Lecture 8, Sci. Comp. for DPhil Students

Nick Trefethen, Thursday 8.11.18

Today

- II.8 Matrix factorizations
- II.9 SVD and low-rank approximation
- II.10 Gaussian elimination as an iterative algorithm

Handouts

- Questionnaire
- m16_factorizations.m and m17_svd.m
- "Gaussian elimination as an iterative algorithm" (SIAM News, 2012)

Announcements

- Please fill in the questionnaire
- Read: Trefethen & Bau chapters 4-5
- No lecture Thu. Nov 15 (Week 6). Instead, the final lecture will be Tue. Nov. 27 (Week 8).

This is the last of our eight lectures on numerical linear algebra. I hope I have persuaded you that this material is the foundation for all kinds of scientific computing.

Today we're going to survey matrix factorisations at a high level and then turn to the singular value decomposition, or SVD.

II.8 Matrix factorizations

Most algorithms of dense numerical linear algebra (1) compute a matrix factorization, then (2) solve a resulting sequence of simpler problems (triangular, orthogonal, diagonal, tridiagonal,...). You could say this is the *central dogma* of numerical linear algebra:

algorithms <-> matrix factorizations

The standard methods for computing these factorizations do it by introducing zeros one by one until the desired structure is reached. They are all backward stable, which means: they give the exact factorization of a matrix $A + \Delta A$ with $\Delta A = O(10^{-16})$ times the size (the norm) of A.

Here are the seven most famous and important factorizations. We assume A is square. As usual we also assume A is real, though everything generalizes to the complex case. QR, LU, and SVD also generalize to A rectangular.

QR factorization

A = QR. Q orthogonal, R upper-triangular. Used for least-squares and as step in iterative algs. for eigenvalues and SVD.

LU factorization

PA = LU. L unit lower-triang., U upper-triang., P a permutation matrix. Result of Gaussian elimination with row pivoting. Used for systems of eqs. and low-rank matrix approximation (II.10)

Cholesky factorization

 $A = R^T R$. A SPD, R upper-triangular. Used for SPD systems of equations.

Eigenvalue factorization

 $A = VDV^{-1}$. A diagonalizable, V nonsingular, D diagonal. Computed by **QR algorithm** (\neq QR factorization).

Orthogonal eigenvalue factorization

 $A = QDQ^{T}$. Q orthogonal, A symmetric Does not exist for most matrices.

Schur factorization

 $A = QTQ^{T}$. Q orthogonal, T upper-triangular, A arbitrary. Every matrix has a Schur factorization. The eigenvalues of A are the diagonal entries of T.

Singular value decomposition (SVD)

 $A=USV^T.~U$ and V orthogonal, S diagonal and $\geq 0,~A$ arbitrary. Every matrix has an SVD.

[m16_factorizations.m]

II.9 SVD and low-rank approximation

(Trefethen & Bau chapters 4-5)

Singular values are related to eigenvalues and equally important, but less wellknown among pure mathematicians. The reason is that eigenvalues are a concept of algebra, invariant with respect to change of basis, whereas singular values are a concept of analysis, norm-dependent.

Eigenvalues are useful for problems involving powers or exponentials of A (stability, resonance,...).

Singular values are useful for problems involving A or A^{-1} itself (least-squares, conditioning, low-rank approximation,...).

The (reduced) SVD for $m \times n \ A \ (m \ge n)$ is a factorization

 $A = U\Sigma V^T$

where:

U is $m \times n$ with orthonormal columns,

 Σ is $n \times n$ diagonal with decreasing entries ≥ 0 ,

V is $n \times n$ orthogonal.

Here is the basic fact that SVD encapsulates:

Every $m \times n$ matrix A maps the unit ball in \mathbb{R}^n to a hyperellipsoid in \mathbb{R}^m .

A hyperellipsoid is the higher-dimensional generalization of an ellipsoid. It's an *m*-dimensional sphere, except stretched linearly by various factors in various directions.

Here's the figure that explains it all (here for m = n = 2):

[Hand-drawn. Shows a circle mapping to an ellipse. In the circle, two orthogonal axes are labeled v_1 and v_2 . In the ellipse, the major and minor axes are labeled $\sigma_1 u_1$ and $\sigma_2 u_2$.]

