
C2.3 Representations of semisimple Lie algebras
Mathematical Institute, University of Oxford

Hilary Term 2019

Problem Sheet 3

1. Let g be a finite dimensional semisimple Lie C-algebra with a nondegenerate symmetric bilinear
g-invariant form B : g × g → C. Let {xi | 1 ≤ i ≤ n} and {yi | 1 ≤ i ≤ n} be dual bases of g with
respect to B. Define the Casimir element of g (with respect to B) to be C =

∑
n

i=1
xiyi.

(i) Show that the definition of C does not depend on the choice of dual bases.

(ii) Prove that C is in Z(g), the center of U(g). [Hint: read the proof of Lemma 15.7 in the Lie
algebras notes for MT15.]

(iii) Suppose that g is a simple Lie algebra. Show that if C and C ′ are Casimir elements with respect
to the forms B and B′, respectively, than C ′ is a scalar multiple of C. [Hint: there is only one
nondegenerate symmetric bilinear g-invariant form up to scalar. Why?]

(iv) Suppose L is a finite dimensional simple g-module. Show that C acts on L by a scalar and
determine this scalar.

(v) Let g = sl(n,C) and take B(x, y) = tr(xy), for x, y ∈ g. Verify that B is a nondegenerate symmetric
bilinear g-invariant form and define C with respect to convenient dual bases. How does C differ
from C ′, the Casimir element defined with respect to the Killing form?

(vi) Compute (in terms of λ) the scalar by which the Casimir element C from (v) acts on a Verma
module M(λ).

2. Let g = sl(2,C) and let M(λ) be a Verma module. Here, we may think of λ as a complex number.

(i) Show from first principles, that if λ is a nonnegative integer then there exists an injective map
φ : M(−λ− 2) → M(λ) whose cokernel L(λ) = M(λ)/Im φ is irreducible. How does this relate to
the general theory that we’ve studied in the lectures?

(ii) Show that M(λ)⊗M(µ) is not in category O.

(iii) Consider M(λ) ⊗ L(µ), where λ ∈ C and µ ∈ Z≥0. We showed in the lectures that such a tensor
product is still in O, in particular, it has a finite composition series. Determine the composition
series.

3. If λ, µ ∈ h∗ and w ∈ W , verify that

w · (λ+ µ) = w · λ+ µ, w · λ− w · µ = w(λ− µ).

Here · is the dot-action of W from the lectures.

4. Define τ : g → g by τ(eα) = e−α, α ∈ Φ and τ(h) = h for all h ∈ h.

(i) Check that τ is an anti-involution of g, i.e., τ2 = id and τ([x, y]) = [τ(y), τ(x)], for all x, y ∈ g.
We call τ the transpose map pf g. (This is motivated by the example g = sl(n,C).)

(ii) Extend τ to an anti-automorphism of U(g).

(iii) Prove that τ fixes Z(g) pointwise. [Hint: show that τ commutes with the Harish-Chandra projec-
tion.]

5. Let E be the strictly upper triangular matrix in g = sl(n,C) that has 1 in all entries (i, i+ 1) and 0
everywhere else. Let H be the diagonal matrix with entries (n− 1, n− 3, . . . ,−(n− 1)).

(i) Verify that [H,E] = 2E.

(ii) Determine a strictly lower triangular matrix F such that {E,H,F} is a Lie triple. This is called the
principal Lie triple of g. Notice also that this defines a Lie algebra homomorphism φ : sl(2,C) → g.
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(iii) Determine the decomposition of g into simple modules as an sl(2) = C〈E,H,F 〉 module, under
the adjoint action.

(iv) Let σ = (n1, n2, . . . , nk) be a partition of n, i.e., n1 + n2 + · · ·+ nk = n and n1 ≥ n2 ≥ · · · ≥ nk.
Let Eσ be the nilpotent matrix in the Jordan normal form corresponding to σ. By generalizing
(ii), show that there exists Hσ and Fσ such that {Eσ, Hσ, Fσ} is a Lie triple.

(v) Deduce that if E is any nilpotent element of g = sl(n,C) then there exists a Lie triple in g

that contains E. (For an arbitrary semisimple Lie algebra, this is called the Jacobson-Morozov
theorem.)
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