
Lecture 1, Sci. Comp. for DPhil Students II

Nick Trefethen, Tuesday 15.01.19

Today

• IV. ODEs and nonlinear dynamics

• IV.1 ODE IVPs

• IV.2 Runge-Kutta and multistep formulas

• IV.3 IVP codes in MATLAB and Simulink

• IV.4 IVP solutions in Chebfun

Handouts

• fact sheet (revised for this term)

• Assignment 1, due next Tuesday at 11:00

• anonymous functions, m26_vanderpol.m, m26chebfun.m

• Shampine & Reichelt: first 2 pages of MATLAB ODE Suite article

Welcome back to the second term of Scientific Computing for DPhil students.

Last term was focussed on linear algebra and optimization. This term we look
at ODEs, PDEs, and nonlinear dynamics.

I believe that nonlinearity was the most important theme in the mathematics of
the second half of the 20th century. It was computers that led to this.

Is anyone here new to the course? (That’s fine, though people who turn in
assignments for grading have to have done part 1 last term.)

Last term 42 people completed the course: 19 Maths, 9 Physics, 6 Eng Sci, 3
Chem, 2 CS, 1 Earth Sci, 1 Materials, 1 Zoology.

Go over the course fact sheet. Note the new URL for this term:
courses.maths.ox.ac.uk/node/41040. I recommend you get in the
habit of reading the online lecture notes after each lecture.

1

IV. ODEs and nonlinear dynamics

IV.1 ODE IVPs

Freely available textbook: Exploring ODEs, by T., Birkisson, and Driscoll, SIAM,
2018. See under Books at my web page.

ODE = ordinary differential equation (i.e., just 1 independent variable)

IVP = initial-value problem

First-order IVP in standard form:

u′ = f(t, u), t > 0 [u = u(t)],

u(0) = u0 (initial data)

Despite appearances, this form is very general.
One reason is that it may describe a system of N ODEs:

u(t) = N -vector (for each t), u0 = N -vector.

Another reason is that it may be equivalent to a higher-order system.
E.G., consider the simple linear harmonic oscillator

w′′ = −w, w(0) = 1, w′(0) = 0.

Define the 2-vector u by u(1) = w, u(2) = w′. Then we have equivalently the
1st-order system of two linear equations

u(1)′ = u(2), u(1)(0) = 1,

u(2)′ = −u(1), u(2)(0) = 0,

or if written in matrix form, which we can do since the problem is linear,(
u(1)

u(2)

)′
=

(
0 1
−1 0

) (
u(1)

u(2)

)
,

(
u(1)

u(2)

)
(0) =

(
1
0

)
.

In this ODE the variable t does not appear explicitly.
An ODE with that property is said to be autonomous.

Larger example: the sun and moon and nine planets. Each has three coordinates
of position and three of velocity. All together, that’s an autonomous ODE IVP
of dimension N = 66. (Or 60, if Pluto isn’t a planet.)

2

Some simple examples are linear and can be solved analytically.
Most nonlinear ODEs, however, cannot be solved analytically.
We need numerics.

Nonlinear example: van der Pol equation

w′′ + C(w2 − 1)w′ + w = 0, C > 0 fixed.

For |w| > 1, a damped oscillator. For |w| < 1, negatively damped.
Big solutions decay; small solutions grow.
As t→∞ we have convergence to a limit cycle of size O(1).

Equivalent first-order system:

u(1)′ = u(2), u(2)′ = −u(1) − C[(u(1))2 − 1]u(2).

[anonymous functions; m26_vanderpol.m]

IV.2 Runge-Kutta and multistep formulas

ODEs have been solved numerically for a long time.

Leonhard Euler, 1768
John Couch Adams, 1850s (unpublished)

(predicted Neptune in 1845, at age 26; Leverrier found it in 1846)
Cambridge Senior Wrangler, 1843

Francis Bashforth, 1883
Cambridge Second Wrangler, 1843

Carl Runge, 1895
Karl Heun, 1900
Martin Wilhelm Kutta, 1901
Forest Ray Moulton, 1926 [an American – unusual in that era]
Richard von Mises, 1930

There are two main classes of methods:
Runge-Kutta = 1-step, Adams and others = multistep

Time discretization: tn = nk, k > 0 fixed time step

3

|-------|-------|-------|-------|-------|-------|--
t =0 t =k t =2k ...
0 1 2

Approximate u(tn) by vn computed by finite differences.

