. Then n = λ(hα) is a nonnegative
integer. Regard L(λ) as an slα-module. We claim that L(λ) is slα-finite. To see this, denote by L′ the sum
of all the finite dimensional slα-submodules of L(λ).

If v is a highest weight vector of L(λ), v is a highest weight vector for the slα-action and it has weight
n ∈ Z≥0. This implies that slα · v is a finite dimensional slα-module (of dimension n+ 1). Thus slα · v ⊂ L′

and L′ 6= 0.
Next, we see that L′ is a g-submodule of L(λ). This is a completely general argument. Take m′ ∈ L′ and

x ∈ g, we want to see that x ·m′ ∈ L′. By definition, there exists a finite dimensional slα-submodule N of
L(λ) such that m′ ∈ N. Since g itself is a finite dimensional slα-module (under the adjoint action), it follows
that g ·N is a finite dimensional slα module, and it is a submodule of L(λ). Since x ·m′ ∈ g ·N , it follows
that x ·m′ ∈ L′. Since L′ is a nonzero g-submodule of L(λ), it follows that L(λ) = L′ since L(λ) is simple.

We can apply then Lemma 4.22 to L(λ) to find that dimL(λ)µ = dimL(λ)sα(µ) for all µ ∈ Ψ(L(λ)). Since
α was arbitrary and the sαs generate W , it follows that dimL(λ)µ = dimL(λ)w(µ) for all µ ∈ Ψ(L(λ)).

Using this condition, we claim that there are only finitely many weights in L(λ). Then the conclusion
follows too since every weight space is finite dimensional. Recall that in every W -orbit on weights there exists
one and only one dominant weight. Since W is finite, we only need to count the weights µ ∈ P+ that can
appear in L(λ). The second condition means that µ ≤ λ. But it is easy to see that there are only finitely
many weights in P+ below λ. (P is a lattice!)

�

Corollary 4.23. Every finite dimensional g-module is a direct sum of simple modules L(λ), λ ∈ P+.

Proof. This follows from the previous theorem and Weyl’s theorem on complete reducibility.5 �

We now have a classification via integral dominant highest weights of the simple finite dimensional g-
modules. Other typical information that one would still like to have in representation theory is:

• the dimension of L(λ),
• the formal character of L(λ),
• models (or explicit realizations) of L(λ).

We will obtain satisfactory answers for the first two topics, but the third topic, except for some particular
examples, is beyond the scope of this course.

5. The center of U(g)

Recall the notation Z(g) for the center of U(g). We wish to understand the structure of Z(g). We will
first look at the action of Z(g) on modules in O.

5.1. Infinitesimal characters. Any algebra homomorphism χ : Z(g) → C is called an infinitesimal char-
acter. Let Θ = {χ : Z(g)→ C} denote the set of all infinitesimal characters.

Lemma 5.1. Let M(λ) ∈ O be the Verma module with λ ∈ h∗. Then every z ∈ Z(g) acts by a scalar on
M(λ).

Proof. Again, we’ve already seen the following proof in the case of sl(2). Write M(λ) = U(g) · v, where v is
a highest weight vector of weight λ. If z ∈ Z(g) and h ∈ h, then

h · (z · v) = zh · v = λ(h)(z · v),

meaning that z · v ∈ M(λ)λ too. Since dimM(λ)λ = 1, there exists a scalar cz ∈ C such that z · v = czv.
Now let u · v, u ∈ U(g), be an arbitrary vector in M(λ). Then

z · (u · v) = uz · v = czu · v.

This shows that z acts on M(λ) by the scalar cz. �

5Weyl’s complete reducibility theorem is proved, using the action of the Casimir operator, in the Lie algebras course C2.1,
see Kevin McGerty’s notes.
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The above lemma should remind us of Schur’s Lemma from finite dimensional simple representations.
Notice however that in our situation M(λ) is not finite dimensional and in general it is not simple either. In
light of this result, we define for each λ ∈ fh∗,

χλ(z) = cz, (5.1.1)

in the notation of the proof of the lemma. This is an algebra homomorphism clearly, and we call it the
infinitesimal character associated to λ.

