
Lecture 8, Sci. Comp. for DPhil Students

Nick Trefethen, Thursday 8.11.18

Today

• II.8 Matrix factorizations
• II.9 SVD and low-rank approximation
• II.10 Gaussian elimination as an iterative algorithm

Handouts

• Questionnaire
• m16_factorizations.m and m17_svd.m
• “Gaussian elimination as an iterative algorithm” (SIAM News, 2012)

Announcements

• Please fill in the questionnaire
• Read: Trefethen & Bau chapters 4-5
• No lecture Thu. Nov 15 (Week 6). Instead, the final lecture will be Tue.

Nov. 27 (Week 8).

This is the last of our eight lectures on numerical linear algebra. I hope I have
persuaded you that this material is the foundation for all kinds of scientific
computing.

Today we’re going to survey matrix factorisations at a high level and then turn
to the singular value decomposition, or SVD.

II.8 Matrix factorizations

Most algorithms of dense numerical linear algebra (1) compute a matrix fac-
torization, then (2) solve a resulting sequence of simpler problems (triangular,
orthogonal, diagonal, tridiagonal,. . . ). You could say this is the central dogma
of numerical linear algebra:

algorithms <-> matrix factorizations

The standard methods for computing these factorizations do it by introducing
zeros one by one until the desired structure is reached. They are all backward
stable, which means: they give the exact factorization of a matrix A+ ∆A with
∆A = O(10−16) times the size (the norm) of A.
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Here are the seven most famous and important factorizations. We assume A is
square. As usual we also assume A is real, though everything generalizes to the
complex case. QR, LU, and SVD also generalize to A rectangular.

QR factorization
A = QR. Q orthogonal, R upper-triangular.
Used for least-squares and as step in iterative algs. for eigenvalues and SVD.

LU factorization
PA = LU . L unit lower-triang., U upper-triang., P a permutation matrix.
Result of Gaussian elimination with row pivoting.
Used for systems of eqs. and low-rank matrix approximation (II.10)

Cholesky factorization
A = RTR. A SPD, R upper-triangular.
Used for SPD systems of equations.

Eigenvalue factorization
A = V DV −1. A diagonalizable, V nonsingular, D diagonal.
Computed by QR algorithm (6= QR factorization).

Orthogonal eigenvalue factorization
A = QDQT . Q orthogonal, A symmetric Does not exist for most matrices.

Schur factorization
A = QTQT . Q orthogonal, T upper-triangular, A arbitrary.
Every matrix has a Schur factorization.
The eigenvalues of A are the diagonal entries of T .

Singular value decomposition (SVD)
A = USV T . U and V orthogonal, S diagonal and ≥ 0, A arbitrary.
Every matrix has an SVD.

[m16_factorizations.m]

II.9 SVD and low-rank approximation

(Trefethen & Bau chapters 4-5)

Singular values are related to eigenvalues and equally important, but less well-
known among pure mathematicians. The reason is that eigenvalues are a concept
of algebra, invariant with respect to change of basis, whereas singular values are
a concept of analysis, norm-dependent.

Eigenvalues are useful for problems involving powers or exponentials of A
(stability, resonance,. . . ).

Singular values are useful for problems involving A or A−1 itself
(least-squares, conditioning, low-rank aproximation,. . . ).
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The (reduced) SVD for m× n A (m ≥ n) is a factorization

A = UΣV T

where:
U is m× n with orthonormal columns,

Σ is n× n diagonal with decreasing entries ≥ 0,

V is n× n orthogonal.

Here is the basic fact that SVD encapsulates:

Every m× n matrix A maps the unit ball in Rn to a hyperellipsoid in Rm.

A hyperellipsoid is the higher-dimensional generalization of an ellipsoid.
It’s an m-dimensional sphere, except stretched linearly by various factors in
various directions.

Here’s the figure that explains it all (here for m = n = 2):

[Hand-drawn. Shows a circle mapping to an ellipse. In the circle, two orthogonal
axes are labeled v1 and v2. In the ellipse, the major and minor axes are labeled
σ1u1 and σ2u2.]

Principal semiaxes of hyperellipsoid: σ1u1, . . . , σnun

singular values of A: σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0

left singular vectors of A: u1, . . . , un (orthonormal)

The preimages of {σjuj} are an orthonormal set {vj}.

right singular vectors of A: v1, . . . , vn (orthonormal)

-------------- ------------- ------------- --------------
| | | | | | | | | | |s |
| | | | | | | | | | | 1 |
| | | | | | | | | | | s |
| | | | | | | | | | | 2 |
| | | v | ... | v | = | | | | | . |
| | | 1| | n| | | | | | . |
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| | | | | | | u | ... | u | | . |
| A | | | | | | 1| | n| | s |
| | | | | | | | | | | n|
| | ------------- | | | | --------------
| | | | | |
| | | | | |
| | | | | |
| | | | | |
-------------- -------------

SVD as change of basis in square case m = n

AV = UΣ, i.e., A = UΣV T .

If b = Ax, then b = UΣV Tx, i.e.

T T
( U b ) = Sigma ( V x )

coeffs of b coeffs of x
in basis of in basis of
left singular right singular
vectors vectors

Thus after distinct orthogonal changes of basis in both domain and range,
A becomes diagonal.

Some facts for general A:

• Every A has an SVD.

• Singular values are unique, but not singular vectors.

• ‖A‖2 = σ1 (2-norm, which we haven’t defined)

• ‖A‖F = (
∑

j σ
2
j )1/2 (Frobenius norm — likewise)

• {singular values of A} = {square roots of eigenvalues of ATA}

rank(A) = number of nonzero singular values

range(A) = span{u1, . . . , ur} where r = rank(A)
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Some facts for square A:

•
∏

j σj =
∏

j |λj | = |det(A)|

• ‖A−1‖2 = 1/σn

• cond(A) = ‖A‖2‖A−1‖2 = σ1/σn.

Low-rank approximation

Let r = rank(A) ≤ n.

Then from the SVD we easily verify

A =
r∑

j=1
σjujv

T
j

(i.e., the SVD exhibits A as a sum of rank-1 matrices).

For any k < r define

Ak =
k∑

j=1
σjujv

T
j .

Ak is a rank-k matrix.

Moreover, it is the closest rank-k matrix to A in both the 2-norm and the
Frobenius norm.

This has applications all over the place.

It also has generalizations to infinite dimensional operators and matrices in
functional analysis. We find “s-numbers” and “Schmidt pairs”, and:

compact operator: one whose singular values decay to zero

Hilbert-Schmidt operator: one whose singular values have a finite
sum-of-squares.

[m17_svd.m]
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II.10 Gaussian elimination as an iterative algorithm

GE, the standard algorithm for solving Ax = b, is the archetypical direct
algorithm of numerical linear algebra.

It has recently been noticed that GE is also an archetype of an iterative algorithm
in data science: a fast algorithm for low-rank approximation or “poor man’s
SVD”.

Usually GE is done with “partial pivoting” — row interchanges at each step.
We’ll speak however of the variant of “column pivoting” — row and column
interchanges at each step. (This has a better guarantee of numerical stability,
though not much different in practice, hence rarely used since it requires more
work.)

Direct GE

A is n× n, n not too big.

It must be nonsingular and hopefully not too ill-conditioned.

for k = 1:n
Find largest entry, say a_{ij}
Subtract off rank 1 matrix A(:,j)*A(i,:)/a_{ij}

end

Iterative GE

A is m× n, m and/or n huge. It must be ill-conditioned for this to be useful.

Same algorithm! — but now, stop when the matrix that remains is sufficiently
small.
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