
Lecture 1: Sci. Comp. for DPhil Stduents

Nick Trefethen, Tuesday 16.10.18

Today

• Mechanics of this course
• I.1 View of the field
• I.2 How fast can we solve Ax = b ?
• I.3 Sparse matrices

Handouts

I generate lots of handouts. Buy a notebook!

• Flier
• Fact sheet
• Outline of lectures
• Quiz 1: abbreviations
• Assignment 1, due next Tuesday at 11:00
• p. 1 of Gilbert-Moler-Schreiber and Tim Davis web page
• Sparse matrix sec. from Higham & Higham Matlab book, all on one page
• m1_howfast.m and m2_sparsity.m
• Quiz 1 solutions

Welcome

Numerical computation is a universal subject these days, and perhaps the
biggest academic subfield of mathematics. (The UK has about 1000 academic
mathematicians, and about 100 of them work in numerical analysis.) I want
to expose you to this highly developed field, to acquaint you with its high
expectations, to get you in the habit of interacting intimately with numbers.

This course aims to be interesting and useful.

I want you to see a wider picture than you are used to from your own work —
which, in the long run, will strengthen your work.

MATLAB is a beautiful tool, for it enables us to explore all kinds of computational
ideas and do things rather than just talk about them. Its use is nearly universal
among experts in this field.

Please do the quiz now; answers will be handed out at the end.

1

Items to note from flier

• Which departments do you all come from?
• Linear algebra and optimization this term; ODE and PDE next term
• Course grades at the end, reported to you and your supervisor
• First assignment counts just 5%

N.B.

• This week only: second lecture Friday 12:00
• No assignments accepted after 11:00 on due dates
• We’ll record your names and addresses on Friday
• Frequent the course Web site! https://www.maths.ox.ac.uk/courses/course/[TBA]

I. Sparse matrices and iterative methods

I.1 View of the field

Science and engineering are formulated mathematically; the solutions are usually
numerical on the computer.

NUMERICAL ANALYSIS
=

SCIENTIFIC COMPUTING

LINEAR ALGEBRA ODE & PDE OPTIMIZATION

OTHER
approximation

systems least- eigs & data-fitting
of eqs squares SVD integration

FFT
random nos.

etc.
dense/classical

v.
sparse/large-scale/iterative/parallel

v.
randomized/very large-scale/data science

Over and over again we see a pattern like this:

2

linearize & iterate
nonlinear -------------------------> LINEAR

PDE -------------------------> ALGEBRA
discretize

Because of this, computers have brought linear algebra, and numerical linear
algebra, to the forefront of the mathematical sciences.

You may think your particular computational needs lie in other directions. Stick
around; you may be surprised.

I.2 How fast can we solve Ax = b ?

Ax = b system of N linear equations in N unknowns

A = NxN matrix b = Nx1 right-hand side x = Nx1 vector of unknowns

How big a dimension N can we handle?

Here’s a quote from Wilkinson in 1951:

By 1949 the major components of the Pilot ACE were complete
and undergoing trials. . . . During 1951 a program for solving simul-
taneous linear algebraic equations was used for the first time. 26th
June, 1951 was a landmark in the history of the machine, for on
that day it first rivalled alternative computing methods by yielding
by 3pm the solution to a set of 17 equations submitted the same
morning.

“Big” values of N at various years:

1950: N = 20
1965: N = 200
1980: N = 2000
1995: N = 20000
2010: N = 200000

Increase in N reflected here: factor of 104

Increase in speed of computers over the same period: factor of 1012, from flops
to teraflops

Google Top500 to see the very fastest machines—now in the hundreds of petaflops
range (100 times 1015) and heading for exaflops (1018).
Even the 500th fastest machine is around a petaflop.

In the formula 1012 = (104)3 we see played out in history the fact that standard
algorithms take

3

O(N^3) flops (floating point operations)

There are “fast” algorithms that need as few as O(N2.373) flops, but these are of
theoretical use only, so far, no good for practical values of N . If you can find an
O(N2) algorithm, you will be world-famous.

Now let’s see what we can do in MATLAB. [m1_howfast.m]

I.3 Sparse matrices

Why do we want N to be so large? Because discretizations of integral and
differential equations force this upon us. (Also for data science problems, but
we won’t focus on that in this course.) Here e.g. is a 3 × 3 grid of unknowns:

7 - 8 - 9
| | |
4 - 5 - 6
| | |
1 - 2 - 3

If the variables are coupled as indicated we get a sparse 9x9 matrix:

| x x x |
| x x x x |
| x x x |
| x x x x |

A = | x x x x x |
| x x x x |
| x x x |
| x x x x |
| x x x |

A 100 × 100 × 100 grid would lead to a sparse matrix of dimension 106. A matrix
is “sparse” if most of its entries are zero. . . or more precisely, if enough of its
entries are zero for this to be taken advantage of !

There are two ways to beat the O(N3) bottleneck in practice:

1. parallel computing, and/or

2. special algorithms that take advantage of sparsity or other special structure
of A: (a) direct (b) iterative

In recent years flop count is less and less important at the high end (i.e. for
many processors) — communication is a bigger bottleneck.

4

Handouts

• Gilbert-Moler-Schreiber / UMFPACK and Tim Davis

• sparse matrix chapter from Higham + Higham

Let’s explore sparse matrices in MATLAB. [m2_sparsity.m]

5

	Lecture 1: Sci. Comp. for DPhil Stduents
	Today
	Handouts
	Welcome
	Items to note from flier
	N.B.

	I. Sparse matrices and iterative methods
	I.1 View of the field
	I.2 How fast can we solve Ax=b ?
	I.3 Sparse matrices
	Handouts