We can say more about it. Suppose z ∈ Z(g) is given. Let λ ∈ h∗ and extend it to λ : S(h) → C in the
obvious way. Then using the triangular decomposition of U(g), we may write

z =
∑

z1z
+ + z0 +

∑
z−z2,

where z1 ∈ U(n−)U(h), z+ ∈ U(n+) has no constant terms, z0 ∈ U(h) = S(h), z− ∈ U(n−) has no constant
terms, and z2 ∈ U(h). Let v ∈ M(λ)λ be a highest weight vector. Then z · v = λ(z0)v + λ(z2)z

− · v. Since
z− · v consists of weight vectors of weight strictly smaller than λ, we see that cz = λ(z0). Define

pr : U(g)→ U(h) = S(h), u 7→ u0, (5.1.2)

the projection map defined by sending all monomials in positive degrees in n+ and in n− to 0. This is a linear
surjective map. The discussion before says that

χλ(z) = λ(pr(z)), z ∈ Z(g). (5.1.3)

Therefore, it makes sense to restrict pr to Z(g) and obtain the linear map

ξ′ : Z(g)→ S(h). (5.1.4)

This is called the Harish-Chandra projection.

Lemma 5.2. The map ξ′ : Z(g)→ S(h) is an algebra homomorphism.

Proof. For z1, z2 ∈ Z(g), λ(pr(z1z2)) = χλ(z1z2) = χλ(z1)χλ(z2) = λ(pr(z1))λ(pr(z2)) = λ(pr(z1) pr(z2)).
Hence pr(z1z2)− pr(z1) pr(z2) ∈ ∩λ∈h∗ kerλ = 0. �

5.2. The Harish-Chandra homomorphism. To understand infinitesimal characters further, we need to
know when χλ = χµ for λ, µ ∈ h∗. From Lemma 5.1, we know that if M(µ) occurs as a submodule of M(λ),
then χµ = χλ. We have already seen this situation: if n = λ(hα) ∈ Z≥0 for some α ∈ Π, then M(µ) is a
submodule of M(λ) where µ = sα(λ+ ρ)− ρ. This fact motivates the following definition.

Definition 5.3. Define the dot-action of W on h∗ by

w · λ = w(λ+ ρ)− ρ, w ∈W,λ ∈ h∗. (5.2.1)

We say that λ and µ are linked if µ = w · λ for some w ∈W .

Notice that µ and λ are linked if and only if µ + ρ and λ + ρ are in the same W -orbit in h∗ under the
natural action of W . In particular, “linkage” is an equivalence relation on h∗.

Lemma 5.4. If λ ∈ P and µ is linked to λ, then χλ = χµ.

Proof. Since W is generated by simple reflections it is sufficient to consider the case when µ = sα · λ for
α ∈ Π. If λ ∈ P , then n = λ(hα) ∈ Z. If n ≥ 0, by the result recalled before, χµ = χλ. If n = −1, µ = λ and
there is nothing to prove. If n ≤ −2, then λ = sα · µ and µ(hα) = −n − 2 ≥ 0, so we are back in the first
case with the roles of λ and µ reversed. �

Proposition 5.5. If λ, µ ∈ h∗ are linked then χλ = χµ.

Proof. We know by the previous lemma that the proposition holds when λ and µ are in P.
Suppose µ = w · λ. Denote by P (h∗) the algebra of polynomial functions on h∗ and by ι : S(h) → P (h∗)

the natural isomorphism. Then χλ(z) = λ(ξ′(z)) = ι(ξ′(z))(λ). Similarly, χw·λ(z) = (w · λ)(ξ′(z)) =
λ(w−1 · ξ′(z)) = ι(w−1 · ξ′(z))(λ).

Therefore, ι(w−1 · ξ′(z))(λ) = ι(ξ′(z))(λ) for all λ ∈ P. Since P ⊂ h∗ is dense in the Zariski topology, it
follows that ι(w−1 ·ξ′(z)) = ι(ξ′(z)) as polynomials on h∗, and so χλ = χµ for all λ, µ ∈ h∗ that are linked. �
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Definition 5.6. The Harish-Chandra homomorphism is ξ : Z(g) → S(h) defined by the composition ξ =
ρ-shift ◦ ξ′ where ξ′ : Z(g)→ S(h) = P (h∗) is the Harish-Chandra projection and ρ-shift : P (h∗)→ P (h∗) is
the map defined by p(λ) 7→ p(λ− ρ) for all p ∈ P (h∗), λ ∈ h∗.

Proposition 5.7. The image of the Harish-Chandra homomorphism ξ : Z(g) → S(h) lies in the subalgebra
S(h)W = P (h∗)W of W -invariant polynomials.

