
Lecture 5, Sci. Comp. for DPhil Students II

Nick Trefethen, Tuesday 29.01.19

Last lecture

• IV.12 Stability regions
• IV.13 Stiffness
• IV.14 BVPs in Chebfun

Today

• V.1 PDEs in science and engineering
• V.2 Explicit 1D finite differences

Return Assignment 1

Assignment 2 due next Tuesday

Handouts

• Examples of PDEs
• Heat equation page from the PDE Coffee Table Book
• m36_heat.m & m37_brownian.m - heat equation and random walk
• m38_rectangle10.m - random walk in a 10x1 rectangle
• m39_FisherKPP.m, m39chebfun.m - Fisher-KPP equation
• Fisher-KPP equation page from the PDE Coffee Table Book

We’ve finished with ODEs and now turn to

V PDEs

PDE = partial differential equation: ≥ 2 independent variables

V.1 PDEs in science and engineering

Late 17c: calculus
19c: PDEs all over physics, especially linear
20c: the nonlinear explosion and spread into physiology, biology, electrical
engineering, finance, and just about everywhere else

Pass around Folland and John books (these are at the pure maths end)
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Notation: ut = ∂u/∂t, uxx = ∂2u/∂x2, etc.

∇u = (ux, uy, uz)T the gradient (a vector)

∆u = uxx + uyy + uzz the Laplacian (a scalar)

Hand out: sample pages from PDE Coffee Table Book
(a group project based at Oxford some years ago, never finished but available via
“Books” at my home page at https://people.maths.ox.ac.uk/trefethen/pdectb.html)

“Examples of PDEs” sheet

Can you guess which three of these PDEs won Nobel Prizes?

Schrödinger, physics 1933
Hodgkin-Huxley, physiology or medicine 1963 (with Eccles)
Black-Scholes, economics 1997 (prize to Merton and Scholes; Black died in 1995)

Some examples from the sheet:

Laplace equation ∆u = 0 (elliptic)

Poisson equation ∆u = f(x, y, z) (elliptic)

Heat or diffusion equation ut = ∆u (parabolic)

Wave equation utt = ∆u (hyperbolic)

Burgers equation ut = (u2)x + uxx

KdV equation ut = (u2)x + uxxx

Constants have been omitted from all these equations — they are in nondimen-
sional form.
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V.2 Explicit 1D finite differences

The simplest approach to numerical solution of PDEs is finite difference dis-
cretization in both space and time (if it’s time-dependent).

Let’s consider the heat equation in 1D:

ut = uxx, −1 < x < 1, u(x, 0) = u0(x), u(−1) = u(1) = 0.

Set up a regular grid with k = time step , h = space step

vn
j ≈ u(x, t)

Simplest finite difference formula:

vn+1
j − vn

j

k
=
vj+1 − 2vn

j + vn
j−1

h2

X
|

X-----X-----X

"stencil"

Consider vn as an N -vector. We can get from vn to vn+1 by multiplication by a
tridiagonal matrix A:

| a b | | n |
| | | v |
| b a b | | 1 |
| | | |

n+1 n | . . . | | |
v = Av = | . . . | | |

| . . . | | |
| | | |
| b a b | | n |
| | | v |
| b a | | N |

where a = 1 − 2(k/h2), b = k/h2. Note that we have implicitly imposed the
conditions vn

0 = vn
N+1 = 0.

You can program this as a for/do loop, or via sparse matrices.

[ m36_heat.m - finite differences for the heat equation ]

Discuss in this code:
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• how the boundary conditions are imposed

Explore:

• instability if k is increased (m36u)
• step-by-step vs. movie (m36pause)
• large-t changes if periodic BCs (m36per)

[ m37_brownian.m - random walk / Brownian motion — the physics underlying
the heat equation ]

[also m38_rectangle.m, illustrating Brownian motion in a 10× 1 rectangle]

How we move around between discrete and continuous in physics and numerics!

DISCRETE CONTINUOUS

bouncing molecules continuum models of physics
finite-difference approx PDE
random walk Brownian motion
dots on computer screen our perception of movie
floating-point arithmetic real arithmetic

Somehow the first column is generally the “truth” in a literal sense, while the
second is the “truth” in a deeper (conceptual) sense

Note that these are all happening on different scales, which are not in general
tied to one another.

The heat equation is linear, dating to Fourier in 1807, and it can be more or less
solved analytically.

Let’s consider now a nonlinear PDE, intractable analytically but easy to solve
numerically:

Fisher-KPP equation

Independent 1937 discoveries for biological applications (spread of species):
Fisher; Kolmogorov, Petrovsky, and Piscounov

Handout: page from the PDE Coffee Table Book.

Solutions: traveling waves. Similar more complicated behaviour: Hodgkin-Huxley
eqs for neural impulses (1952).

ut = εuxx + u− u2

Explicit finite difference model:

vn+1
j − vn

j

k
= ε

vj+1 − 2vn
j + vn

j−1

h2 + (vj − v2
j )
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For our MATLAB code we have BCs u(0) = 1, u(10) = 0. The former is done
by use of an extra vector “bc”:

| a b | | n | | b |
| | | v | | |
| b a b | | 1 | | 0 |
| | | | | |

n+1 | . . . | | | | | 2
v = | . . . | | | + | | + k (v -v )

| . . . | | | | : | j j
| | | | | |
| b a b | | n | | |
| | | v | | |
| b a | | N | | 0 |

[ m39_FisherKPP.m, m39u.m, m39chebfun.m ]
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