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Question 1

1. Let α ∈ On. By recursion on ω, define α0 = α + 1 and αn+1 as the least
element of C1 that is > αn if n is even and as the least element of C2 that
is > αn if n is odd. Since Ci are unbounded this is well-defined. Hence
αn is a strictly increasing sequence of ordinals. Set γ = supn∈ω αn. Since
both α2n and α2n+1 are unbounded in {αn : n ∈ ω} we have supn∈ω α2n =
γ = supn∈ω α2n+1. But α2n ∈ C2 for each n ∈ ω so that γ ∈ C2 as C2

is closed (under suprema). Similarly α2n+1 ∈ C1 for each n ∈ ω so that
γ ∈ C1. Hence γ ∈ C1 ∩ C2 and by construction α < α0 < γ. As α ∈ On
was arbitrary, C1 ∩ C2 is unbounded.

That C1 ∩ C2 is closed under suprema is trivial since each of C1, C2 is.
Formally, suppose A ⊆ C1 ∩ C2 is a set of ordinals. Then by assumption
supA ∈ C1 as A ⊆ C1 and C1 is closed under suprema and similarly
supA ∈ C2 so that supA ∈ C1 ∩ C2.

2. One possible formula expressing that each Xi is club is

∀i ∈ ω ∀α ∈ On ∃γ ∈ On [α ∈ γ ∧ 〈i, γ〉 ∈ X]∧

∀i ∈ ω ∀γ ∈ On [[∀α ∈ γ ∃β ∈ γ 〈i, β〉 ∈ X]→ 〈i, γ〉 ∈ X] .

We define
⋂

i∈ω

Xi = {α ∈ On : ∀i ∈ ω 〈i, α〉 ∈ X} .

Note that the obvious definition as
∧

i∈ω φi where φi(α) ≡ 〈i, α〉 ∈ X is
not a first-order formula (the conjunction is infinite).

To see that this is unbounded, let α ∈ On. We take an explicit bijection f :
ω → ω×ω (these exist), write f(i) = 〈ni,mi〉 and recursively define α0 = α

and αi+1 to be the least element of Xni+1
that is strictly bigger than fαi.

It is not difficult to see that for each k ∈ ω, γ = sup {αi : i ∈ ω} =
sup {αi : i ∈ ω, ni = k} so that ∀k ∈ ωγ ∈ Xk.

Alternatively, let Yi =
⋂

j≤iXj = {α : ∀j ≤ i 〈j, α〉 ∈ X}. (Really, we
should set Y = {〈i, α〉 : i ∈ ω ∧ ∀j ≤ i 〈j, α〉 ∈ X}.) Note that by induc-
tion on i and the first part, each Yi is club. Given α ∈ On, let α0 ∈ Yi be
minimal such that α0 > α and define recursively αn+1 as minimal in Yn
such that αn+1 > αn. Set γ = sup {αn : n ∈ ω}. Since the sequence of αn
are strictly increasing γ = sup {αn : m ≤ n ∈ ω} for each m ∈ ω and by
the definition of Ym we then have γ ∈ Ym for each m ∈ ω. But Ym ⊆ Xm,
so ∀m ∈ ω 〈m, γ〉 ∈ X as required.

Note, that in general it does not make sense to talk about the class
⋂

i∈ωXi

since we cannot (in general) write down a finite formula describing it. The
only reason we can do so is because we have one formula which works (by
instantiation) for each Xi, so we have a uniform description of the Xi.
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If we relativize everything to a transitive set M which models enough of
ZF to allow recursion on ω and to show that suprema of sets (elements of
M !) of ordinals exist and are ordinals (etc) and each Xi is a subclass of
M (i.e. we relativize everything to a transitive set-model of enough of ZF
to carry out the argument) then we can (in V ) form the subclass

⋂

i∈ωXi

(using val(M, ., .) - it is a set in V but might not be in M) and then we
have indeed proved that this is unbounded (according to M). It is then
straightforward to show that it is also closed under suprema.

Question 2

Part (i): Suppose ZF ⊢ ∃x φ(x). Consider the class {α ∈ On : ∃x ∈ Vα φ(x)}.
This is non-empty by assumption (as ZF ⊢ ∀x∃α ∈ On x ∈ Vα), so let α be its
minimal element. Fix x ∈ Vα such that V |= φ(x). Note that by minimality of
x, α is a successor ordinal β + 1 and x ⊆ Vβ . Then x is transitive and x |= ZF
so that x |= ∃y φ(y). Fix y ∈ x such that x |= φ(y). As x is transitive and φ is
absolute we have V |= φ(y). But y ∈ x so y ∈ Vβ , contradicting minimality of
α.