Proof. The definition of ξ means that χλ(z) = ξ(z)(λ+ ρ), for all λ ∈ h∗. Here we think of ξ(z) ∈ P (h∗). If
λ and µ are linked, equivalently λ + ρ and µ + ρ are W -conjugate with respect to the natural action of W ,
then χµ = χλ. This means that ξ(z) is constant on W -orbits in h∗, which is equivalent with the claim of the
proposition. �

Remark 5.8. A priori, the definition of ξ depends on the choice of positive roots. Using that any two choices
of positive roots are conjugate under W , one may show that in fact ξ is independent of this choice.

Theorem 5.9 (Harish-Chandra). (1) The algebra homomorphism ξ : Z(g)→ S(h)W is an isomorphism.
(2) If λ, µ ∈ h∗, χµ = χλ if and only if λ and µ are linked.
(3) If χ : Z(g)→ C is an infinitesimal character, then χ = χλ for some λ ∈ h∗.

Remarks about the proof. (1) This is the hardest part. The essential step is Chevalley’s restriction theorem
which says that the restriction θ : P (g)→ P (h), θ(f) = f |h maps P (g)g isomorphically onto P (h)W .

Since the algebra homomorphism ξ is compatible with the natural filtrations on Z(g) (inherited from U(g))
and on S(h)W (inherited from S(h)), it is sufficient to check that the associated graded homomorphism ξ̄ :
gr(Z(g))→ grS(h)W = S(h)W is an isomorphism. Recall that the symmetrizing map symm : S(g)→ grU(g)
induces an isomorphism S(g)g ∼= gr(Z(g)) = gr(U(g)g). Writing S(g) = S(n−) ⊗ S(h) ⊗ S(n+), denote by
p0 : S(g)→ S(h) the projection. One can check that

ξ̄ = p0 |S(g)g .

Finally, one can apply the Chevalley restriction theorem using the identification h ∼= g∗ and h ∼= h∗ via the
Killing form. (S(g) = P (g∗) ∼= P (g) etc.)

(2) Suppose that λ and µ are in different linkage classes. Then λ+ ρ and µ+ ρ are not W -conjugate. We
will separate them using W -invariant polynomials on h∗. Since W (λ+ ρ) and W (µ+ ρ) are finite sets, there
exists a polynomial f ∈ P (h∗) such that f takes the value 1 at every element of W (λ+ ρ) and the value 0 at
every element of W (µ+ ρ). To get a W -invariant polynomial, we average f :

f̄ =
∑

w∈W

w(f).

Then f̄ ∈ P (h∗)W and f̄(λ+ ρ) 6= 0 = f̄(µ+ ρ). Set z = ξ−1(f̄) ∈ Z(g) and we have

χλ(z) = f̄(λ+ ρ) 6= f̄(µ+ ρ) = χµ(z).

(3) Let χ : Z(g) → C be an arbitrary infinitesimal character. Set χ̃ = χ ◦ ξ−1 : S(h)W → C, an algebra
homomorphism. One can show that S(h) is a finitely generated S(h)W -module. Then using standard facts in
commutative algebra, it follows that every homomorphism S(h)W |toC can be extended to a homomorphism
S(h) → C. But every homomorphism S(h) = P (h∗) → C is given by evaluation at some λ. It follows that
χ̃ = χλ |S(h)W and then χ = χλ. �

To conclude, recall that Θ denoted the set of all infinitesimal characters. The homomorphism ξ : Z(g)→
P (h∗)W gives rise to a dual map

ξ∗ : h∗/W → Θ, ξ∗(λ) = χλ−ρ. (5.2.2)

The Harish-Chandra Theorem says that ξ∗ is a bijection.

Example 5.10. Let g = sl(2,C). Recall the Casimir element C = h2+2h+4fe ∈ Z(g). The Harish-Chandra
projection takes C to ξ′(C) = h2 + 2h. Next, the ρ-shift takes h 7→ h− ρ(h) = h− 1. This is because ρ = 1

2α
and α(h) = 2. This means that the Harish-Chandra isomorphism ξ takes

C 7→ h2 − 1.

In this case, W = {Id,− Id} ∼= S2, and therefore, the image of ξ is S(h)W = C[h2]. This means that
Z(g) = C[C] and the correspondence is 1 7→ 1 and C 7→ h2 − 1.
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5.3. Composition series. Recall that we know that every M ∈ O is a Noetherian module.

Proposition 5.11. Each M ∈ O is Artinian.

