
SOLUTIONS TO ASSIGNMENT 4

Nick Trefethen, 5 March 2019

These solutions are written with Matlab Publish — please excuse imperfect formatting. As you’ll
see below, the six numbers are about 1.06036, 3.85221, 3437.5, 6.0589, 3.90005, and 0.0281. Also,
please excuse the extensive use of Chebfun. I reached for the tool I know best, and there is no
expectation that you had to use Chebfun too.

This was a big assignment. The whole course through two terms was a major effort, and congrat-
ulations on reaching the end! I have been most impressed with people’s hard work and creativity,
and I am sorry it hasn’t been possible to get to know most of you in person.

1. Quartic Schrodinger equation

This problem is readily solved with Chebyshev spectral methods. We can modify the M-files
given in the course or do it with Chebfun, like this:

L = chebop(-5,5);

L.op = @(x,u) -diff(u,2) + x.^4.*u;

L.bc = ’dirichlet’;

e = eigs(L)

e = 1.06036209

3.79967303

7.45569794

11.64474551

16.26182602

21.23837292

This suggests that the answer is 1.060362 Is that accurate, and is it the right eigenvalue? Well
it’s probably the right eigenvalue, since the quadratic Schrödinger operator has have eigenvalues
1, 3, 5, 7, . . . on the infinite interval. On [−5, 5] the quadratic operator gives via Chebfun

L.op = @(x,u) -diff(u,2) + x.^2.*u; e = eigs(L)

e = 1.000000000

3.000000007

5.000000168

7.000002443

9.000025175

11.000197436

Since x4 looks roughly like x2 — both potential wells will confine this low eigenvalue to a region
approximately [−1, 1] — it looks as if 1.06036 . . . should indeed be the right eigenvalue. The
fact that the quadratic analogue matches 1 to 9 digits suggests it’s very likely that 1.06036 . . . is
accurate to a number of digits. We could compute the residual like this:

[v,lam] = eigs(L,1);

norm(L*v-lam*v)

ans = 5.2587e-12

which further suggests that there are quite a few digits of accuracy.

1

2. Van der Pol equation

The critical value is a ≈ 3.85221. We could explore this with the code m26 from lectures, or in
Chebfun, like this:

a = 3.85221;

N = chebop(@(u) diff(u,2) - a*(1-u^2)*diff(u) + u,[0 30]);

N.lbc = [1; 1]; u = N\0; plot(u)

0 5 10 15 20 25 30

-3

-2

-1

0

1

2

3

The corresponding period is evidently about 9.9999993.

[val,pos] = max(u,’local’); diff(pos)

ans =

7.0900136

9.9999993

9.9999993

How did I find 3.85221? I just did it by hand using bisection. Of course automated approaches
can be used. For example, if a is increased to 3.852211, the period goes up to 10.0000007.

3. Allen-Cahn equation

I used Chebfun’s pde15s code for this one, again running bisection by hand. The critical time
emerges as about 3437.5, as this computation shows.

t = 0:34.375:3437.51;

pdefun = @(t,x,u) .015*diff(u,2)+u-u.^3;

bc.left = @(t,u) u+1; bc.right = @(t,u) u+1;

x = chebfun(@(x) x); u0 = 1-2.*x.^2;

opts = pdeset(’Eps’, 1e-6, ’Ylim’, [-1,1.1]);

[t, u] = pde15s(pdefun, t, u0, bc, opts);

waterfall(u,t), view(110,0), zlim([-1 1.2])

4. Blowup problem

Using codes from the lectures, I would probably adapt m58.m for this problem. In Chebfun, I
used pde15s again.

I think the critical time is about 6.0589. This is based on the following kind of computation. I
varied the value of Eps and the number of time steps and got consistent results.

2

t = linspace(0,6.058,100);

pdefun = @(t,x,u) diff(u,2)+diff(u)+exp(u);

bc.left = ’dirichlet’; bc.right = ’dirichlet’;

x = chebfun(@(x) x); u0 = chebfun(0);

opts = pdeset(’Eps’, 1e-7);

[t, u] = pde15s(pdefun, t, u0, bc, opts);

waterfall(u, t), xlabel(’x’), ylabel(’t’)

max(u(:,end)), axis([-1 1 0 6.1 0 8])

ans = 7.1241819

5. Advection-diffusion equation

The solution to this problem is a pulse that travels to the boundary at the right, then decays.
We can simulate it with one of the codes from the course and then measure the maximum in
various ways. We can also do it like this with Chebfun. First we set up the initial condition and
differential operator:

x = chebfun(’x’,[-4 4]); u0 = max(0,1-abs(x)); L = chebop(-4,4);

L.op = @(u) diff(u,2) - 20*diff(u);

L.bc = ’dirichlet’; LW = ’linewidth’;

hold off, plot(u0,LW,1), grid on

-4 -3 -2 -1 0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

Now we can use expm to compute exp(tL) for any time t. For example, here are the results at
times 0.1 and 0.2:

hold on

u2 = expm(L,0.1,u0); plot(u2,’r’,LW,1)

u4 = expm(L,0.2,u0); plot(u4,’m’,LW,1)

-4 -3 -2 -1 0 1 2 3 4

-0.2

0

0.2

0.4

0.6

0.8

1

Here are the results at various times:

for t = 0.1:.1:.4

u = expm(L,t,u0);

[val,pos] = max(u); disp([t val pos])

end

3

0.1000 0.6471 2.0000

0.2000 0.4991 3.7966

0.3000 0.0201 3.8757

0.4000 0.0000 3.8882

This suggests that the answer is around 3.9. Alternatively the problem can be solved exactly
with a little analysis. As t → ∞ the solution approaches the dominant eigenfunction of the
differential operator, which is

f = exp(10*x).*cos(pi*x/8); f = f/max(f);

hold off, plot(f,LW,1)

-4 -3 -2 -1 0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

The maximum is easily found:

[val,pos] = max(f); pos

pos = 3.9000514

6. Heat equation on a square

We can use a code like this, adapted from m48_CrankNicolson2D.m, to get an idea of the solution:

J = 32; h = 1/J; s = (h:h:1)’; k = .0001;

[xx,yy] = meshgrid(s,s);

x = xx(:); y = yy(:);

u = double(abs(x-.5)<.25 & abs(y-.5)<.25);

I = speye(J); II = speye(J^2);

D = h^(-2)*toeplitz([-2 1 zeros(1,J-2)]);

L = kron(I,D) + kron(D,I);

A = II + k*L/2; B = II - k*L/2;

t = 0;

while max(u) > .5

t = t+k; u = B\(A*u);

end

t

t = 0.024900

On taking J = 4, 8, 16, 32, . . . and halving the time step for extra confidence, we find apparent
linear convergence to a critical time of t = 0.0281. The details are not shown here.

Actually this problem can perhaps better be solved by Fourier analysis. Any heat distribu-
tion can be reduced to a linear combination of eigenfunctions, of which the lowest compo-
nent is A sin(πx) sin(πy) with A = 8/π2. This component will decay in time at the rate
C(t) = exp(−2π2t)A, and if this were the only component of the problem, we could solve
exp(−2π2t)A = 0.5 to find t = log(2A)/(2π2) = log(16/π2)/(2π2) = 0.0245. Bringing in the
next few terms of the series involving sin(2πx) sin(πy), sin(πx) sin(2πy) etc. would give quick
convergence to the correct result.

4

