C2.3 Representations of semisimple Lie algebras

Mathematical Institute, University of Oxford Hilary Term 2019

Problem Sheet 4

- **1.** Let \mathfrak{g} be a complex semisimple Lie algebra.
 - (i) Let L be a finite dimensional \mathfrak{g} -module. Show that L is simple if and only if the dual module L^* is simple.
 - (ii) Let $L(\lambda)$, $\lambda \in P^+$ be a simple \mathfrak{g} -module with highest weight λ . Show that the dual $L(\lambda)^*$ is isomorphic to $L(-w_0(\lambda))$, where w_0 is the Weyl group element sending Φ^+ (the positive roots) to $-\Phi^+$.
- (iii) What condition should λ satisfy such that 0 is a weight of $L(\lambda)$?

2. Use the Weyl dimensional formula to show that for every natural number k, there exists a simple g-module of dimension k^r , where r is the number of positive roots of g.

3. Let $\omega_1, \ldots, \omega_n$ be the fundamental weights of the complex semisimple Lie algebra \mathfrak{g} . Show that every finite dimensional simple \mathfrak{g} -representation occurs as a direct summand in a suitable tensor product (repetitions allowed) of the simple modules $L(\omega_1), \ldots, L(\omega_n)$. (We call these simple modules, the fundamental representations of \mathfrak{g} .)

4. Let $\mathfrak{g} = sl(n, \mathbb{C})$.

- (i) Use Weyl's dimensional formula to show that $L(\omega_i) = \bigwedge^i V$, $1 \le i \le n-1$, where $V = \mathbb{C}^n$ is the standard representation.
- (ii) Identify the adjoint representation in terms of the highest weight classification. (Why is the adjoint representation irreducible?)
- **5.** Let $\mathfrak{g} = sl(3,\mathbb{C})$ and $L(\omega_1)$, $L(\omega_2)$ the two fundamental representations. Verify:
 - (i) $L(\omega_1)^* \cong L(\omega_2)$.
 - (ii) Konstant's multiplicity formula, and
- (iii) Weyl's character formula for these two representations.

6. Let $\mathfrak{g} = sp(2n, \mathbb{C})$ realized as the space of matrices $X \in gl(2n, \mathbb{C})$ such that $X^t J + JX = 0$, where X^t is the transpose matrix, and $J = \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix}$; here I_n is the $n \times n$ identity matrix.

- (i) Show that every $X \in \mathfrak{g}$ is of the form $X = \begin{pmatrix} A & B \\ C & -A^t \end{pmatrix}$, where B and C are symmetric $n \times n$ matrices and A is an arbitrary $n \times n$ matrix.
- (ii) Let \mathfrak{h} be the subalgebra consisting of diagonal matrices. Determine the set of roots of \mathfrak{h} in \mathfrak{g} and the Cartan decomposition.
- (iii) Choose the system of positive roots such that the corresponding root vectors lie in matrices of the form $\begin{pmatrix} A' & B \\ 0 & -A'^t \end{pmatrix}$, where A' is an upper triangular matrix and B is a symmetric matrix as before.
- (iv) Determine the fundamental weights.
- (v) Let $V = \mathbb{C}^{2n}$ be the standard representation of \mathfrak{g} (which acts by matrix multiplication on column vectors). Show that V is an irreducible \mathfrak{g} -representation and it is in fact a fundamental representation.
- (vi) Show that $\bigwedge^2 V$ decomposes as $W \bigoplus \mathbb{C}$, where \mathbb{C} is the trivial representation and W is an irreducible (fundamental) representation.

- (vii) For $sp(4, \mathbb{C})$, describe all the weights of the fundamental representations V and W and verify that the Weyl dimension formula holds.
- (viii) In $sp(2n, \mathbb{C})$, show that the k-th fundamental representation is contained in $\bigwedge^k V$ and in fact it is precisely the kernel of the *contraction* map $\phi_k : \bigwedge^k V \to \bigwedge^{k-2} V$ defined by

$$\phi_k(v_1 \wedge \dots \wedge v_k) = \sum_{i < j} Q(v_i, v_j) (-1)^{i+j-1} v_1 \wedge \dots \wedge \hat{v}_i \wedge \dots \wedge \hat{v}_j \wedge \dots \wedge v_k,$$

where Q is the skew-symmetric form defining \mathfrak{g} , i.e., $Q(v, u) = v^t J u$.

[For this exercise, you may consult Section 16 in Fulton-Harris "Representation Theory", especially for the structural results on roots, Cartan decomposition etc.]