C2.3 Representations of semisimple Lie algebras

Mathematical Institute, University of Oxford
Hilary Term 2019

Problem Sheet 4

1. Let \mathfrak{g} be a complex semisimple Lie algebra.
(i) Let L be a finite dimensional \mathfrak{g}-module. Show that L is simple if and only if the dual module L^{*} is simple.
(ii) Let $L(\lambda), \lambda \in P^{+}$be a simple \mathfrak{g}-module with highest weight λ. Show that the dual $L(\lambda)^{*}$ is isomorphic to $L\left(-w_{0}(\lambda)\right.$), where w_{0} is the Weyl group element sending Φ^{+}(the positive roots) to $-\Phi^{+}$.
(iii) What condition should λ satisfy such that 0 is a weight of $L(\lambda)$?
2. Use the Weyl dimensional formula to show that for every natural number k, there exists a simple \mathfrak{g}-module of dimension k^{r}, where r is the number of positive roots of \mathfrak{g}.
3. Let $\omega_{1}, \ldots, \omega_{n}$ be the fundamental weights of the complex semisimple Lie algebra \mathfrak{g}. Show that every finite dimensional simple \mathfrak{g}-representation occurs as a direct summand in a suitable tensor product (repetitions allowed) of the simple modules $L\left(\omega_{1}\right), \ldots, L\left(\omega_{n}\right)$. (We call these simple modules, the fundamental representations of \mathfrak{g}.)
4. Let $\mathfrak{g}=\operatorname{sl}(n, \mathbb{C})$.
(i) Use Weyl's dimensional formula to show that $L\left(\omega_{i}\right)=\bigwedge^{i} V, 1 \leq i \leq n-1$, where $V=\mathbb{C}^{n}$ is the standard representation.
(ii) Identify the adjoint representation in terms of the highest weight classification. (Why is the adjoint representation irreducible?)
5. Let $\mathfrak{g}=\operatorname{sl}(3, \mathbb{C})$ and $L\left(\omega_{1}\right), L\left(\omega_{2}\right)$ the two fundamental representations. Verify:
(i) $L\left(\omega_{1}\right)^{*} \cong L\left(\omega_{2}\right)$.
(ii) Konstant's multiplicity formula, and
(iii) Weyl's character formula for these two representations.
6. Let $\mathfrak{g}=s p(2 n, \mathbb{C})$ realized as the space of matrices $X \in g l(2 n, \mathbb{C})$ such that $X^{t} J+J X=0$, where X^{t} is the transpose matrix, and $J=\left(\begin{array}{cc}0 & I_{n} \\ -I_{n} & 0\end{array}\right)$; here I_{n} is the $n \times n$ identity matrix.
(i) Show that every $X \in \mathfrak{g}$ is of the form $X=\left(\begin{array}{cc}A & B \\ C & -A^{t}\end{array}\right)$, where B and C are symmetric $n \times n$ matrices and A is an arbitrary $n \times n$ matrix.
(ii) Let \mathfrak{h} be the subalgebra consisting of diagonal matrices. Determine the set of roots of \mathfrak{h} in \mathfrak{g} and the Cartan decomposition.
(iii) Choose the system of positive roots such that the corresponding root vectors lie in matrices of the form $\left(\begin{array}{cc}A^{\prime} & B \\ 0 & -A^{\prime t}\end{array}\right)$, where A^{\prime} is an upper triangular matrix and B is a symmetric matrix as before.
(iv) Determine the fundamental weights.
(v) Let $V=\mathbb{C}^{2 n}$ be the standard representation of \mathfrak{g} (which acts by matrix multiplication on column vectors). Show that V is an irreducible \mathfrak{g}-representation and it is in fact a fundamental representation.
(vi) Show that $\bigwedge^{2} V$ decomposes as $W \bigoplus \mathbb{C}$, where \mathbb{C} is the trivial representation and W is an irreducible (fundamental) representation.
(vii) For $s p(4, \mathbb{C})$, describe all the weights of the fundamental representations V and W and verify that the Weyl dimension formula holds.
(viii) In $\operatorname{sp}(2 n, \mathbb{C})$, show that the k-th fundamental representation is contained in $\bigwedge^{k} V$ and in fact it is precisely the kernel of the contraction map $\phi_{k}: \bigwedge^{k} V \rightarrow \bigwedge^{k-2} V$ defined by

$$
\phi_{k}\left(v_{1} \wedge \cdots \wedge v_{k}\right)=\sum_{i<j} Q\left(v_{i}, v_{j}\right)(-1)^{i+j-1} v_{1} \wedge \cdots \wedge \hat{v}_{i} \wedge \cdots \wedge \hat{v}_{j} \wedge \cdots \wedge v_{k}
$$

where Q is the skew-symmetric form defining \mathfrak{g}, i.e., $Q(v, u)=v^{t} J u$.
[For this exercise, you may consult Section 16 in Fulton-Harris "Representation Theory", especially for the structural results on roots, Cartan decomposition etc.]