Proof. We need to show that any proper descending chain of submodules of M terminates. In light of
Corollary 4.11, it is sufficient to prove the claim when M = M(λ). Suppose that N ′ ( N are submodules
of M . Since Z(g) acts by the infinitesimal character χλ on M(λ), it acts by the same χλ on N/N ′. The
subquotient N/N ′ has a highest weight vector of weight µ ≤ λ, which implies that χµ = χλ, and so µ is in
the same linkage class of λ. Moreover, µ must be a weight of N and dimNµ > dimN ′

µ.
Define V =

∑
w∈W M(λ)w·λ. Since all weight spaces are finite dimensional, dimV <∞. Then N ∩ V 6= 0

and
dim(N ∩ V ) > dim(N ′ ∩ V ) > 0.

Therefore, any properly descending chain of submodules must terminate.
�

Corollary 5.12. Every M ∈ O has a finite composition series with simple factors isomorphic to L(λ)s,
λ ∈ h∗.

Proof. Since M ∈ O is both Artinian and Noetherian, the Jordan-Hölder Theorem applies, hence M has a
finite composition series. The second claim is immediate since all the simple modules in O are of the form
L(λ). �

If L(µ) is a factor in a composition series of M , denote by [M : L(µ)] the multiplicity with which L(µ)
appears. Recall that this does not depend, nor do the L(µ)s, on the composition series of M !

Corollary 5.13. If M(λ) is a Verma module, and L(µ) is a factor of M(λ), then µ ≤ λ and λ, µ are linked.
In this case, [M(λ : L(µ)] <∞ and [M(λ) : L(λ)] = 1.

5.4. The Grothendieck group. The definition of the Grothendieck group applies to every small abelian
category. Define A to be the free abelian group generated by symbols [M ], where M ranges over isomorphism
classes of M ∈ O. Define B to be the subgroup of A generated by expressions [M1]+ [M2]− [M ] for all exact
sequences

0 −→M1 −→M −→M2 −→ 0.

Definition 5.14. The Grothendieck group is K(O) = A/B.

Since every object in O has finite length, one can show that the set of (isomorphism classes of) irreducible
modules Irr O = {[L(λ)] | λ ∈ h∗} is a Z-basis of K(O).

Proposition 5.15. The set of “standard modules” St O = {[M(λ) | λ ∈ h∗} is also a Z-basis of K(O). The
change of basis matrix between St O and Irr O is upper triangular with 1s on the diagonal.

Proof. The second claim implies the first since the inverse of an upper triangular matrix with integer entries
and 1s on the diagonal is of the same form. If L(µ) is any simple factor of M(λ), then χµ = χλ, hence λ and
µ are linked. Moreover, µ ≤ λ as it is a weight of M(λ). This means that

[M(λ)] = [L(λ)] +
∑

µ<λ, µ∈W ·λ

nλ,µ[L(µ)], (5.4.1)

for certain nonnegative integers nλ,µ.
A better way to think about this is that first one partitions the sets {[M(λ)]} and {[L(λ)]} according to

the orbits of the dot action of W on h∗. Then for each such orbit, the number of [M(λ)] (respectively [L(λ)])
is finite and the change of basis matrix is finite, square, integer-valued, and upper triangular with 1 on the
diagonal. Hence the inverse of the matrix has the same properties. �

Remark 5.16. The setting where the Grothendieck group has two bases, one consisting of irreducibles and
the other of standard modules, which are related via an upper uni-triangular matrix appears frequently in rep-
resentation theory. You may have already seen this in the case of complex finite dimensional representations
of the symmetric group Sn. In that case, both bases are indexed by partitions of n, with the standard modules
being the induced modules from the trivial representation of the parabolic subgroups given by the rows of the
partitions.
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6. Character formulas

The goal is to obtain the Weyl character formula and the dimension formula for a finite dimensional simple
module L(λ), λ ∈ P+. We follow the exposition in Bernstein’s notes.

6.1. Formal characters. Recall that the formal character of a module M ∈ O is the function

chM : h∗ → Z, chM (λ) = dimMλ <∞.

Define the Kostant partition function K : h∗ → Z by K(µ) = the number of ways in which µ can be written
as µ =

∑
α∈Φ+ nαα, with nα ∈ Z≥0. Then, as seen before,

dimM(λ)µ = K(λ− µ), µ ∈ h∗. (6.1.1)

It is convenient for the later calculations to consider instead the negative Kostant partition function:

p : h∗ → Z, p(µ) = K(−µ). (6.1.2)

Notice that
p = chM(0).

