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Question 1

Extensionality/A1 : Suppose q, p ∈ Q with q 6= p, wlog q < p. Then there
is r ∈ (q, p) ∩Q anf r < p and ¬(r < q). Hence Q |= A1

A2 : If q ∈ Q then q − 1 ∈ Q and q − 1 < q. Thus ¬Q |= A2. Note that this
implies that Q does not satisfy Separation either since Q is non-empty.

Powerset/A7: First note that r ⊆ q means ∀t (t < r → t < q), i.e. r ≤ q.
Here is a subtlety: if you take the Powerset from the lectures:

∀x∃z∀r [r ∈ z → r ⊆ x]

then Q |= Powerset: Let q ∈ Q. Try z = q: if r ∈ Q such that r < z = q then
certainly r ≤ q.

However if you take A7:

∀x∃z∀r [t ∈ z ↔ r ⊆ x]

then Q 6|= A7: take q = 0 and any z ∈ Q: if q < z then take r ∈ Q with
q < r < z (e.g. r = (q + z)/2 and note that r 6≤ q but r < z. If z ≤ q then take
r = q and note that r ≤ q but r 6< z.

So in the absence of Separation (see below) the distinction becomes impor-
tant.

A8: As stated, ¬Q |= A8 since there is no y ∈ Q such that ∀z z 6∈ y.

Separation/A5: Let φ(r) ≡ r < r and fix q ∈ Q. We ask whether there is
any p ∈ Q such that ∀t [t < p↔ t < q ∧ φ(t)]? Suppose there was some such p
and consider t = min {p− 1, q − 1} ∈ Q. Then t < p but ¬φ(t) a contradiction.

Let φ(r, q) ≡ r < q. Fix q, s ∈ Q. We ask whether there is any p ∈ Q such
that ∀t [t < p↔ t < s ∧ φ(t, q)]. Clearly p = min {s, q} satisfies this.

Question 2

By recursion on ω: we need to show that P (x) = x ∪ {{y, z} : y, z ∈ x} is a set
(see below) and use {〈x, P (x)〉 : x ∈ U} as our class function F to obtainMn for
n ∈ ω such that M0 = {∅} and Mn+1 = P (Mn). We finally use Replacement,
Infinity (to get that ω is a set) and Union to define M =

⋃

{Mn : n ∈ ω} as
a set.

First we show by induction on n that no element of Mn contains more than
two elements (straightforward) and deduce that no element of M contains more
than two elements. For transitivity assume x ∈ M . Find the least n such that
x ∈Mn. If n = 0 then x = ∅ and we are vacuously done. Otherwise n = m+ 1
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for some m and there are y, z ∈ Mn with x = {y, z}. So now assume t ∈ x.
Then t = y or t = z. In either case t ∈Mn ⊆M as required.

Note that clearly Mn ⊆ Mn+1 by construction and hence by induction we
have n ≤ m implies Mn ⊆ Mm. Thus if x, y ∈ M then {x, y} ∈ M (for a more
formal proof see below).

For the axioms: A1/Extensionality follows from transitivity of M ,
A2/Emptyset is trivial. For A3/Pairing follows by construction: let x, y ∈
M and find n,m such that x ∈ Mn, y ∈ Mm. Wlog n ≤ m and by the note
above we then have x, y ∈Mm so that {x, y} ∈Mm+1 ⊆M .

For Separation, let φ(y; v1, . . . , vn) be a formula, a1, . . . , an ∈ M and u ∈
M . Let n be least such that u ∈ Mn. If n = 0 then u = ∅, so let z = ∅ ∈ M
and M |= t ∈ z ↔ t ∈ u ∧ φ(t; a1, . . . , an) s vacuously true. So assume n =
m + 1 for some m. By leastness, there are x, y ∈ Mm with u = {x, y}. Set
z =

{

t ∈ u : φ(t; a1, . . . , an)
M
}

. Then z is one of ∅, {x}, {y} or {x, y} all of
which belong to M . Finally M |= t ∈ z ↔ t ∈ u∧ φ(t; a1, . . . , an)

M as required.
For Replacement assume that φ(x, y) is a formula and

∀x, y, y′ ∈M
[

φ(x, y)M ∧ φ(x, y′)M → y = y′
]

.