Part (ii): If T was a finite subcollection of sentences such that T ⊢ ZF, then
V |=

∧

T , so we can apply Levy’s Reflection Principle to Vα with φ =
∧

T to
obtain some Vα such that Vα |=

∧

T . Then (by soundness and completeness)
Vα |= ZF and Vα is transitive, so that φ(Vα). Hence ∃x φ(x) (namely Vα) and
(again by soundness and completeness), ZF ⊢ ∃x φ(x). (In fact, using soundness
and completeness is not necessary here. We could carry out the whole argument
on the formal, syntactic side.)

Part (iii): We code the formulae of LST by natural numbers, writing ⌈φ⌉
for the code of φ. We can also write down the set of natural numbers X which
are codes for axioms. This is easy for everything except for the axiom scheme
Separation and Replacement, but even for these it is fairly straightforward.
Note that everything, and in particular X, will be absolute.

Finally, φ(x) would be

∀n ∈ X val(x, n, ∅) = 1.

Part (iv): It is tricky to even figure out how to formalize this question,
because it does not make sense to talk about absoluteness between infinitely
many Vα and V (since absoluteness between Vα and V amounts to having a
proof that ∀a1, . . . , an ∈ Vα

[

φVα ↔ φV
]

and we only ever have finitely many
proofs).

Thus, what is asserted here might be: For every formula φ(v1, . . . , vn) of
LST,

ZF ⊢ ∀α ∈ On ∃γ ∈ On
[

∀a1, . . . , an ∈ Vγ
[

φ(a1, . . . , an)
Vγ ↔ φ(a1, . . . , an)

V
]]
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and

ZF ⊢∀γ ∈ On
[

∀α ∈ γ∃β ∈ γ
[

α ∈ β ∧ ∀a1, . . . , an ∈ Vβ
[

φ(a1, . . . , an)
Vβ ↔ φ(a1, . . . , an)

Vγ
]]]

→

∀a1, . . . , an ∈ Vγ
[

φ(a1, . . . , an)
Vγ ↔ φ(a1, . . . , an)

V
]

.

The first of these is the Levy Reflection Principle.
For the second, we define (in the meta-theory) by recursion on the complexity

of formulae
Cφ = On

for φ atomic,

C¬φ = Cφ

Cφ∧ψ = Cφ ∩ Cψ

and

C∃x φ = Cφ∩
{

α ∈ On : ∀a1, . . . , an ∈ Vα
[

∃x ∈ V φ(a1, . . . , an, x)
V → ∃x ∈ Vα φ(a1, . . . , an)

V
]}

.

By induction on the complexity of the formula we show that each Cφ is club.
For the existentially quantified case, apply the Tarski-Vaught criterion.

Remark: I think the following formula shows that in general the class

{α ∈ On : φ is absolute for Vα, V }

is not club.
We let φ be the sentence expressing that there is a set containing every finite

ordinal, i.e.
φ ≡ ∃z ∀β ∈ On [β is finite → β ⊆ z] .

Clearly φV is true as witnessed by ω. For every n ∈ ω, we have OnVn+1 =
On ∩ Vn+1 = n + 1 and z = n ∈ Vn+1 witnesses φ. But no z ∈ Vω witnesses φ
(it would be ω, but ω 6∈ Vω).

Part (v): There are various problems:

• The first problem is that
⋂

i∈ω Ci is not defined (see above). Again, we can
fix this if we go to the meta-theory: we define C = {〈n, α〉 : n ∈ Form ∧ val(n, ∅, Vα) = 1}
which contains each Ci.

• The real problem is the LRP: to apply it to all the φi at once, we would
need to be able to define val(., ., V ).

For each i, the LRP spits out a proof Pi from ZF that Cφi
= {〈i, α〉 : val(i, ∅, Vα) = 1}

is club. But since for each i a different proof is given, it does not give a
finite proof that ∀i ∈ Form Ci is club.
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• You could of course try to ‘internalize’ the notion of ‘there is a proof’
roughly as follows: coding formulae by natural numbers, saying that there
is a proof of φ amounts to saying that there is a sequence of codes with
specific properties (as dictated by the logical calculus you are using) ending
in ⌈φ⌉. Then you could write down a statement in LST which seems to
mean ‘for each φ there is a proof of Cφi

is a club’. But in doing so, you
have to be careful: in non-standard models of ZFC, there could be non-
standard natural numbers and hence your internalization does not mean
what you intend it to mean.

