Sheet 4

Question 1

The proof is essentially the same as for L.

The absoluteness result needed is of course: if B, C are transitive classes and
A € B then the class function L[A] : On — V is absolute for B, C.

For choice, instead of starting with the trivial well-order on L, you note
that if A C On then TC({A}) = {A} Usup A so that L[A]y can be well-ordered
by taking the natural well-order on sup A € On and following this by {A} (or
having {A} first followed by sup A)

To see that if A C w then L[A] = CH, you follow the proof that L &= CH.

Question 2

If L, =V, then |L,| = |V,|. But since V = L we have GCH so that |V, | = R,,
giving R, = |a| < a. But by a very easy induction on On we have v < X, for
all & € On. Hence o = N, as required.

For the converse, assume that « = R,. L, C V, is always true (see lecture
notes). So assume that « € V,. Since « is a cardinal, it is a limit ordinal, so
z € Vg for some B € a. Hence |[TC({z})] < |V3| = Ng < R, (using GCH
for the =). Thus # € Hy, and from the proof that V = L — GCH we have
Hy, = Ly, sox € Ly, = L.

To construct ordinals « such that X, = «, we employ recursion: define
F : On — On; B — Rg. This is weakly increasing so by a previous sheet has
arbitrarily large fixed points. Note that this only gives singular solutions (in
fact, solutions of countable cofinality).

Question 3

That c¢f(a) is regular follows from cfcfa = cfa.

Now assume that x € Card. If kT is not regular, then there is some ordinal
B < kT and an unbounded f : 8 — xT. But then |8] < & since k% is a cardinal,
so there is an unbounded g : k — k*. For each a € k, |g(a)] < & so that
supg = Une, 9(@) has cardinality < x ® k = k < xk¥. Hence g cannot be
unbounded.

Question 4

For the first part, it is enough to show that x°* > k. By a result from the
lecture notes, we have a weakly increasing unbounded f : cfx — k. We then
apply Konig’s inequality to the f(a) < & to obtain

k=supf < Z fla) < Z k= k",
accfkr accfr

Now assume that A < cf(k). We define an injection from {f : A — x} into
Uasew 1f 1 A = a} as follows: for each f: A — x we must have f[A] bounded in



K (since k is a cardinal) and thus we have a minimal ay < & such that f[\] C ay.
We then send f to f: A = ay.
Thus
KD < Z ’a”\‘ < ﬁ®sup|a)" .
aER
We next show that a € x implies |o/\} < k and hence the result follows.
Since |a’\| = |a\>‘ we may assume that a < k and « is a cardinal. But for these

a < 2% so that
ot < [2a]/\ — 9o®\ _ Zmax{(x,/\} <k

by the assumption and the fact that maxa, A < k.

Now assume GCH. As above (and without GCH) if A < s then x* <
[25]* = 2%, Applying GCH then gives x* < x¥.

Of course, for any A > 1 we have xk < xk* giving the result.

Question 5

This is similar to a question from the previous sheet. We define recursively for
n € w, ag = a and @, 1 = supg[a,]. Since k is a cardinal, if «,, € k then
sup glay,] € K, so all a,, € k (by induction). Since & is regular uncountable this
implies 8 = sup a,, € k. This 8 works since if § € 8 then § € a,, for some n € w
and hence g(d) € glan] = ant1 C 5.

Question 6

(i): By induction on « < k we show |V, | < k: This is clear for finite ordinals
and for w. If |V,| < & then |Vai1| = 2IVel < k by assumption. If v < & is a
limit ordinal then V., = (Js_, Vp is a union of < x many sets of size < &, so by
regularity of x has size < k.

(ii): Since k C V,; (some previous sheet) we must have x < |V,;|. But now V
is the union of k many sets of size < k (by (i)) so has size at most k.x = k.

(iii): Suppose ¢(z,y, V) is a formula, @ € V. and

Vi EVavy,y (¢(z,y,d) A o(z,y,d) =y =1y

Write y,. for the unique y € V,; such that ¢(z,y,,d) (if it exists) and y, = 0 if
no such y € V,; exists (depending on your precise formulation of Replacement
you might not need this last bit).

Fix d € V,, and apply Replacement with v (z,y,7) =y € Vi, A ¢(z,y,7)""
to obtain z = {y, : x € d} € V. But d € Vj, k is a limit ordinal, so d € V,, thus
d CV, for some o < k and hence |d| < k. Also for each y, we have y, € Vj so
we can find o, < k with y, € V,,. Then o = sup{a, :x € d} =, 00 is a
< k union of sets of size < k, so a < k by regularity of x and hence a +1 < K
as k is a limit ordinal. Hence z C V,, € V41 C V,. It is now standard to verify
that V; = z = {y. : ¢ € d} as required.



