Lecture 10, Sci. Comp. for DPhil Students 11

Nick Trefethen, Tuesday 19.02.19

Last lecture

e V.9 Fourier spectral discretisation
e V.10 Fourier spectral discretisation via FFT

Today

e V.11 Fourier, Laurent, and Chebyshev
¢ V.12 Chebyshev series and interpolants

Handouts

¢ Assignment 3 solutions

e Assignment 4

e p 1 of Salzer, barycentric interpolation, 1972
e p 1 of Berrut & T, same topic, 2004

¢ mb3_series.m

e mb4_bernstein.m

Assignment 3 due today

Pass around a copy of Approximation Theory and Approximation Practice
(((ATAP”)

V.11 Fourier, Laurent, and Chebyshev

These are three parallel worlds that are the basis of all kinds of practical
mathematics, including spectral methods for ODEs and PDEs.

Fourier is identical to Laurent via z = e*t.

Chebyshev is almost identical to these via x = (2 + 271)/2 = cos(t), but not
quite identical, because it entails an assumption of t <+ —t or z <> 2z~ ! symmetry.



FOURIER

Periodic function F'(¢), t € [0, 27]

2n + 1 equispaced points: ¢ = 27k/(2n+1),0 <k <2n
Complex exponential e?**

Trigonometric interpolant P, (t) = Y_p_  cpe'™
Quadrature: trapezoidal rule < integrating the interpolant
Rootfinding: via eigenvalues of companion matrix

Limit n — oo: Fourier series F(t) = > 7o _ age’™™

Fourier coefficient: aj = (1/2m) OQW F(t)e *tdt
F analytic in a strip = a, = O(C~I*I)

Reference: Wright, Javed, Montanelli & T., “Extension of Chebfun to periodic
functions”, SINUM 2016, at my web page

LAURENT

Function F(z), z € unit circle

2n + 1 roots of unity: 2z = exp(ity), 0 < k < 2n

Monomial z*

Laurent polynomial interpolant P, (z) = > _  cx2®
Quadrature: trapezoidal rule < integrating the interpolant
Rootfinding: via eigenvalues of companion matrix

k

Limit n — oo: Laurent series > po _ apz

— o0
Laurent coefficient: ay = (1/2mi) [ F(z)z~%"1dz over unit circle
F analytic in an annulus = a;, = O(C~I*))

Reference: Austin, Kravanja & T., “Numerical algorithms based on analytic
function values at roots of unity”, SIAM J. Numer. Anal., 2014



CHEBYSHEV

Function f(z), z € [-1,1]

n + 1 Chebyshev points: zj = cos(kn/n), 0 <k <n

Chebyshev polynomial T, (z) = (2* + 27%) /2 = cos(k cos™! z)
Polynomial interpolant p,(z) = Y _, cxTk ()

Quadrature: Clenshaw-Curtis formula < integrating the interpolant
Rootfinding: via eigenvalues of colleague matrix

Limit n — oo: Chebyshev series f(z) = >, axTk(x)

Chebyshev coefficient: a, = (2/7) f_ll (@) Ty (x)dx /1 — 22

f analytic in an ellipse = a; = O(C %)

Reference: T, Approximation Theory and Approzimation Practice, STAM, 2013

[m53_series.m]

V.12 Chebyshev series and interpolants

This material is so fundamental, and so often unfamiliar even to those who
need it, that we’re going to be a little more academic than usual and state five
theorems.

The reference for all of this material is Approximation Theory and Approzimation
Practice. (Pass it around.)

Chebyshev polynomials

First, a reminder about Chebyshev polynomials. If = cost, we have Ty (z) =
cos(kt) = cos(k cos™1(x)). In particular, one finds

To(xz) =cos(0t) =1, Ti(z) = cos(1t) = z,

Ta(z) = cos(2t) = 222 — 1  Ty(z) = cos(3t) = 42 — 3z

and in general
Tipi1(z) = 22Ty (x) — T—1 ().



Chebyshev series

Theorem 1. Let f be Lipschitz continuous on [—1,1]. Then if the Chebyshev
coefficients of f are defined by

2 N f(@)Te(2)
ak_ﬂ/,liﬁ—gg? dx,

except with 1/m instead of 2/7 for ag, then the series

flx) = arTy(x)
k=0

converges absolutely and uniformly.

Absolute and uniform convergence imply that you can reorder the terms however
you like and get the same result; also the series still converges if you take absolute
values.

Bernstein ellipse

How fast does the Chebyshev series converge? This depends on how smooth f
is. Let’s suppose f is analytic on [—1,1], i.e., has a convergent Taylor series at
each point of [—1,1]. Then it can be analytically continued some distance into
the complex z-plane. Specifically, it can be extended to a function satisfying

[f(@)| <M, zcE,

for some constant M in the Bernstein p- ellipse for some p > 1, defined as the
ellipse in the z-plane with foci &1 whose semimajor and semiminor axis lengths
sum to p. Equivalently, it is the ellipse that is the image of the circle |z| = p
under the Joukowski transformation = = (z + z71)/2.

(sketch)

Decay rate of coefficients

This theorem is due to Bernstein in 1912. The standard proof makes use of
contour integrals.



Theorem 2. Let f be analytic with |f(x)| < M in the Bernstein p -ellipse for
some p > 1. Then for each k > 0,

lax| < 2Mp~*

Convergence rate of Chebyshev series

This theorem is a corollary of Theorem 2, also due to Bernstein in 1912.

Theorem 3. Let f,(x) be the truncation of the Chebyshev series for f at term
n. Then under the assumption of Theorem 2, for each n > 0,

2Mp~"

”f_fn”oog 1

Chebyshev interpolants

Given f, there is a unique polynomial interpolant p, of degree at most n
through f at the n 4+ 1 Chebyshev points. We call this the degree n Chebyshev
interpolant of f.

Convergence rate of Chebyshev interpolants

The proof of the next theorem is pretty straightforward, based on Theorem 2
combined with principles of aliasing, but we won’t go into this.

Theorem 4. Under the assumption of Theorem 2, for each n > 0,

4Mp~™
—1

Hf _anoo S



Computation by the barycentric formula

To compute a Chebyshev interpolant, one can find its Chebyshev coefficients via
the FFT and then just evaluate the series.

2

But there is also a beautiful, numerically stable formula for doing this “by values
rather than “by coefficients”. It is called the barycentric formula, and it is due
to Salzer in 1972. (The +1 coefficients in the formula were derived earlier by
Marcel Riesz in 1916.)

Throughout the 20th century there have been widespread misconceptions about
polynomial interpolation. Many books tell you it can’t be done very reliably
numerically, or that you need to use the Newton form of the interpolant. This
is incorrect. In fact the Lagrange form is better for most purposes, and the
barycentric formula is of Lagrange form.

Theorem 5. The following formula gives the Chebyshev interpolant p, to f.

N
/ ]f IJ
p7L
.’L'—x] x_.Tj
Jj=

The prime means that terms j =0 and j = N are multiplied by 1/2. If v = x;,
we set p,(z) = f(x;).

See Salzer 1972 and Berrut and Trefethen 2004 handouts.

For z = x;, the formula has a 0/0 division. Surely it must be numerically
unstable in floating-point arithmetic for x ~ z;, because of cancellation error?
No! It is perfectly stable, essentially because cancellation errors in the numerator
match cancellation errors in the denominator). This has been proved by N. J.
Higham, IMA J. Numer. Anal., 2004.

[m54_bernstein.m
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