Question 3

I’ve done the proofs of L |= ZF in lectures except for Union and Infinity.

Extensionality L is transitive, so L |= Extensionality.

Separation This has been done in lectures - use the Reflection Theorem.
Note that if we have the Reflection Theorem for the hierarchy Lβ , β ∈

OnLα = On ∩ Lα = α, then Separation will hold in Lα. The proof of the
Reflection Theorem goes through, provided that α is a limit ordinal such that
every countable supremum of ordinals < α is < α, i.e. that cfα > ω.

Pairing If x, y ∈ L then find α ∈ On such that x, y ∈ Lα. Then z =
{t ∈ Lα : Lα |= t = x ∨ t = y} ∈ Def(Lα) = Lα+1 and absoluteness shows that
L |= z = {x, y} (i.e. L |= x ∈ z ∧ y ∈ z ∧ ∀t ∈ z [t = x ∨ t = y]).

We note that this in fact shows that if α ∈ Lim then Lα |= Pairing.

Union If x ∈ L then find α ∈ On such that x ∈ Lα. Then

z = {t ∈ Lα : Lα |= ∃y ∈ x t ∈ y} ∈ Def(Lα) = Lα+1

and by absoluteness L |= z =
⋃

x (i.e.

L |= [∀t ∈ z∃y ∈ x tx ∈ y] ∧ [∀y ∈ x∀t ∈ y t ∈ z]

).
Again, this shows that for α ∈ Lim, Lα |= Union.

Replacement Assume that φ(x, y; v0, . . . , vn) is a formula of LST and a0, . . . , an, d ∈
L such that L |= ∀x ∈ d∃!y φ(x, y, a0, . . . , an) i.e. we assume ∀x ∈ d ∩ L∃!y ∈
L φ(x, y, a0, . . . , an)

L.
Let ψ(x, y; v0, . . . , vn) ≡ y ∈ L ∧ φ(x, y, a0, . . . , an)

L. Since L is transitive
and d ∈ L, d ∩ L = d. Then V |= ∀x ∈ d∃!y ψ(x, y, a0, . . . , an) (by substituting
ψ), so apply Replacement in V so that we find z ∈ V such that

z = {y : ∃x ∈ d ψ(x, y, a0, . . . , an)}
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and note (substitute and push the relativization out using d ∩ L = d)

z =
{

y ∈ L : [∃x ∈ d φ(x, y, a0, . . . , an)]
L
}

.

Observe that z ⊆ L and hence note that by Replacement and Union in
V , for y ∈ z we can find αy ∈ On minimal such that y ∈ Lαy

and by setting
α = sup {αy : y ∈ z} z ⊆ Lα.

Now we can apply Separation in L to see that

z′ =
{

y ∈ Lα : [∃x ∈ dφ(x, y, a0, . . . , an)]
L
}

∈ L

and check that z′ is as required, i.e. that [∀t [t ∈ z′ ↔ ∃x ∈ dφ(x, y, a0, . . . , an)]]
L
:

→ is clear from the definition of z′. For ← we may note that if t ∈ L such that
∃x ∈ dφ(x, y, a0, . . . , an)

L then t ∈ z ⊆ Lα, so t ∈ z
′.

Alternatively (to avoid Separation) we check manually (using Reflection)
that z ∈ L: for this first increase α so that a0, . . . , an, d ∈ Lα as well as
z ⊆ Lα. Then apply the Reflection Theorem to find γ > α such that ∃x ∈
d φ(x, y, v0, . . . , vn) is absolute for Lγ , L. Hence

z =
{

y ∈ Lα : [∃x ∈ d φ(x, y, a0, . . . , an)]
Lα

}

∈ Def(Lα).

Now by construction, z is as required, i.e. [∀t [t ∈ z ↔ ∃x ∈ d φ(x, y, a0, . . . , an)]]
L
.

To have Replacement true in Lα, we want Separation (or the Reflection
Theorem ‘up to Lα’). We also somehow need to be able to prove that the z we
construct above is a subset of Lα. To do so we want a result along the lines: if
d ∈ Lα and f : d→ α = OnLα is a function then sup f < α.

