
Scientific Computing for DPhil Students II

Assignment 1 Solutions

Here are two solutions. First we do it in real arithmetic with standard Matlab, introducing θ(t) as an
additional variable. Then we do it in complex arithmetic in Chebfun, deriving θ(t) via unwrap(angle).

1. There is one moving particle here in the plane, which has a position and a velocity. So we can set the
problem up as a first-order system with four variables, plus a fifth variable to track the angle θ(t). Here is
my code. Writing it as function a1() enables me to put it all in a single file a1.m.

% a1.m A particle orbiting around three fixed points

% We use a system of 5 ODEs: positions x and y, velocities u and v, and angle theta

function a1()

% Set up the fixed points and the moving point:

fp = [cos(0) sin(0)

cos(2*pi/3) sin(2*pi/3)

cos(4*pi/3) sin(4*pi/3)];

x = [2 -2]; u0 = [x 0 0 atan(x(2)/x(1))]’; % initial conditions

% Solve the problem with ode113:

tol = input(’tol? (for best accuracy take 3e-14) ’);

opts = odeset(’reltol’,tol,’abstol’,tol);

[tt,uu] = ode113(@p5fun,[0 40],u0,opts);

% Print the requested numbers:

fprintf(’Tol = %5.2e Position at t=40: (%14.11f,%14.11f)\n’,tol,uu(end,1),uu(end,2))

% Plot the orbit:

FS = ’fontsize’; fs = 16; LW = ’linewidth’; lw = 1;

subplot(1,2,1), plot(fp(:,1),fp(:,2),’.k’,’markersize’,12)

hold on, plot(uu(:,1),uu(:,2),LW,lw), grid on

axis([-3 2.6 -2.7 3.3]), axis square

set(gca,’xtick’,-3:3,’ytick’,-3:4)

title(’orbit’,FS,fs)

% Plot the angle theta(t):

subplot(1,2,2), plot(tt,uu(:,5),’r’,LW,lw), grid on

axis([0 45 -2 15]), axis square

set(gca,’ytick’,0:pi:4*pi)

xlabel(’time t’,FS,fs), ylabel(’\theta’,FS,fs)

title(sprintf(’angle’),FS,fs)

set(gca,’fontname’,’symbol’)

set(gca,’yticklabel’,{’0’ ’p’,’2p’,’3p’,’4p’})

function v = p5fun(t,u)

x = u(1:2);

force = zeros(2,1);

for i = 1:3

f = fp(i,:)’; force = force + (f-x)/norm(f-x)^3;

end

vel = u(3:4);

dthdt = vel’*[-x(2);x(1)]/norm(x)^2;

v = [vel; force; dthdt];

end

end

Now suppose we try various tolerances tol. Here are some results:

Tol = 1.00e-04 Position at t=40: (-2.23885690,-1.81134614)

Tol = 1.00e-06 Position at t=40: (-0.43796140,-0.77340695)

Tol = 1.00e-08 Position at t=40: ( 1.53505394, 0.07133092)

Tol = 1.00e-10 Position at t=40: ( 1.49699326, 0.13081708)

Tol = 1.00e-12 Position at t=40: ( 1.49671841, 0.13121419)

Tol = 3.00e-14 Position at t=40: ( 1.49671316, 0.13122175)
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Until the tolerance is below 10−8, we don’t get any accuracy at all! The reason is that this system is
chaotic—small perturbations grow exponentially with time. The total growth over 40 time units is about
a factor of 107, and that is why we can manage to get some accuracy at the tighter tolerances.

To get chaos in a dynamical system, the state space must have dimension at least 3 (so that the orbits can
get tangled up). Here, that’s exactly the effective dimension. We have four variables—two positions and
two velocities—but because of conservation of energy, the motion is confined to a 3-dimensional manifold.

Here is a plot computed with tolerance 3× 10−14. Note the sudden changes of the curve near the two very
close approaches around t = 25 and t = 30. To someone sitting on one of those planets, it looks like a
return of Halley’s comet.
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1’. Now we do it again compactly in Chebfun using complex arithmetic. Here’s the code:

p = exp((0:2)*2i*pi/3);

x0 = 2-2i;

N = chebop(0,40);

N.lbc = [x0; 0];

N.op = @(x) diff(x,2) - (p(1)-x)/abs(p(1)-x)^3 - (p(2)-x)/abs(p(2)-x)^3 - (p(3)-x)/abs(p(3)-x)^3;

x = N\0;

subplot(2,2,1), plot(x,’b’), grid on, axis([-3 2.6 -2.7 3.3]), axis square

theta = unwrap(angle(x));

subplot(2,2,2), plot(theta,’r’), grid on, axis([0 45 -2 15]), axis square
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