Lecture 9, Sci. Comp. for DPhil Students 11

Nick Trefethen, Thursday 14.02.19

Last lecture

V.7 Finite differencing in general grids
V.8 Multiple space dimensions

Today

V.9 Fourier spectral discretisation
V.10 Fourier spectral discretisation via FFT

Handouts

Gray-Scott equations from PDE Coffee Table Book (cf. Assmt. 3)

1D wave equation from the PDE Coffee Table Book

nD wave equation from the PDE Coffee Table Book

m50_waveeq.m - wave equation by finite diffs of order 2,4,6
mb51_waveeqFourier.m - wave equation by Fourier spectral method (ma-
trix)

mb2_waveeqFFT.m - wave equation by Fourier spectral method (FFT)
One-way wave equation from the PDE Coffee Table Book

Pass around: Spectral Methods in MATLAB (available online through Bodleian)

Assignment 3 is due next Tuesday.

V.9 Fourier spectral discretisation

Hand out 1D and nD pages from the PDE Coffee Table Book.

We’ve discussed how to derive finite difference approximations of high order:
interpolate data in a largish number of points by a polynomial of suitable degree,
then differentiate the interpolant.

Here’s a code to illustrate such derivatives in action. It solves the wave equation

Utt = Uy, « € [—m,m], periodic BC’s



with spatial discretisation of order 2, 4 or 6.

[ 1D wave equation from the PDE Coffee Table Book |

[ m50_waveeq.m |

The effect we see in these experiments is dispersion. One can quantify it
beautifully. The wave equation admits solns

u(x,t) = elwitée)
for w and £ related by the dispersion relation
w? =€2, e, w=+¢,
but the 2nd-order leap frog discretisation replaces this by
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(sketch). From this one can study phase velocity, group velocity, etc. See
Trefethen, “Group velocity in finite difference schemes”, STAM Review 24 (1982),
113-136.

These dispersive effects in finite-difference grids are analogous to such effects in
crystals, which also have a regular lattice.

Now, what if we let the order of the finite difference formula approach infinity?
We get spectral methods. The simplest flavours are:

e Periodic domains: Fourier spectral methods
¢ Non-periodic domains: Chebyshev spectral methods.
Today we’ll discuss the former.

In the limit of infinite order, those finite differences approach the infinite Laurent
matrix (or Laurent operator) with coefficients

-2 2 =2 - -2 2 =2
D=h! .o 202 2 9 o o9 =2 Z _= .
< 6 9 4 3 4 9 16 )

where —72/3 is on the main diagonal. The structure here is that this is a
doubly-infinite matrix that is constant along diagonals.

For a finite matrix with h = 27 /N, the formula is

D = % ( [_;Z;Q — 1/3} csc?(h/2) —csc?(2h/2) csc?(3h/2)



where the cosecant is defined as always by csc(t) = 1/sin(¢). Again the term
with 7 in it is on the main diagonal.

That is, suppose:
v = vector of data on the periodic grid

w = vector of spectral approximations to v’ on the grid

Then
w = Dv (draw this matrix)

D is a spectral differentiation matrix.

For derivations and details, see LNT, Spectral Methods in MATLAB, available
online through Oxford e-books. The above matrix is on p. 23.

[ Pass around Spectral Methods in MATLAB. |

Here’s the idea that leads to such formulas, the fundamental idea of spectral
collocation methods.

1. Interpolate data by a global interpolant (a periodic trigonometric polynomial)

N/2

ple)= > a;e”

j=—N/2

2. Differentiate p(x) and evaluate at the grid points.

Note that both notations £ and j have appeared. The reason is that our interval
has length 27, so the wave numbers £ that fit in it are the integers 0, +1,£2,.. ..
On an interval of length L # 27, we would need to use other wave numbers,
generally not integers.

[ m51_waveeqFourier.m |

V.10 Fourier spectral discretisation via FFT

FFT = Fast Fourier Transform, i.e., a fast algorithm for computing the discrete
Fourier transform. (The FFT was discovered first by Gauss in 1805 and last by
Cooley & Tukey in 1965. There were several discoverers in-between, including
Runge and Lanczos.)

If u(z) = €%, then u'(x) = iju(z).



More generally, suppose u(x) is a superposition of exponentials,
u(x) = Z Uje'®
J
(U = 4 is the discrete Fourier transform of u.) Then
u'(w) =) igUse™, (@) =) —jUse,
J J

and so on. Thus differentiation in space is equivalent to multiplication by ij in
Fourier space. This suggests an alternative method for computing a Fourier 2nd
spectral derivative:

1. Given u, compute its DFT U = fft(u) [MATLAB notation]
2. Multiply by —j%: W(j) = —jU;
3. Take the inverse transform: w = ifft(W).

Similar but fancier manipulation of Fourier transforms leads to the idea of
one-way wave equations — see further handout from PDE Coffee Table
Book.

[ m52_waveeqFFT.m ]

If time permits, explore the trig option in Chebfun (periodic functions
represented by trigonometric, i.e. Fourier, interpolants).
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