Here are the first four Adams-Bashforth multistep formulas.
Notation: fn = f(tn, vn). The first is called the (forward) Euler formula.

vn+1 = vn + kfn, accuracy O(k),

vn+1 = vn + k

2 (3fn − fn−1) accuracy O(k2),

vn+1 = vn + k

12(23fn − 16fn−1 + 5fn−2) accuracy O(k3),

vn+1 = vn + k

24(55fn − 59fn−1 + 37fn−2 − 9fn−3) accuracy O(k4).

This is an infinite sequence of formulas.
Drawback: they are tricky to start up because extra values are needed.

Some Runge-Kutta formulas:

“Modified Euler” O(k2)

a = kf(tn, vn)

b = kf(tn + k/2, vn + a/2)

vn+1 = vn + b

“Fourth-order Runge-Kutta” O(k4)

a = kf(tn, vn)

b = kf(tn + k/2, vn + a/2)

c = kf(tn + k/2, vn + b/2)

d = kf(tn + k, vn + c)

vn+1 = vn + 1
6 (a + 2b + 2c + d)

4

If you could take just one formula to a desert island, I recommend fourth-order
Runge-Kutta.

Higher-order RK formulas get very complicated. It’s not an infinite sequence in
any simple sense. Beautiful theory based on trees (in the sense of graph theory)
is due to John Butcher of the U. of Auckland.

For years there was a tendency for people on the continent to prefer RK, people
in the UK and the USA to prefer multistep. Prof. Gerhard Wanner of the
University of Geneva claims that this separation goes back to the fight about
calculus between Leibniz and Newton!

IV.3 IVP codes in MATLAB and Simulink

ODE codes are among the must successful software products in all of scientific
computing. The key is that they are adaptive – varying step size (always) and
order (sometimes) automatically. More details later.

In Fortran, two classic collections of such codes are:
ODEPACK: www.netlib.org/odepack/
RKSUITE: www.netlib.org/ode/rksuite/

Matlab has eight codes:

ode23 low-order RK
ode45 higher-order RK
ode113 variable-order multistep
ode23s, ode15s, ode15i, ode23t, ode23tb variants for stiff problems etc.

These differ in numerics but are the same in syntax. They all began with

L. F. Shampine and M. W. Reichelt, The Matlab ODE suite, SIAM J. Sci.
Comput. 18 (1997), 1-22.

[handout: first 2 pages]

Or one can use visual programming – Simulink. I’m not a fan of this for serious
work, but it’s fascinating.

In MATLAB, if you’ve got in installed: demo simulink

5

IV.4 IVP solutions in Chebfun

As you know, Chebfun is a project based at Oxford in which MATLAB’s usual
commands for vectors are overloaded by commands for functions defined on an
interval [a, b]. The implementation involves polynomial (or piecewise polynomial)
interpolants in Chebyshev points.

In Chebfun, you can solve ODEs with a backslash command.
The simplest way to do this is:

N = chebop(a,b) % define the interval [a,b]
N.op = @(x,u) ... % define the ODE, with diff(u,k) = kth derivative of u
N.bc = ... % boundary conditions

See Exploring ODEs and Chapters 7 and 10 of the Chebfun Guide at
www.chebfun.org. In Exploring ODEs, note in particular the collection of 100
template solutions in Appendix B.

[m26chebfun.m]

6

	Lecture 1, Sci. Comp. for DPhil Students II
	Today
	Handouts

	IV. ODEs and nonlinear dynamics
	IV.1 ODE IVPs
	IV.2 Runge-Kutta and multistep formulas
	IV.3 IVP codes in MATLAB and Simulink
	IV.4 IVP solutions in Chebfun

