Definition 1. A relation R on a class A is well-founded if and only if
VeC A [x#0— ImexVbex —[bRm])
(i.e. every non-empty subset of A has an R-minimal element).
Definition 2. A relation R on a class A is set-like if and only if
Ve e A3z Vt [t €z <> tRx]

Lemma 1. Suppose R is a set-like relation on a class A. Then predp: A — U
given by predp (x) = {t € A: tRzx} is a class function on A.

Proof. By Extensionality and the definition of being set-like. O

Lemma 2. Suppose R is a well-founded, set-like relation on a class A. Then
R* given by

sRry=Incwidfn+2-2A[f0O)=aAf(n+1l)=yAVmen+1 [f(m)Rf(m+1)]]
is a well-founded, set-like relation on A that is transitive and contains R.

Proof. Clearly it is a relation on A.

If xRy then n =0 and f = {(0,z), (1,y)} witnesses zR*y so R C R*.

For z,y € A such that zR*y, we write p(z,y) for the smallest n € w which
witnesses zR*y.

We will show transitivity (i.e. Vz,y,z € A [tR*y AyR*z — xR*z]) by
induction on p(y,z). So assume this is true provided p(y,z) < m and that
p(y,z) = n. Let g be a witness of yR*z with dom(g) = n + 2. The special case
n = 0 is easy to handle manually. Otherwise, note that p(y, g(n)) < n so that
by inductive hypothesis there is m € w and f: m 4+ 2 — A witnessing 2 R*g(n).
Then m + 1 together with f U {{(m + 2, z)} witnesses xR*z.

Next we show that R* is set-like. Fix z € A. By induction on n € w, we can
see that

P,={z2€A:zR*z Ap(z,x) <n+1} = U{predR(y) yR 2z Ap(y,z) <n}

is a set (by Union and Replacement) and (another application of Union and
Replacement) so is predp. (z) = |J{P, : n € w}.

Finally for well-foundedness, let C C A and C' # () and assume that x has
no R*-minimal element. Let g € C and

a = {x € predp. (o) U{zo} : Jy € C yR*z}

(noting that this is a set by Separation and the fact that R* is set-like.)
Since z¢ € C is not R*-minimal, zg € a, so a # 0. Since R is well-founded,
a has an R-minimal element m. By definition of a, we can find y € C such that
yR*m. Since mR*z (or m = xp) and R* is transitive, we obtain yR*zo and
since C' has no R*-minimal element there must be ¢y’ € C with y'R*y, giving
y € a. Find ann € w and f: n+2 — A witnessing yR*m. Now f(n)R*m
and mR*xg or m = o given f(n)R*xzo by transitivity of R*. Also yR*f(n)
or y = f(n) so that f(n) € a. But we also have f(n)Rm, contradicting R-
minimality of m in a. O



Definition 3. Suppose R is a well-founded, set-like relationon U and F': U x U —
U is a class function.
We define

Yrr(a,g) =g is a function on {a} U pred*(a)A
Vz € dom(g) g(x) =F (xvg|pred(x))

and

Grr={(a,b) : 39 Yrr(a,9) Nb=g(a)}

Theorem 1. Suppose R is a well-founded, set-like relation on U.
If F: U x U = U is a class function then, writing G for Gr r, G is a class
function on U such that

Va G(x) = F(x7G|pred(z))
and for every class function H on U such that Vo H(x) = F(x, H|prea(z)) we
have Vo G(x) = H(x).
We first prove a lemma (this is sort of the ‘internal’ version of the theorem
‘up to any a’).

Lemma 3. Suppose R is a well-founded, set-like relation on'Y .
If F: U xU — U is a class function then

Va 3g Y r(a,g).

Proof. Suppose this is not the case. Fix xy € U such that —3lg ¥ p r(z0, g) and
let a be R*-minimal in {y € {xo} U pred” (zo) : =39 Yr r(y,9)} (noting that
this is a set and contains z( so is non-empty). Note that a is then R*-minimal
such that —3'g ¥ r(a, g).

Case —3g Yr r(a,g): Note that by R*-minimality of a, we have

Vy € pred” (a) 3lg Yr r(y,9)

so that
f=A{g:3y epred” (a) ¥rr(y.9)}, h=Jf

are sets (by Replacement and Union). Note that if g,¢’ € f and y € dom (g)N
dom (g') then § = {y} Upred” (y) C dom (g) Ndom (¢’) and that ¥ r(y, g|;) as
well as Yp r(y, ¢'|;). Further yR*a so that by R*-minimality of a we must have
glg = ¢'|g and hence g(y) = ¢’(y). Thus h is a function.

Next for y € pred” (a) find ¢ such that ¢¥r r(y,g) so that g C h and hence
y € dom (g) C dom (h).

Thus h is a function on pred” (a) and we note that

g = hU {<a; F(a’ﬂ h|pred(a))>}

is a function on {a} U pred” (a) such that g g(a, g), a contradiction.



Case 3g9,¢9" [Wrr(a,9) ANYrr(a,g')Ag#¢']: By R*-minimality of a, Yy €
pred” (a) g(y) = ¢'(y) and in particular g|pred(a) = 9'|pred(a)- But then g(a) =
F(a, 9lpred(a)) = F(a, g'|pred(a)) = ¢'(a) so that g = ¢', a contradiction. O

Proof of the General Recursion Theorem. First, if z € U suppose that there are
v,y € U such that (z,y),(z,y') € Gpr. Find g,¢’ such that ¢p r(z,g) and
g(x) = y and Yp r(z,¢') and ¢'(z) = y’. Then by the Lemma g = ¢’ so that
y=g(z) = ¢'(z)y’. Thus G R is a class function on some class A.

Next if € U then there is (by the Lemma) g such that ¢ g r(z, g) so that
(x,9(x)) € Gp,r. Hence Gp g is a class function on U.

That G(a) = F(a,G|pred(a)) follows from the construction of G' and the
method in the previous Lemma.

Similarly the ‘uniqueness’ is an easy consequence of the previous Lemma by
considering a ‘R*-minimal’ counterexample. O



