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1. Let g be a finite dimensional semisimple Lie C-algebra with a nondegenerate symmetric bilinear
g-invariant form B : gxg — C. Let {z; | 1 <i < n} and {y; | 1 <4 < n} be dual bases of g with
respect to B. Define the Casimir element of g (with respect to B) to be C'= Y"1 | z;y;.

(i) Show that the definition of C' does not depend on the choice of dual bases.

(ii) Prove that C is in Z(g), the center of U(g). [Hint: read the proof of Lemma 15.7 in the Lie
algebras notes for MT15.]

(iii) Suppose that g is a simple Lie algebra. Show that if C' and C’ are Casimir elements with respect
to the forms B and B’, respectively, than C’ is a scalar multiple of C. [Hint: there is only one
nondegenerate symmetric bilinear g-invariant form up to scalar. Why?]

(iv) Suppose L is a finite dimensional simple g-module. Show that C' acts on L by a scalar and
determine this scalar.

(v) Let g = sl(n,C) and take B(z,y) = tr(zy), for z,y € g. Verify that B is a nondegenerate symmetric
bilinear g-invariant form and define C' with respect to convenient dual bases. How does C' differ
from C’, the Casimir element defined with respect to the Killing form?

(vi) Compute (in terms of A) the scalar by which the Casimir element C from (v) acts on a Verma
module M ().

2. Let g = s[(2,C) and let M (\) be a Verma module. Here, we may think of A as a complex number.

(i) Show from first principles, that if A is a nonnegative integer then there exists an injective map
¢ : M(—X—2) — M(X\) whose cokernel L(A\) = M()\)/Im ¢ is irreducible. How does this relate to
the general theory that we’ve studied in the lectures?

(ii) Show that M () ® M (u) is not in category O.

(iii) Consider M(A) ® L(u), where A € C and u € Z>(. We showed in the lectures that such a tensor
product is still in O, in particular, it has a finite composition series. Determine the composition
series.

3. If A, p € h* and w € W, verify that

w-A+p)=w-A4+pu w-A—w-p=wh-—p).
Here - is the dot-action of W from the lectures.
4. Define 7: g — g by 7(eq) = €—q, @ € ® and 7(h) = h for all h € b.

(i) Check that 7 is an anti-involution of g, i.e., 72 = id and 7([z,y]) = [7(y), 7(x)], for all z,y € g.
We call 7 the transpose map pf g. (This is motivated by the example g = sl(n, C).)

(ii) Extend 7 to an anti-automorphism of U(g).

(iii) Prove that 7 fixes Z(g) pointwise. [Hint: show that 7 commutes with the Harish-Chandra projec-
tion.]

5. Let E be the strictly upper triangular matrix in g = sl(n, C) that has 1 in all entries (¢,7 + 1) and 0
everywhere else. Let H be the diagonal matrix with entries (n — 1,n —3,...,—(n — 1)).

(i) Verify that [H, E] = 2E.

(ii) Determine a strictly lower triangular matrix F such that {E, H, F'} is a Lie triple. This is called the
principal Lie triple of g. Notice also that this defines a Lie algebra homomorphism ¢ : sl(2,C) — g.



(iii) Determine the decomposition of g into simple modules as an s{(2) = C(E, H, F') module, under
the adjoint action.

(iv) Let o = (n1,na,...,n) be a partition of n, i.e., ny +na+ - +np =nand ny > ng > -+ > ny.
Let E, be the nilpotent matrix in the Jordan normal form corresponding to o. By generalizing
(ii), show that there exists H, and F, such that {E,, H,, F,} is a Lie triple.

(v) Deduce that if F is any nilpotent element of g = sl(n,C) then there exists a Lie triple in g
that contains E. (For an arbitrary semisimple Lie algebra, this is called the Jacobson-Morozov
theorem.)



