
Lecture 4, Sci. Comp. for DPhil Students II

Nick Trefethen, Thursday 24.01.19

Last lecture

• IV.8 Planetary motions
• IV.9 Chaos and Lyapunov exponents
• IV.10 The Lorenz equations
• IV.11 Sinai billiards and the SIAM 100-digit challenge

Today

• IV.12 Time scales and stability regions
• IV.13 Stiffness
• IV.14 BVPs in Chebfun

Handouts

• m31_instability.m - instability
• m32_regions.m - stability regions, using Chebfun
• m33_stiffness.m - stiffness for a scalar linear example
• m34_stiffVDP.m - stiffness for van der Pol equation
• m35_ChebfunBVP.m - Chebfun solution of BVPs (“chebop”)
• Assignment 2

Assignment 2 is due Tuesday 5 February.

Last lecture we talked about planetary orbits (systems of ODEs) and about
chaos and Lyapunov exponents.

Here’s another chaotic system simulated in MATLAB – a double pendulum from
Moler’s online textbook: swinger.m. It’s all done with ode23.

IV.12 Time scales and stability regions

Consider the scalar, linear, autonomous equation

u′ = au, u = Ceat.

We sketch behavior for various choices of a:
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a > 0

a < 0

a� 0

a imaginary

a complex

These different behaviours will have important effects on behaviour of a dis-
cretization. Note that the nondimensionalized quantity is ka, where k is as
always the time step:

|ka| = O(1)

|ka| � 1

A system of equations may mix many different values of a. This is analyzed
normally via linearization and looking at eigenvalues of a Jacobian matrix. With
these observation on the table we can turn to today’s main subjects: stability
regions and stiffness, which are key ideas at the heart of numerical methods for
ODEs.

ODE IVP: u′ = f(t, u)

Some ODE formulas are unstable: solutions blow up to infinity as n→∞, no
matter how small k is. We gave a “Brand X” example earlier:

vn+1 = −4vn + 5vn−1 + k(4fn + 2fn−1) (X)

Even for a stable formula, solutions may blow up when k is not small enough.
Recall for example 2nd-order Adams-Bashforth:

vn+1 = vn + k

2 (3fn − fn−1) (AB2)
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Let us demonstrate these effects. We’ll keep it simple and consider the IVP

u′ = −u, 0 ≤ t ≤ 10, u(0) = 1.

Solution: u(t) = exp(−t)

[m31_instability.m - both as written and with % character switched, m31u]

To analyze these phenomena, we apply the time-stepping formula to the model
u′ = au. This gives fn = avn, and the ODE formula becomes a recurrence
relation. E.G. for AB2:

vn+1 = vn + k

2 (3avn − avn−1),

that is,

vn+1 =
(

1 + 3ka

2

)
vn −

ka

2 vn−1.

k and a always appear together like this as the dimensionless product ka.

We analyze a recurrence relation by looking at roots of its characteristic
polynomial. E.G. for AB2,

p(x) = x2 −
(

1 + 3ka

2

)
x + ka

2 .

If r is a root of p, i.e., p(r) = 0, then the recurrence has a solution

vn = rn

Blow-up: |r| > 1 for some root r of p, or |r| = 1 for some double or multiple
root.

Here’s what we find:

For (X), there’s a root |r| ≥ C > 1 for all ka, even as ka→ 0. This formula is
unstable. Indeed, consider ka = 0. Then (X) has characteristic polynomial

x2 + 4x− 5 = (x + 5)(x− 1)

and obviously one root has |r| > 1.

For (AB2), there’s a root |r| > 1 for ka < −1. For −1 < ka < 0, however, both
roots have |r| < 1. And as ka→ 0 we get

x2 − x = x(x− 1)

with |r| ≤ 1 for both roots. This formula is stable.
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Given an ODE formula, we define:

Stability region: set of points in complex ka-plane for which the recurrence
relation has all roots |r| ≤ 1 and any roots with |r| = 1 are simple.

A scheme is stable if 0 is in its stability region (necessarily on the boundary if
the formula is consistent).

It tends to behave well for an ODE and step size k if ka is in the stability region
for all values of a “present in the ODE”. (As mentioned before this is typically
defined via linearization, eigenvalues . . . .)

Example: Euler formula
vn+1 = vn + kfn.

Apply this to the model problem u′ = au. You get

vn+1 = (1 + ka)vn

with characteristic polynomial p(x) = x− (1 + ka).

Stability region = set of ka such that |1 + ka| ≤ 1, i.e., disk of radius 1 centred
at ka = −1.

[ m32_regions.m - sketches of stability regions ]

IV.13 Stiffness

The classical stability/convergence theory for ODEs was established by Dahlquist
in 1956.

Just a few years later it began to be widely appreciated that a major phenomenon
was missing from this theory. The key mathematical paper was published by
Dahlquist in 1963. With hindsight another key paper was by chemists Curtiss
& Hirschfelder in 1952, who used the term “stiff”, which may actually have
originated with the statistician John Tukey (who also invented “FFT” and “bit”
and was one of the first to speak of “software”).

A stiff ODE is one with widely varying time scales.

More precisely, an ODE with solution of interest u(t) is stiff when there are time
scales present in the equation that are much shorter than that of u(t) itself.

Why it matters. Regardless of stiffness, you’ll get convergence in theory as k → 0
(Dahlquist). For a stiff problem and an ordinary ODE formula, however, the
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result might be garbage except when k is very small, because of modes ka that
aren’t in the stability region.

Example:
u′ = −100(u− cos(t))− sin(t), u(0) = 1

Solution: u(t) = cos(t).

But what if we linearize about this solution, considering u(t) = cos(t) + w(t)?
We find

− sin(t) + w′ = −100w′ − sin(t), i.e., w′ = −100w.

So there’s a time scale present in the equations that’s 100 times shorter than
that of the solution.

Cure for stiffness: backward-differentiation formulas. (At least, this is
the starting point for a cure.) These are implicit, involving fn+1 and hence
requiring a equation solve at each step.

For example, here’s the 2nd-order BD formula:

vn+1 −
4
3vn + 1

3vn−1 = 2k

3 fn+1.

Illustration of stiffness for this example ODE: m33_stiffness.m

Illustration of stiffness for the van der Pol equation: m34_stiffVDP.m

Section 10.3 of the Chebfun Guide describes how to invoke stiff solvers in Chebfun.

IV.14 BVPs in Chebfun

We’ve been talking about IVPs, not BVPs., i.e., initial- rather than boundary-
value problems. But BVPs are important too, and they appear in the assignment.

In ending this lecture let us briefly take a look at the “Chebop” part of Chebfun
system, which solves BVPs using a A\b type syntax.

Reference: chapters 7 and 10 of the Chebfun Guide and maybe best of all
Appendix A of Exploring ODEs, “Chebfun and its ODE algorithms”. We won’t
talk now about how this works. Some of the underlying methods will appear in
the later lectures of the course in the context of Chebyshev spectral methods.

Chebfun is the only software system I am aware of that solves IVPs and BVPs
with the same syntax, namely backslash.
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[ m35_ChebfunBVP.m ]

L = chebop(-1,1); % domain [-1,1]
L.op = @(x,u) .001*diff(u,2)+2*x*diff(u); % u -> ep*u" + 2xu'
L.lbc = -1; L.rbc = 1; % left and right BCs
u = L\0; % solve Lu = 0 for u
plot(u), grid on
length(u) % For smaller ep, set domain with chebop([-1 0 1])
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