Let s ∈ M and define z =
{

y ∈M : ∃x ∈M(x ∈ s ∧ φ(x, y)M )
}

. Firstly, z is a
set by Separation. If we can show that z ∈ M then we are done. So, let n
be least such that s ∈ Mn. If n = 0 then s = ∅ and hence z = ∅ and clearly
M |= ∀t [t ∈ z ↔ t ∈ s ∧ . . . ]. Otherwise let n = m + 1 and by leastness find
u, v ∈Mm with s = {u, v}. Then there are is at most one a ∈M with φ(u, a)M

and only one b ∈ M with φ(v, b)M . But all of ∅, {a} , {b} , {a, b} (depending on
whether or not a, b ∈M exist) belong to M . So z ∈M as required.

Finally A10: There are of course multiple versions of the Choice axiom
(which are equivalent under ZF). We will look at two of them:

Question 3

Let a be non-empty, transitive and let m be its ∈-minimal element (from Foun-
dation). If x ∈ m then by transitivity x ∈ a, contradicting minimality of m. So
m = ∅ as required.

Question 4

Suppose x, y are sets. Write 0 = ∅ and 1 = {∅} = P (∅). Then 0, 1 ⊆ 1 so
0, 1 ∈ P (1) so by Separation {0, 1} is a set (in fact, P (1) = {0, 1} so another
application ofPowerset can avoide Separation). By Replacement (with φ(r, t)
as

(r = 0 ∧ t = x) ∨ (r = 1 ∧ t = y) ∨ t = ∅

this gives that {x, y} is a set.
Note that we are using a very weak form of Replacement here.

2



Question 5

Clearly being well-ordered implies being totally ordered so (i) implies (ii). We
focus on (ii) implies (i): Suppose that α is transitive and totally ordered by ∈.
Let x ⊆ α and assume that x 6= ∅. Apply Foundation to find m ∈ x such that
m∩x = ∅. Since α is transitive, m ∈ α and by construction m is the ∈-minimal
element of x.

For the deduce, note that α is transitive and totally ordered by ∈ is a ∆0 for-
mula, so absolute for transitive non-empty classes A ⊆ B. As long as A,B satisfy
Foundation, the above show that A |= α is transitive and well-ordered by ∈
if and only if A |= α is transitive and totally-ordered by ∈ if and only if B |=
α is transitive and totally-ordered by ∈ if and only ifB |= α is transitive and well-ordered by ∈,
as required.

Question 6

The most difficult part is to find out what you are actually asked to do. We
want to show that: If

• A,B satisfy enough of ZF− so that the Recursion Theorem on On holds
and

• a ∈ A and

• that F is a formula such that A |= F is a class function (we will write
FA(a) for the unique y ∈ A with A |= F (a, y)) and

• B |= F is a class function (similarly FB(b) is the unique y ∈ B such that
B |= F (a, b)) and

• F is absolute for A,B (i.e. for a ∈ A, FA(a) = FB(a)) and

• GA (resp. GB) are formulae such that

A |= G is a class function on OnA∧ (1)

G(0A) = a (2)

∧∀α ∈ OnA GA(α+ 1) = FA(GA(α)) (3)

∧∀γ ∈ LimA GA(γ) =
(

⋃

{GA(β) : β ∈ α}A
)A

(4)

(resp. the above for B and GB) where all the superscript As mean that
we should interpret this formula in A

then
∀α ∈ OnA GA(α) = GB(α).

For the proof, we first note that since A,B are non-empty transitive classes
satisfying enough of ZF we have ∅A = ∅B , OnA ⊆ OnB and LimA ⊆ LimB
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(being an ordinal is absolute and being a successor ordinal is absolute, hence
being a limit ordinal is absolute).

So assume there is α ∈ OnA with GA(α) 6= GB(α). Since A satisfies enough
of ZF, there is a minimal such α, say α0.

Case α0 = 0A = 0B: Then GA(α0) = a = BB(α0), a contradiction.

Case α0 is a successor (in A): Being a successor is absolute for A,B, so α0

is successor in B. Let βA ∈ OnA be such that A |= α0 = βA + 1 and similarly
for βB . Since Pairing and Union are absolute, A,B |= βA + 1 = βB + 1 and
it follows that A,B |= βA = βB . We will simply write β for βA. Since β ∈ α0,
by minimality of α0 we must have

GA(α0) = FA(GA(β)) = FA(GB(β) = FB(GB(β)) = GB(α0)

(where the second = comes from the minimality of α0 and the third from abso-
luteness of F ), giving another contradiction.

