Axiomatic Set Theory: Problem sheet 4

Update 02.03.2017: minor corrections (replaced ω in Q1 by **On** and clarified the assumptions in Q2).

1. Assume ZF. For a set A, define L[A] by recursion on **On** by $L_0 = TC(\{A\})$, $L[A]_{\alpha+1} = Def(L[A]_{\alpha})$ and $L[A]_{\gamma} = \bigcup_{\beta < \gamma} L[A]_{\beta}$. Finally set $L[A] = \bigcup_{\alpha \in On} L[A]_{\alpha}$ (so really L[A] is a formula with one free variable x saying $\exists \alpha \in On \ x \in L[A]_{\alpha}$).

Show that $L[A] \vDash ZF$, and that if A is a set of ordinals then $L[A] \vDash ZFC$. Show that if $A \subseteq \omega$ then $L[A] \vDash CH$.

- * Show that if $A \subseteq \omega_1$ and V = L[A] then $L[A] \models CH$ by showing that $\mathcal{P}(\omega) \subseteq \bigcup \{L[A \cap \beta]_{\alpha} : \alpha, \beta \in \omega_1\}$
- **2.** Assume $\mathbf{ZF} + \text{``V} = \mathbf{L}\text{''}$. Show that for ordinals $\alpha > \omega$, $L_{\alpha} = V_{\alpha}$ if and only if $\alpha = \aleph_{\alpha}$. Show that there are ordinals α with $\alpha = \aleph_{\alpha}$.
- **3.** Prove that for any infinite cardinal κ , $cf(\kappa)$ is a regular cardinal. Show that every successor cardinal κ^+ is regular.
- **4.** Suppose κ, λ are infinite cardinals such that $\kappa \geq \lambda$. Prove that if $\lambda \geq cf(\kappa)$, then $\kappa^{\lambda} > \kappa$. Suppose now that $\lambda < cf(\kappa)$, and that κ has the property that for any cardinal μ , if $\mu < \kappa$ then $2^{\mu} \leq \kappa$. Prove that $\kappa^{\lambda} = \kappa$. Hence show that if GCH is assumed, then for any infinite cardinals κ, λ with $\kappa \geq \lambda$, we have $\kappa^{\lambda} = \kappa$ or κ^{+} .
- **5.** Suppose κ is an uncountable regular cardinal. Let $g: \kappa \to \kappa$ be any function. Prove that for any $\alpha < \kappa$, there exists $\beta < \kappa$, with $\alpha \leq \beta$, such that β is closed under g (i.e. for all $\gamma < \beta$, $g(\gamma) < \beta$).
- **6.** (Optional) Let κ be an uncountable regular cardinal with the property that for any cardinal $\mu < \kappa$, we have $2^{\mu} < \kappa$. (*).

Prove that (i) if α is any cardinal and $\alpha < \kappa$, then $|V_{\alpha}| < \kappa$, (ii) $|V_{\kappa}| = \kappa$, (iii) $\langle V_{\kappa}, \in \rangle \vDash \text{ZFC}$.

(For (iii) you need consider only the replacement scheme, since we essentially showed that if α is a limit ordinal and $\alpha > \omega$, then $\langle V_{\alpha}, \in \rangle$ satisfies all the axioms of ZFC except, possibly, replacement.)

Deduce that in ZFC one cannot prove the existence of a cardinal that satisfies (*).