Principal semiaxes of hyperellipsoid: $\sigma_1 u_1, \ldots, \sigma_n u_n$

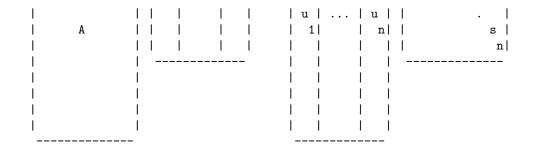
singular values of A: $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_n \ge 0$

left singular vectors of $A: u_1, \ldots, u_n$ (orthonormal)

The preimages of $\{\sigma_j u_j\}$ are an orthonormal set $\{v_j\}$.

right singular vectors of $A: v_1, \ldots, v_n$ (orthonormal)

	-								
1	Ι		I		1	I	I	s	I
	Ι		I		1	I	I	1	I
	Ι		I		1	I	I	s	I
	Ι		I		1	I	I	2	I
	Ι	v	v I	=	1		Ι	.	I
I I	Ι	1	n		1	I		.	l



SVD as change of basis in square case m = n

$$AV = U\Sigma$$
, i.e., $A = U\Sigma V^T$.

If b = Ax, then $b = U\Sigma V^T x$, i.e.

Т		Т			
(U b)	=	Sigma (V x)			
coeffs of b		coeffs of x			
in basis of		in basis of			
left singular		right singular			
vectors		vectors			

Thus after distinct orthogonal changes of basis in both domain and range, ${\cal A}$ becomes diagonal.

Some facts for general A:

- Every A has an SVD.
- Singular values are unique, but not singular vectors.
- $||A||_2 = \sigma_1$ (2-norm, which we haven't defined)
- $\|A\|_F = (\sum_j \sigma_j^2)^{1/2}$ (Frobenius norm likewise)
- {singular values of A} = {square roots of eigenvalues of $A^T A$ }

 $\operatorname{rank}(A) = \operatorname{number} \operatorname{of} \operatorname{nonzero} \operatorname{singular} \operatorname{values}$

 $\operatorname{range}(A) = \operatorname{span}\{u_1, \ldots, u_r\}$ where $r = \operatorname{rank}(A)$

Some facts for square A:

- $\prod_{j} \sigma_{j} = \prod_{j} |\lambda_{j}| = |\det(A)|$
- $||A^{-1}||_2 = 1/\sigma_n$
- $\operatorname{cond}(A) = \|A\|_2 \|A^{-1}\|_2 = \sigma_1 / \sigma_n.$

Low-rank approximation

Let $r = \operatorname{rank}(A) \le n$.

Then from the SVD we easily verify

$$A = \sum_{j=1}^r \sigma_j u_j v_j^T$$

(i.e., the SVD exhibits A as a sum of rank-1 matrices).

For any k < r define

$$A_k = \sum_{j=1}^k \sigma_j u_j v_j^T.$$

 A_k is a rank-k matrix.

Moreover, it is the *closest* rank-k matrix to A in both the 2-norm and the Frobenius norm.

This has applications all over the place.

It also has generalizations to infinite dimensional operators and matrices in functional analysis. We find "*s*-numbers" and "Schmidt pairs", and:

compact operator: one whose singular values decay to zero

Hilbert-Schmidt operator: one whose singular values have a finite sum-of-squares.

[m17_svd.m]

II.10 Gaussian elimination as an iterative algorithm

GE, the standard algorithm for solving Ax = b, is the archetypical *direct* algorithm of numerical linear algebra.

It has recently been noticed that GE is also an archetype of an *iterative algorithm* in data science: a fast algorithm for low-rank approximation or "poor man's SVD".

Usually GE is done with "partial pivoting" — row interchanges at each step. We'll speak however of the variant of "column pivoting" — row and column interchanges at each step. (This has a better guarantee of numerical stability, though not much different in practice, hence rarely used since it requires more work.)

 $Direct \ GE$

A is $n \times n$, n not too big.

It must be nonsingular and hopefully not too ill-conditioned.

```
for k = 1:n
  Find largest entry, say a_{ij}
  Subtract off rank 1 matrix A(:,j)*A(i,:)/a_{ij}
end
```

Iterative GE

A is $m \times n$, m and/or n huge. It must be ill-conditioned for this to be useful.

Same algorithm! — but now, stop when the matrix that remains is sufficiently small.