Powerset Suppose x ∈ L and use Powerset to find z ∈ V such that V |=
z = P (x), i.e. such that ∀t [t ∈ z ↔ t ⊆ x]. Let z′ = z ∩ L (by Separation in
V ). Then z′ ⊆ L and as in the proof for Replacement, we can find α ∈ On such
that z′ ⊆ Lα and x ∈ Lα. Hence

z′ =
{

y ∈ Lα : [y ⊆ x]L
}

=
{

y ∈ Lα : [y ⊆ x]Lα

}

∈ Def(Lα) = Lα+1 ⊆ L,

using absoluteness of ⊆. Again, using absoluteness of ⊆ it is now easy to check
that L |= z′ = P (x), i.e. [∀t [t ∈ z′ ↔ t ⊆ x]]L holds.

For Powerset, even if x ∈ Lα, P (x)
L

can have arbitrarily large rank, so
(short of inaccessible cardinals), I can’t find specific α > ω for which Lα satisfies
Powerset (although by the Reflection Theorem there must be lots of them and
in principle it should be possible to write one down explicitly).

Infinity Either note that ω ∈ Lω+1 (a formula defining ω in Lω is φ(t) ≡ t ∈
On) or that in fact Lω ∈ Lω+1 and L believes that both ω and Lω are inductive
and non-empty.

Clearly for every α > ω we have that Lα |= Infinity.
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Foundation L is a transitive subclass of V .

Part 3:

Of course, I missed ‘ωV ∈ A’ in the question statement. As stated, A might not
satisfy Infinity, e.g. if A = Vω.

Transitivity shows Extensionality and Foundation is downwards abso-
lute. For Pairing and Union, note that if x, y ∈ A then z = {x, y}V ⊆ A

and z = (
⋃

x)V ⊆ A. By assumption z ∈ A and by absoluteness of {x, y}

and
⋃

x, z = {x, y}A and z = (
⋃

x)A. For Powerset note that if x ∈ A then

z = P (x)
V ∩A ⊆ A so z ∈ A and z = P (x)

A
.

This leavesReplacement where you set z =
{

y : ∃x ∈ d y ∈ A ∧ φ(a1, . . . , an, x, y)
A
}V

,

note z ⊆ A so z ∈ A and check z = {y : ∃x ∈ dφ(a1, . . . , an, x, y)}
A
.

Question 4

We have shown in lectures that α ⊆ Lα ⊆ Vα and Vα ∩ On = α on a problem
sheet. Lα ⊆ Vα shows that rk(Lα) ≥ α. But for β < α, α 6⊆ β = Vβ ∩ On so
rk(Lα) > β. Thus the result follows.

Question 5

There are at least two ways to achieve this: the first is that the recursion
theorem (used to define ordinal addition) gives an explicit formula φ(z) such
that φ(z) if and only if z is a pair 〈α, β〉 of ordinals and β = α + α. We then
set ψ(x) ≡ x ∈ On ∧ ∃y ∈ On φ(〈y, x〉). Noting that OnLω = On ∩ Lω = ω we
do have

E =
{

t : t ∈ Lω ∧ ψ(t)
Lω

}

.

If you are worried by OnLω = ω, then you can of course also include the absolute
formula x ∈ ω, which is shorthand for x = ∅ or (x is a successor ordinal and all
elements of x are successor ordinals). You cannot leave ω as a parameter, since
ω 6∈ Lω.

Alternatively, you write down an absolute formula φ(x) that expresses: each
element of x is a set of two distinct elements and any two elements of x are
pairwise disjoint. For example

∀t ∈ x∃a, b ∈ t t = {a, b} ∧ a 6= b

∀t, t′ ∈ x t ∩ t′ = ∅

replacing the shorthand t = {a, b} and t ∩ t′ = ∅ by ∆0 formulae respectively.
Then ψ(t) ≡ t ∈ On ∧ ∃x ψ(x) ∧ t =

⋃

x is the required formula (note the
absoluteness of this), because as before OnLω = ω.

Question 6

The quick solution is to show:
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F is injective: Consider φ(x, y) ≡ x = y. Then F (x) = F (y)↔ φ(F (x), F (y))↔
φ(x, y)↔ x = y.

F is surjective: Consider φ(y) ≡ ∃x y = F (x). If y ∈ V then F (y) = F (y)
so φ(F (y)) holds, hence φ(y) holds.

F is the identity: Observe that φ(y, x) ≡ y ∈ x gives y ∈ x↔ F (y) ∈ F (x).
Thus F (x) = {t : t ∈ F (x)} =

{

F−1(u) : F (u) ∈ F (x)
}

=
{

F−1(u) : u ∈ x
}

.
Now by ∈-induction, considering the least x such that F (x) 6= x, gives F (x) = x

since by minimality u ∈ x→ F−1(u) = u.