For every function f : h∗ → Z, define the support of f to be

suppf = {χ ∈ h∗ | f(χ) 6= 0}.

Define E to be the set of functions f : h∗ → Z such that suppf is contained in a finite union of sets of the
form λi −Q+.

Example 6.1. For every µ ∈ h∗, define the delta function at µ to be δµ ∈ E, δµ(χ) = 1 if µ = χ and 0, if
µ 6= χ.

Recall that supp chM(λ) = λ−Q+ and, in particular, supp p = −Q+. The set E can be endowed with the
convolution product, for f, g ∈ E :

(f ⋆ g)(µ) =
∑

χ∈h∗

f(χ)g(µ− χ) =
∑

χ∈h∗

f(µ− χ)g(χ). (6.1.3)

Because of the support condition on the elements of E , there are only finitely many nonzero elements in the
sum, hance the convolution is well defined.

Lemma 6.2. (1) (E ,+, ⋆) is an associative and commutative ring with identity δ0.
(2) δµ ⋆ δλ = δµ+λ, for all µ, λ ∈ h∗.

Proof. Straightforward. �

Lemma 6.3. chM(λ) = p ⋆ δλ.

Proof. By the result recalled before, dimM(λ)µ = K(λ − µ) = p(µ − λ). On the other hand, (p ⋆ δλ)(µ) =∑
χ∈h∗ p(µ− χ)δλ(χ) = p(µ− λ). �

In light of this formula, it is desirable to find the inverse (if it exists) of p in E .

Definition 6.4 (Weyl’s denominator). Set ∆ =
∏

α∈Φ+(δα/2 − δ−α/2) ∈ E . Here
∏

means the convolution
product and the order is not important because of the commutativity of E . Notice that ∆ =

∏
α∈Φ+ δα/2(δ0 −

δ−α) = δρ
∏

α∈Φ+(δ0 − δ−α)

Lemma 6.5. We have p ⋆∆ ⋆ δ−ρ = δ0, or equivalently p ⋆∆ = δρ.

Proof. Set aα = δ0 + δ−α + δ−2α + · · ·+ δ−nα + . . . for every α ∈ Φ+. Then p =
∏

α>0 aα. Next notice that
aα ⋆ (δ0 − δ−α) = aα − aα ⋆ δ−α = δ0. The claim follows from the formula of ∆. �

Theorem 6.6. Define the map τ : K(O)→ E by τ([M ]) = chM ⋆∆ for all M ∈ O. Then:

(1) τ([M(λ)] = δλ+ρ.
(2) τ gives an isomorphism of K(O) onto the subgroup Ec of E consisting of functions with finite support.

Proof. For (1), τ([M(λ)] = chM(λ) ⋆∆ = δλ ⋆ p ⋆∆ = δλ ⋆ δρ = δλ+ρ.
For (2), recall that {[M(λ)] | λ ∈ h∗} is a Z-basis of K(O). By (1), τ induces an isomorphism onto the

span of {δµ | µ ∈ h∗}, but this is the same as Ec. �
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6.2. Characters of simple finite dimensional modules. The Weyl group W acts on h∗ via the natural
action w(χ), w ∈W , χ ∈ h∗. This induces an action, the left regular action, on functions, i.e., on E via

(wf)(χ) = f(w−1(χ)), w ∈W, f ∈ E .

Let det(w) denote the determinant of w ∈W viewed as a linear transformation of h∗.

Lemma 6.7. The function ∆ is W -skew-invariant, i.e., w∆ = det(w) ·∆, for all w ∈W.

Proof. It is sufficient to check that for every simple root α, sα∆ = −∆. (Recall that det(sα) = −1.) We know
that sα permutes the roots Φ+ \ {α} and sα(α) = −α. Hence

sα∆ =
∏

β∈Φ+

sα(δβ/2 − δ−β/2) = (δ−α/2 − δα/2) ⋆
∏

β∈Φ+\{α}

(δβ/2 − δ−β/2) = −∆.

�

Theorem 6.8. Suppose that L(λ) is finite dimensional, i.e., λ ∈ P+. Then

∆ ⋆ chL(λ) =
∑

w∈W

det(w) · δw(λ+ρ).

Proof. By inverting the formulas (5.4.1), we see that in K(O), we have

[L(λ)] =
∑

w∈W

mλ,w[M(w · λ)],

for some integers (not necessarily nonnegative) mλ,w. Moreover, mλ,1 = 1. Since λ ∈ P+, the condition
µ = w · λ < λ if w 6= 1 is automatic, which explains its absence in this formula.