Case α0 is a limit (in A): Again, α0 will be a limit in B. Now apply mini-

mality of α0 to see that for βinα0, GA(β) = GB(β), so that {GA(β) : β ∈ α}A =

{GB(β) : βinα}
B
, so that by absoluteness of

⋃

, we get GA(α0) = GB(α0).

Question 7

An expanded solution of this (containing almost all details, I hope) can be found
in the ‘Satisfaction’ file.

Summary In the finitistic meta-theory, we can define (using a Gödel number-
ing scheme) an injection ⌈.⌉ : Formulae of LST → ω together with a function
free : ω → finite subsets of ω such that free(⌈φ⌉) is the set of indices of free
variables of φ such that these definitions only use basic arithmetic on ω.

By recursion on ω we can then define for each set x ∈ V , a 0, 1-valued func-
tion (in our universe V satisfying enough of ZF) valx : ω×

⋃
{

xd : d finite ⊆ ω
}

→
{0, 1} such that for a formula φ(vi1 , . . . , vin) with all free variables displayed,
and v ∈

⋃
{

xd : d finite ⊆ ω
}

with free(⌈φ⌉) ⊆ d we have (in the meta-theory)
valx(⌈φ⌉ , v) = 1 if and only if x |= φ(v(i1), . . . , v(in)).

Moreover, valx is absolute for transitive non-empty classes A,B satisfying
enough of ZF (in the sense that valAx = valBx for x ∈ A).

Some details: Assume you have a Gödel numbering and the function free as
described above. When mentioning formulae φ or free variables below, these
should of course be replaced by the Gödel number or a suitable statement in-
volving free (and the Gödel number).

We of course need the concept of an assignment: an assignment for φ(vi1 , . . . , vin)
(with free variables shown) is a function v : m→ x where m ⊇ {i1, . . . , in} and
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m is a finite subset of ω. We define valx(⌈φ⌉ , v), also written as (x,∈) |=v

φ(v1, . . . , vn), by recursion on the complexity of φ:

• ”(x,∈) |=v vi1 = vi2” = 1 if and only if v is an assignment for φ (i.e.
i1, i2 ∈ free(⌈φ⌉)) and v(i1) = v(i2);

• ”(x,∈) |=v vi1 ∈ vi2” = 1 if and only if v is an assignment for φ and
v(i1) ∈ v(i2);

• ”(x,∈) |=v ψ1 ∧ ψ2” = 1 if and only if v is an assignment for φ and
”(x,∈) |=v ψ1” = 1 and ”(x,∈) |=v ψ2” = 1;

• ”(x,∈) |=v ¬ψ” = 1 if and only if v is an assignment for φ and ”(x,∈) |=v

ψ” = 0;

• ”(x,∈) |=v ∃vikψ(vi1 , . . . , vin , vin+1
)” = 1 if and only if v is an assignment

for φ and for some assignment v′ for ψ such that dom(v′) = dom(v)∪{ik}
and ∀i ∈ dom(v) \ {ik} v(i) = v′(i) (this codes the idea that v′ is an
extension for v, possibly redefining the value of the ‘dummy’ variable ”vik)
”(x,∈) |=v′ ψ(vi1 , . . . , vin+1

)” = 1;

(we replace ∨, ∀ by logically equivalent formulae involving only the symbols
used above).

This can be done in basic set theory: we only need

• being a finite ordinal, basic arithmetic on finite ordinals;

• the set of functions with domain a finite set of ordinals and range x (the
set of potential valuations);

• the recursion theorem on finite ordinals (i.e. on the class ω);

Instead of recursing on the complexity of φ, we recurse on a measure of the
complexity of φ coded by finite ordinals. Details of (one way of) how to code
this formally, can be found in the relevant chapter of the lecture notes, but are
not examinable.

Note that all of the above are absolute (and exist) for classes that satisfy
(enough of) ZF−P and since (class) functions defined by recursion on absolute
notions are absolute, we get that valx is absolute for transitive, non-empty
classes A ⊆ B satisfying (enough of) ZF− P and x ∈ A.