Alternative Solution: φ(x) ≡ x ∈ On is preserved so F [On] = On.
Now consider φ(x) ≡ x 6= F (x) ∧ x ∈ On ∧ ∀y ∈ x F (y) = y expressing that

x is the least ordinal that is not preserved by F . Assume now that there is some
ordinal α such that F (α) 6= α. Choosing α minimal and write β = F (α). Then
φ(α) (by minimality of α), so that y holds. Since α, β ∈ On and β = F (α) 6= α

we must have one of α ∈ β or β ∈ α. If α ∈ β then the last conjunct in φ(β)
fails. If β ∈ α then since by the first conjunct in φ(β) we have β 6= F (β), the
last conjunct in φ(α) fails.

Now consider ψ(x, α) ≡ α ∈ On ∧ rk(x) = α. Since α = F (α) for ordinals α
we obtain that rk(x) = rk(F (x)) for all x.

Finally, assume that F is not the identity and choose x such that x 6=
F (x) and the rank of x is minimal. Then for each y ∈ x we have F (y) = y

and considering θ(x, y) = y ∈ x we obtain (as in the first part) that F (x) =
{F (y) : y ∈ x} = {y : y ∈ x} = x.

Note: It is critical that F is given by an explicit formula so that we obtain
some sort of self-referential formula (surjectivity in the first solution and φ in
the second solution). Assuming (for the sake of argument) that some Vκ (or
Lκ) is a model for ZF it is perfectly conceivable that there is f : Vκ → Vκ such
that f is a non-trivial elementary embedding of Vκ into itself. It is just that we
cannot find an explicit formula for f , so the above proof fails.

Question 7

We show something stronger, namely that if φ(x0, . . . , xn) is Σ1 (i.e. all universal
quantifiers are bounded) then there is a ∆0 formula ψ(x0, . . . , xn, y) such that

ZF ⊢ ∀a0, . . . , an [φ(a0, . . . , an)↔ ∃yψ(a0, . . . , an, y)] .

The proof is by induction on the complexity of φ. First wlog all quantifiers
occur at the front of φ (make all dummy variables different and push them to
the front).

Base Case: If φ is ∆0 then take ψ = φ and we are done.
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Inductive Step: Conjunction and disjunction is trivial. So assume that
φ ≡ ∃xn+1φ

′(x0, . . . , xn+1). By inductive hypothesis, there is a ∆0 formula
ψ′(x0, . . . , xn+1, y

′) such that φ′(x0, . . . , xn+1) is equivalent (in ZF) to ∃y′ψ′.
We may thus assume wlog that φ ≡ ∃xn+1∃y

′ψ′(x0, . . . , xn+1, y
′). We let

ψ(x0, . . . , xn, y) be

∃xn+1 ∈ y∃y
′ ∈ y [y = {xn+1, y

′} ∧ ψ′(x0, . . . , xn+1, y
′)]

and observe that this clearly works (since y = {xn+1, y
′} is really the ∆0-formula

xn+1 ∈ y ∧ y
′ ∈ y ∧ ∀t ∈ y [t = xn+1 ∨ t = y′] ).

Next assume (using the inductive hypothesis and an argument as above)
that φ ≡ ∀xn+1 ∈ xn∃y

′ψ′(x0, . . . , xn+1, y
′) for some ∆0 formula ψ. Let

ψ(x0, . . . , xn, v) ≡ ∀xn+1 ∈ xn∃y
′ ∈ v ψ′(x0, . . . , xn+1, y

′).

We need to verify that

ZF ⊢ ∀a0, . . . , an [φ(a0, . . . , an)↔ ∃v ψ(a0, . . . , an, v)]

which, written out says

ZF ⊢∀a0, . . . , an

∀xn+1 ∈ an∃y
′ ψ′(x0, . . . , xn+1, y

′)

↔

∃v∀xn+1 ∈ an∃y
′ ∈ v ψ′(x0, . . . , xn+1, y

′)

So fix a0, . . . , an. First assume that φ(a0, . . . , an) holds. For each x ∈ an find
αx ∈ On minimal such that ∃y′ ∈ Vαx

ψ′(x0, . . . , x, y
′) (there is such a y′ ∈ V ,

so there is such a y′ in some Vα). Let α = sup {αx : x ∈ an} and note that
by construction and Vαx

⊆ Vα = v for x ∈ an so do have ∀xn+1 ∈ an∃y
′ ∈

Vα ψ
′(a0, . . . , an, y

′) as required.
The converse is obvious (on the LHS there is no restriction on the y′, whereas

on the RHS there is).
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