Apply τ to this identity and get

∆ ⋆ chL(λ) =
∑

w∈W

mλ,wδw(λ+ρ),

since w · λ+ ρ = w(λ+ ρ). It remains to show that mλ,w = det(w).
We claim that the left hand side of the identity is W -skew-invariant. Indeed, w(∆ ⋆ chL(λ)) = w∆ ⋆

wchL(λ) = det(w)∆⋆wchL(λ). But we proved that when L(λ) is finite dimensional, dimL(λ)µ = dimL(λ)w(µ)

for all w, or in other words, wchL(λ) = chL(λ). So, w(∆⋆ chL(λ)) = det(w)∆⋆ chL(λ). But then the right hand
side of the identity is also W -skew-invariant, and since mλ,1 = 1, it follows that mλ,w = det(w). �

Corollary 6.9 (Weyl’s denominator formula).
∏

α∈Φ+(δα/2 − δ−α/2) = ∆ =
∑

w∈W det(w) ·∆w(ρ).

Proof. This is the case λ = 0 in the previous theorem. �

Corollary 6.10. Suppose λ ∈ P+.

(1) (BGG formula) In the Grothendieck group K(O), we have

[L(λ)] =
∑

w∈W

det(w) [M(w · λ)]. (6.2.1)

(2) (Kostant’s multiplicity formula)

chL(λ)(µ) =
∑

w∈W

det(w)K(w · λ− µ) =
∑

w∈W

det(w)K(w(λ+ ρ)− (µ+ ρ)). (6.2.2)

Proof. (1) follows from Theorem 6.8 since τ is an isomorphism. (2) is immediate from (1) given the formula
for chM(λ) in terms of K.

�

Remark 6.11. Formula (6.2.1) says that we can describe easily the columns corresponding to λ ∈ P+ of
the matrix that gives Irr O in terms of St O. In general however, describing all the entries of this matrix
is a difficult problem which is resolved by the Kazhdan-Lusztig conjectures, the most basic case being that of
λ = 0.
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Example 6.12. Let us consider the case of g = sl(2,C). We identify, as we may, P+ with Z≥0 and then
α = 2ρ is identified with 2 ∈ Z≥0. The Weyl group is {±1}. Let L(n), n ∈ Z≥0 be the simple module of
dimension n+ 1. The weights of L(n) are n, n− 2, n− 4, . . . ,−n. This means that in E (identified with the
space of functions f : C→ Z), the character of L(n) can be expressed as:

chL(n) = δn + δn−2 + · · ·+ δ−n+2 + δ−n.

On the other hand ∆ = δ1 − δ−1. Therefore, Theorem 6.8 becomes the easy identity

(δn + δn−2 + · · ·+ δ−n+2 + δ−n) ⋆ (δ1 − δ−1) = δn+1 − δ−(n+1).

The formula (6.2.1) in K(O) in this case is:

[L(n)] = [M(n)]− [M(−n− 2)].

Notice that w · n = −n − 2 when w = −1 ∈ W . This formula is simply encoding in the Grothendieck group
the fact that we have the short exact sequence

0 −→M(−n− 2) −→M(n) −→ L(n) −→ 0.

6.3. Weyl’s character formula. We wish to use the formula in Theorem 6.8 to deduce the dimension
formula for a finite dimensional L(λ), λ ∈ P+. For this, we need to rephrase it in an analytic way, as in the
original formula due to H. Weyl, which would allow us to apply a l’Hôpital rule argument.

For every χ ∈ h∗, define eχ =
∑

i≥0
χi

i! . This is a formal power series in h∗. Denote the ring of formal

power series by C[[h∗]].

Lemma 6.13. The map j : Ec → C[[h∗]] given by δλ 7→ eλ is a ring homomorphism, where the multiplication
in the left hand side is the convolution and on the right hand side is the multiplication of power series.

Proof. Straightforward. �

The identification via j allows us to regard the character of every finite dimensional moduleM (in particular
M = L(λ), λ ∈ P+) as an element of C[[h∗]]:

chM =
∑

µ∈h∗

(dimMµ)e
µ. (6.3.1)

This is a finite sum since M is assumed finite dimensional. Let C(h∗) denote the field of fractions of C[[h∗]].