Question 8

We need to check that the well-orders defined in the lecture notes are indeed
well-orders. None of these checks are difficult.
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Question 9

1. x ⊆ y ≡ ∀t ∈ x [t ∈ y] which is ∆0 so absolute.

2. z = {x1, . . . , xn} ≡ x1 ∈ z ∧ . . . xn ∈ z ∧ ∀t ∈ z [t = x1 ∨ · · · ∨ t = xn]
which is ∆0 so absolute.

3. z = 〈x1, . . . , xn〉: We define this by induction (in the meta-theory) as
follows:

z = 〈〉 ≡ z = ∅ ≡ ∀t ∈ z [t 6= t] (5)

z = 〈x1〉 ≡ z = {x1} (6)

z = 〈x2〉 ≡ z = {{x1} , {x1, x2}} (7)

z = 〈x1, x2, . . . , xn+1〉 ≡ z = 〈〈x1, . . . , xn〉 , xn+1〉 (8)

We could of course write out a formula for each n, but this would be
painful. However, all the ‘defined’ notions which we use are ∆0 so the
formula we would to write down (if we were forced to do so) are ∆0.

The alternative is to define the two-tuple, some totally ordered set of size
n (e.g. n ∈ ω) and then z = 〈x1, . . . , xn〉 by z = {〈0, x1〉 , . . . , 〈n− 1, xn〉}.

4. x is an n-tuple: The obvious definition ∃x1, . . . , xnz = 〈x1, . . . , xn〉 is not
∆0. But we can be slightly tricky as follows:

∃xn, tn−1 ∈ z∃xn−1, tn−2 ∈ tn−1 . . . ∃x2, t1 ∈ t2∃x1 ∈ t1 [z = 〈x1, . . . , xn〉]
(9)

and this is ∆0.

So (the important case), z is a two-tuple would be

∃x2, t1 ∈ z∃x1 ∈ t1 [z = 〈x1, x2〉] . (10)

Similarly, if you define the tuple via functios, you can be crafty and write
down a ∆0 formula for a given n.

5. z is an n-tuple and πi(z) = x: We write down the formula above but also
but in ∧xi = x and again we have absoluteness. Explicitly:

∃xn, tn−1 ∈ z∃xn−1, tn−2 ∈ tn−1 . . . ∃x2, t1 ∈ t2∃x1 ∈ t1 [z = 〈x1, . . . , xn〉 ∧ xi = x]
(11)

Or we could do this inductively, saying

z is a 0-tuple ≡ z = ∅ (12)

6. z = x∪ y: Either we define this as z =
⋃

{x, y} (for
⋃

see later - but this
only makes sense in the presence of Pairing) or explicitly as

∀t ∈ z [∃w ∈ x [t ∈ w] ∨ ∃w ∈ y [t ∈ w]] (13)

∧∀t ∈ x [t ∈ z] ∧ ∀t ∈ y [tinz] (14)

which is ∆0 so absolute.
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7. z = x ∩ y: We could use separation, but it is less demanding to define it
as

∀t ∈ z [t ∈ x ∧ t ∈ y] (15)

∧∀t ∈ x [t ∈ y → tinz] (16)

which is again ∆0.

8. z =
⋃

x: Instead of the ‘obvious’∀t [t ∈ z ↔ ∃y ∈ x [t ∈ y]] which is not
∆0, we can use

∀t ∈ z∃y ∈ x [t ∈ y] (17)

∧∀y ∈ x∀t ∈ y [t ∈ z] (18)

which is ∆0.

9. z = x \ y:

∀t ∈ z [t ∈ x ∧ ¬ [t ∈ y]] (19)

∧∀t ∈ x [¬ [t ∈ y] → t ∈ z] (20)

is ∆0.

10. x is an n-ary relation on y1, . . . , yn (take all the yi equal to y):

∀t ∈ x∃x1 ∈ y1, . . . xn ∈ yn [t = 〈x1, . . . , xn〉] (21)

is ∆0.

