C2.3 Representations of semisimple Lie algebras

Mathematical Institute, University of Oxford Hilary Term 2019

Problem Sheet 1

1. Let $\mathfrak{g} = \mathfrak{sl}(2,\mathbb{C})$ and recall the finite dimensional irreducible \mathfrak{g} -modules V(n) of dimension n + 1 constructed in the lectures. (Here, $n \ge 0$ is an integer.)

- (i) Verify that $V(n) \cong S^n(V(1))$ as g-modules, where S^n denotes the *n*-th symmetric power.
- (ii) Decompose the tensor product $V(2) \otimes V(3)$ into a direct sum of simple g-modules.
- (iii) For $n \ge m \ge 0$, prove that

$$V(n) \otimes V(m) \cong V(n+m) \oplus V(n+m-2) \oplus \cdots \oplus V(n-m).$$

(iv) Find the decomposition of $S^n(V(2))$ into a direct sum of irreducible representations.

[*Hint: use the eigenspace decomposition with respect to the action of* $h \in \mathfrak{g}$.]

2. Let $\mathfrak{g} = \mathfrak{sl}(n)$ and V be the standard n-dimensional \mathfrak{g} -representation. For $1 \leq i \leq n-1$, denote $U_i = \bigwedge^i V$.

- (a) Show that each U_i is a simple \mathfrak{g} -module and determine its highest weight.
- (b) Deduce that any simple finite dimensional \mathfrak{g} -module appears as a summand of $S^{m_1}(U_1) \otimes S^{m_2}(U_2) \otimes \cdots \otimes S^{m_{n-1}}(U_{n-1})$, for some nonnegative integers m_i .

3. Suppose the characteristic of the field k is p > 0, and let $\mathfrak{g} = sl(2, \mathsf{k})$ and let V(n) be the \mathfrak{g} -modules of dimension n+1 as before. Prove that V(n) is irreducible as long as n < p, but reducible when n = p.

Let \mathfrak{g} is a semisimple complex Lie algebra, \mathfrak{h} is a Cartan subalgebra, Φ is the system of roots of \mathfrak{h} in \mathfrak{g} , Φ^+ is a choice of positive roots, and Π is a corresponding base of simple roots. As in the lecture notes, denote by P the weight lattice and by Q the root lattice.

4 (optional). Recall the weight $\rho = \frac{1}{2} \sum_{\alpha \in \Phi^+} \alpha$ defined in the lectures. Show that:

- (a) For every $\alpha \in \Pi$, $s_{\alpha}(\rho) = \rho \alpha$.
- (b) For every $\alpha \in \Pi$, $\rho(h_{\alpha}) = 1$, where h_{α} is the coroot of α .
- (c) Suppose that $\Pi = \{\alpha_1, \ldots, \alpha_k\}$. Define ω_i by $\omega_i(h_{\alpha_j}) = \delta_{ij}$. Then $\{\omega_1, \ldots, \omega_k\}$ is a \mathbb{Z} -base of P. Show that $\rho = \sum_{i=1}^k \omega_i$.
- **5** (optional). Show that if $\mathfrak{g} = \mathfrak{sl}(n)$, we have $P/Q \cong \mathbb{Z}/n\mathbb{Z}$.

6 (optional). This question is about the root system of type G_2 . Let $\epsilon_1, \epsilon_2, \epsilon_3$ denote the standard orthonormal basis of \mathbb{R}^3 with the usual Euclidean product (,). Let \mathfrak{a}^* denote the subspace of \mathbb{R}^3 orthogonal to $\epsilon_1 + \epsilon_2 + \epsilon_3$. Denote

$$\Phi = \{ \alpha \in \mathbb{Z} \langle \epsilon_1, \epsilon_2, \epsilon_2 \rangle \cap \mathfrak{a}^* \mid (\alpha, \alpha) = 2 \text{ or } 6 \}.$$

- (a) Verify that Φ is a root system and list the roots explicitly in coordinates.
- (b) Choose as a base of simple roots $\alpha_1 = \epsilon_1 \epsilon_2$ and $\alpha_2 = -2\epsilon_1 + \epsilon_2 + \epsilon_3$. Draw the roots in the plane and indicate the fundamental Weyl chamber corresponding to this choice of simple roots.
- (c) What is the order of the Weyl group W? How does W act on the roots?
- (d) Show that P = Q.

7 (*optional*). Suppose that we know that every \mathfrak{g} -module of length 2 is completely reducible. Prove that every \mathfrak{g} -module of finite length is completely reducible. (This is a general lemma that holds in every abelian category.)

[*Hint:* prove by induction on the length of the module. If V is a reducible module of finite length, let S be a simple submodule of V, and consider Q = V/S.]