Theorem 6.14 (Weyl’s character formula). Let λ ∈ P+ be given. In C(h∗), the following identity holds:

chL(λ) =

∑
w∈W det(w) ew(λ+ρ)

∑
w∈W det(w) ew(ρ)

. (6.3.2)

Proof. The identity in Theorem 6.8 is a formula in Ec. Therefore, we may apply j to it and arrive to a
corresponding identity in C[[h∗]]. The desired formula then follows if we also take into account the Weyl
denominator formula. �

Remark 6.15. For every χ, the formal expression eχ can be regarded as a function on h, eχ : h → C via
eχ(h) =

∑
i≥0

1
i!χ(h)

i. This is an analytic function h → C. This implies that both the numerator and the

denominator in (6.3.2) are analytic functions in h. Moreover, chL(λ), λ ∈ P+, being a finite sum of eχs,
it is also an analytic function on h. Therefore, one should regard formula (6.3.2) as an equality of analytic
functions on h.

Example 6.16. In sl(2,C), with the same notation and conventions as before, Weyl’s character formula
says that

chL(n)(x) = enx + e(n−2)x + · · ·+ e(−n+2)x + e−nx =
e(n+1)x − e−(n+1)x

ex − e−x
, (6.3.3)

as functions h ∼= C→ C.
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6.4. Weyl’s dimension formula. Regarding chL(λ), λ ∈ P+, as an analytic function on h, it is clear that

chL(λ)(0) =
∑

µ∈h∗

dimL(λ)µ = dimL(λ).

The idea then is to evaluate formula (6.3.2) at 0. The problem is that the fraction on the right hand side
becomes an indeterminate of the form 0

0 , since
∑

w∈W det(w) = 0, hence we need to use some form of
l’Hôpital’s rule.

Theorem 6.17. The dimension of the finite dimensional simple module L(λ), λ ∈ P+ is

dimL(λ) =
∏

α∈Φ+

〈λ+ ρ, α〉

〈ρ, α〉
. (6.4.1)

Proof. To simplify notation, denote for each χ ∈ h∗, Fχ : h→ C, Fχ =
∑

w∈W detw ew(χ). Weyl’s character
formula becomes

chL(λ) =
Fλ+ρ

Fρ

as analytic functions on h. Then

chL(λ)(0) = lim
t→0

Fλ+ρ(th)

Fρ(th)
,

where h ∈ h has to be chosen so that Fρ(th) 6= 0 for t 6= 0. The Weyl denominator formula in this setting
says that

Fρ =
∏

α∈Φ+

(eα/2 − e−α/2), (6.4.2)

so we need to choose h such that α(th) = tα(h) 6= 0 for all α ∈ P+. Any h in the dominant Weyl chamber
would do, but for reasons of convenience, we choose h = ρ′, where ρ′ is the unique element of h such that
χ(ρ′) = 〈χ, ρ〉 for all χ ∈ h∗. Similarly, define λ′ to be the unique element of h such that χ(λ′) = 〈χ, λ〉. In
other words, recall that the Killing form restricted to h induces an isomorphism h→ h∗; then, λ′ and ρ′ are
the preimages in h of λ and ρ, respectively.

Thus, chL(λ)(0) = limt→0
Fλ+ρ(tρ

′)
Fρ(tρ′) . Now

Fλ+ρ(tρ
′) =

∑

w∈W

det(w) ew(λ+ρ)(tρ′) =
∑

w∈W

det(w) e(λ+ρ)(tw−1(ρ′))

=
∑

w∈W

det(w) et〈λ+ρ,w−1(ρ)〉 =
∑

w∈W

det(w) e〈w
−1(ρ),t(λ+ρ)〉

=
∑

w∈W

det(w) ew
−1(ρ)(t(λ′ + ρ′)) = Fρ(t(λ

′ + ρ′)),

since det(w) = det(w−1). By applying the Weyl denominator formula for Fρ again, we find that

dimL(λ) =
∏

α∈Φ+

lim
t→0

Fρ(t(λ
′ + ρ′)

Fρ(tρ′)
=

∏

α∈Φ+

lim
t→0

e
t
2
α(λ′+ρ′) − e−

t
2
α(λ′+ρ′)

e
t
2
α(ρ′) − e−

t
2
α(ρ′)

. (6.4.3)

By L’Hôpital’s rule, limt→0
e

t
2
m−e−

t
2
m

e
t
2
n−e−

t
2
n

= m/n, which means that the factor for α contributes α(λ′+ρ′)
α(ρ′) =

〈α,λ+ρ〉
〈α,ρ〉 to the product. The dimension formula is now proved.