11. x is a function:

∀t ∈ x [t is a 2-tuple] (22)

∧∀t1, t2 ∈ x [π1(t1) = π1(t2) → t1 = t2] (23)

where π1(t1) = π1(t2) should of course be replaced by the appropriate
formula from above, namely

∃w ∈ t1∃u ∈ t2∃x1, x2 ∈ w∃y1, y2 ∈ u [t1 = 〈x1, x2〉 ∧ t2 = 〈y1, y2〉 ∧ x1 = y1]
(24)

and everything is ∆0

12. z = x× y:

∀t ∈ z∃x1 ∈ x∃y1 ∈ y [t = 〈x1, y1〉] (25)

∧∀x1 ∈ x∀y1 ∈ ∃t ∈ z [t = 〈x1, y1〉] (26)

is ∆0
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13. x is a function and dom(x) = z:

x is a function (27)

∧∀t ∈ x π1(t) ∈ z (28)

∧∀w ∈ z∃t ∈ x π1(t) = w (29)

where π1(t) ∈ z should of course be replaced by an appropriate ∆0 formula.

14. x is a function and ran(x) = z: very similar to the previous one.

15. x is transitive:

∀y ∈ x∀t ∈ y [t ∈ x] (30)

is ∆0

16. x is an ordinal: This one is not absolute for transitive classes satisfying
only ZF−! See the lecture notes. However, assuming foundation, there is
an equivalent definition which is absolute.

17. x is a successor ordinal:

x ∈ On ∧ ∃y ∈ x [x = y ∪ {y}] (31)

and this is absolute provided being and ordinal is absolute.

18. x is a limit ordinal: either x is an ordinal and not a successor ordinal or
x is an ordinal and ∀y ∈ x∃z ∈ x [z = y ∪ {y}]. Again, this is absolute
provided being an ordinal is absolute.

19. x = ω:

x is a limit ordinal (32)

∧∀y ∈ x [y is a successor ordinal ∨ y = ∅] (33)

which is absolute if being an ordinal is absolute.

20. x is a finite subset of z:

∃n ∈ ω∃f [f is a function ∧ dom(f) = n ∧ ran(f) = x] (34)

Note that this is not obviously absolute, since the ∃f quantifier is not
bounded.

However, for transitive classes A,B satisfying (enough of) ZF−P we can
show the following: if

A |= x is a finite subset of z

then so does B since the witnessing function f in A also belongs to B
(and the things we assert about f are absolute). So suppose now that

B |= x is a finite subset of z
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Let n ∈ ωB = ωA (by absoluteness of ω) and f ∈ B witness this. Then
n ∈ A and if we can show f ∈ A then we are done (by the absoluteness of
what we assert about f and n).

First we show that if a, b ∈ A or B and then a × b ∈ A (or B): we note
that

a× b =
⋃

y∈b

a× {y} =
⋃

y∈b

⋃

x∈a

{〈a, y〉}

and for each y ∈ b, x ∈ a, 〈x, y〉 ∈ A (by Pairing), so for each y ∈ b,
{〈x, y〉 : x ∈ a} ∈ A (by Replacement), so for each y ∈ b,

a× {y} =
⋃

{〈x, y〉 : x ∈ a} ∈ A

(by Union) and another application of Replacement and Union gives
a× b ∈ A.

Next if a, b ∈ A then a∩b ∈ A: this is a simple application of Separation,
observing a ∩ b = {t ∈ a : t ∈ b}.

Next we show by induction on m ∈ ω that if f ∈ B and f is a function
on m with ran(f) ⊆ z then f ∈ A: for m = 0 we must have f = ∅ ∈ A
(by Emptyset or non-emptyness of A, Separation and absoluteness of
∅). Assume this is true for m and let f ∈ B be a function on m + 1.
Then f |m = f ∩m × z ∈ B so by inductive assumption f |m ∈ A. Also,
by Pairing and Infinity and transitivity of A {〈m, f(m)〉} ∈ A so that
f = f |m ∪ {〈m, f(m)〉} ∈ A as required.

21. z = the set of finite subsets of x:

∀t ∈ z [t is a finite subset of x] (35)

∧∀y [y is a finite subset of x→ y ∈ t] . (36)

The first line is absolute for non-empty transitive classes A,B satisfying
enough of ZF−P . In the second line, we need to show that if y ∈ B and y
is a finite subset of x then y ∈ A (then absoluteness kicks in). If y ∈ B and
y is a finite subset of x then we can find a witnessing n ∈ ω, f : n→ x with
ran(f) = y with f ∈ B. Thus f ∈ A by the above. Now we need to show
that if f ∈ A then ran(f) ∈ A. But this follows from Replacement:

ran(f) = {y : ∃m ∈ n f(m) = y}

9


