
Definition 1. A relation R on a class A is well-founded if and only if

∀x ⊆ A [x 6= ∅ → ∃m ∈ x ∀b ∈ x ¬ [bRm]]

(i.e. every non-empty subset of A has an R-minimal element).

Definition 2. A relation R on a class A is set-like if and only if

∀x ∈ A ∃z ∀t [t ∈ z ↔ tRx]

Lemma 1. Suppose R is a set-like relation on a class A. Then predR : A→ U

given by predR (x) = {t ∈ A : tRx} is a class function on A.

Proof. By Extensionality and the definition of being set-like.

Lemma 2. Suppose R is a well-founded, set-like relation on a class A. Then

R⋆ given by

xR⋆y ≡ ∃n ∈ ω ∃f : n+ 2 → A [f(0) = x ∧ f(n+ 1) = y ∧ ∀m ∈ n+ 1 [f(m)Rf(m+ 1)]]

is a well-founded, set-like relation on A that is transitive and contains R.

Proof. Clearly it is a relation on A.
If xRy then n = 0 and f = {〈0, x〉 , 〈1, y〉} witnesses xR⋆y so R ⊆ R⋆.
For x, y ∈ A such that xR⋆y, we write p(x, y) for the smallest n ∈ ω which

witnesses xR⋆y.
We will show transitivity (i.e. ∀x, y, z ∈ A [xR⋆y ∧ yR⋆z → xR⋆z]) by

induction on p(y, z). So assume this is true provided p(y, z) < n and that
p(y, z) = n. Let g be a witness of yR⋆z with dom(g) = n+ 2. The special case
n = 0 is easy to handle manually. Otherwise, note that p(y, g(n)) < n so that
by inductive hypothesis there is m ∈ ω and f : m+ 2 → A witnessing xR⋆g(n).
Then m+ 1 together with f ∪ {〈m+ 2, z〉} witnesses xR⋆z.

Next we show that R⋆ is set-like. Fix x ∈ A. By induction on n ∈ ω, we can
see that

Pn = {z ∈ A : zR⋆x ∧ p(z, x) ≤ n+ 1} =
⋃

{predR(y) : yR
⋆x ∧ p(y, x) ≤ n}

is a set (by Union and Replacement) and (another application of Union and
Replacement) so is predR⋆(x) =

⋃

{Pn : n ∈ ω}.
Finally for well-foundedness, let C ⊆ A and C 6= ∅ and assume that x has

no R⋆-minimal element. Let x0 ∈ C and

a = {x ∈ predR⋆(x0) ∪ {x0} : ∃y ∈ C yR⋆x}

(noting that this is a set by Separation and the fact that R⋆ is set-like.)
Since x0 ∈ C is not R⋆-minimal, x0 ∈ a, so a 6= ∅. Since R is well-founded,

a has an R-minimal element m. By definition of a, we can find y ∈ C such that
yR⋆m. Since mR⋆x0 (or m = x0) and R⋆ is transitive, we obtain yR⋆x0 and
since C has no R⋆-minimal element there must be y′ ∈ C with y′R⋆y, giving
y ∈ a. Find an n ∈ ω and f : n+ 2 → A witnessing yR⋆m. Now f(n)R⋆m

and mR⋆x0 or m = x0 given f(n)R⋆x0 by transitivity of R⋆. Also yR⋆f(n)
or y = f(n) so that f(n) ∈ a. But we also have f(n)Rm, contradicting R-
minimality of m in a.
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Definition 3. SupposeR is a well-founded, set-like relation on U and F : U × U →
U is a class function.

We define

ψF,R(a, g) ≡g is a function on {a} ∪ pred⋆(a)∧

∀x ∈ dom(g) g(x) = F
(

x, g|pred(x)
)

and

GF,R ≡ {〈a, b〉 : ∃g ψF,R(a, g) ∧ b = g(a)}

Theorem 1. Suppose R is a well-founded, set-like relation on U .

If F : U × U → U is a class function then, writing G for GF,R, G is a class

function on U such that

∀x G(x) = F (x,G|pred(x))

and for every class function H on U such that ∀x H(x) = F (x,H|pred(x)) we

have ∀x G(x) = H(x).

We first prove a lemma (this is sort of the ‘internal’ version of the theorem
‘up to any a’).

Lemma 3. Suppose R is a well-founded, set-like relation on Y .

If F : U × U → U is a class function then

∀a ∃!g ψF,R(a, g).

Proof. Suppose this is not the case. Fix x0 ∈ U such that ¬∃!g ψF,R(x0, g) and
let a be R⋆-minimal in {y ∈ {x0} ∪ pred⋆ (x0) : ¬∃!g ψF,R(y, g)} (noting that
this is a set and contains x0 so is non-empty). Note that a is then R⋆-minimal
such that ¬∃!g ψF,R(a, g).

Case ¬∃g ψF,R(a, g): Note that by R⋆-minimality of a, we have

∀y ∈ pred⋆ (a) ∃!g ψF,R(y, g)

so that
f = {g : ∃y ∈ pred⋆ (a) ψF,R(y, g)} , h =

⋃

f

are sets (byReplacement andUnion). Note that if g, g′ ∈ f and y ∈ dom (g)∩
dom (g′) then ŷ = {y} ∪ pred⋆ (y) ⊆ dom (g)∩ dom (g′) and that ψF,R(y, g|ŷ) as
well as ψF,R(y, g

′|ŷ). Further yR
⋆a so that by R⋆-minimality of a we must have

g|ŷ = g′|ŷ and hence g(y) = g′(y). Thus h is a function.
Next for y ∈ pred⋆ (a) find g such that ψF,R(y, g) so that g ⊆ h and hence

y ∈ dom (g) ⊆ dom (h).
Thus h is a function on pred⋆ (a) and we note that

g = h ∪
{〈

a, F (a, h|pred(a))
〉}

is a function on {a} ∪ pred⋆ (a) such that ψF,R(a, g), a contradiction.
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Case ∃g, g′ [ψF,R(a, g) ∧ ψF,R(a, g
′) ∧ g 6= g′]: By R⋆-minimality of a, ∀y ∈

pred⋆ (a) g(y) = g′(y) and in particular g|pred(a) = g′|pred(a). But then g(a) =
F (a, g|pred(a)) = F (a, g′|pred(a)) = g′(a) so that g = g′, a contradiction.

Proof of the General Recursion Theorem. First, if x ∈ U suppose that there are
y, y′ ∈ U such that 〈x, y〉 , 〈x, y′〉 ∈ GF,R. Find g, g′ such that ψF,R(x, g) and
g(x) = y and ψF,R(x, g

′) and g′(x) = y′. Then by the Lemma g = g′ so that
y = g(x) = g′(x)y′. Thus GF,R is a class function on some class A.

Next if x ∈ U then there is (by the Lemma) g such that ψF,R(x, g) so that
〈x, g(x)〉 ∈ GF,R. Hence GF,R is a class function on U .

That G(a) = F (a,G|pred(a)) follows from the construction of G and the
method in the previous Lemma.

Similarly the ‘uniqueness’ is an easy consequence of the previous Lemma by
considering a ‘R⋆-minimal’ counterexample.
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