�

6.5. The BGG resolution. The identity (6.2.1) in K(O) has a beautiful homological interpretation. The
first step is to determine the maximal submodule N(λ) of M(λ) when λ ∈ P+.

Proposition 6.18. Suppose λ ∈ P+. The maximal submodule N(λ) of the Verma module M(λ) is

N(λ) =
∑

α∈Π

M(sα · λ).
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Proof. Since λ ∈ P+, recall that we have sα(λ + ρ) < λ + ρ, or equivalently, sα · λ < λ. By Corollary 4.19,
M(sα · λ) is a submodule of M(λ). This means that

∑
α∈Π M(sα · λ) ⊆ N(λ). Define

A(λ) = M(λ)/
∑

α∈Π

M(sα · λ). (6.5.1)

This is sometimes called the Weyl module of weight λ. We want to show that

A(λ) ∼= L(λ).

Notice that A(λ) is a highest weight module (being a quotient of M(λ)) of highest weight λ. This is because
λ is not a weight of any M(sα · λ). Let v 6= 0 be a highest weight vector in M(λ) of weight λ and denote by
v̄ 6= 0 the image of v in A(λ). Then A(λ) is generated by v̄ as already remarked.

We claim that v̄ is an slα-finite vector for every α ∈ Π. As in the proof of Proposition 4.18, the submodule

M(sα · λ) contains (as a highest weight vector in fact) the vector e
λ(hα)+1
−α · v. This means that in A(λ),

e
λ(hα)+1
−α · v̄ = 0. Since v̄ is preserved by hα, killed by eα and killed by a power of e−α, indeed, dim slα · v̄ <∞.
Since v̄ generates A(λ), it follows that A(λ) is an slα-finite module. Applying Lemma 4.22, we obtain that
dimA(λ)µ = dimA(λ)sα(µ), for all µ. Since α was arbitrary, and sα, α ∈ Π generate W , we see that
the character of A(λ) is W -invariant. The argument from Theorem 4.17 then implies that A(λ) is finite
dimensional.

By complete reducibility, A(λ) =
⊕k

i=1 L(λi), where λi ∈ P+, 1 ≤ i ≤ k. Since the center Z(g) acts on
M(λ) by the infinitesimal character χλ, it also acts on A(λ) and so on every L(λi) by the same infinitesimal
character χλ. Therefore, λi are all in the linkage class W · λ. Since λi, λ are in P+, this is only possible if
λi = λ. So A(λ) = L(λi)

⊕k. On the other hand, dimA(λ)λ = 1, so k = 1. �

The proposition can be restated as follows.

Corollary 6.19. If λ ∈ P+, there exists an exact sequence
⊕

α∈Π

M(sα · λ)→M(λ)→ L(λ)→ 0.

The BGG resolution extends the sequence above to a resolution of L(λ). We will state the theorem without
proof. If interested, you may consult the proof in chapter 6 of Humphreys’ book on category O. To state it,
we recall that W has a length function ℓ : W → Z≥0 such that ℓ(1) = 0, ℓ(sα) = 1 if α ∈ Π, and ℓ(w) is the
number of simple reflections in a (equivalently, any) minimal expression of w in terms of simple reflections.
In particular,

det(w) = (−1)ℓ(w).

Alternatively, thinking in terms of Weyl chambers, ℓ(w) is the number of root hyperplanes that one needs to
cross to go from the fundamental chamber C to the chamber wC via a shortest path.

Another equivalent definition is

ℓ(w) = #{α ∈ Φ+ | w(α) ∈ Φ−}. (6.5.2)

The Weyl groupW contains a unique element of maximal length, denoted w0. It is a fact that ℓ(w0) = |Φ
+|,

in other words, w0(α) ∈ Φ− for every α ∈ Φ+.

Theorem 6.20 (BGG resolution). Suppose λ ∈ P+. Then there exists an exact sequence:

0→M(w0 ·λ)→
⊕

ℓ(w)=|Φ+|−1

M(w ·λ)→ · · · →
⊕

ℓ(w)=k

M(w ·λ)→ · · · →
⊕

α∈Π

M(sα ·λ)→M(λ)→ L(λ)→ 0.

(6.5.3)

As a consequence, the Euler-Poincaré principle implies that in K(O):

[L(λ)] =

|Φ+|∑

k=0

(−1)k
∑

w∈W,ℓ(w)=k

[M(w · λ)] =
∑

w∈W

(−1)ℓ(w)[M(w · λ)], (6.5.4)

which is exactly formula (6.2.1) established before using characters.
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