Quantum Field Theory

Warm-up exercises

1. Consider the classical Lagrangian of a particle of mass m and charge q, moving in an electromagnetic field

$$\mathcal{L} = \frac{m}{2} (\partial_t x^i)^2 + q A_i(x) \partial_t x^i - q \phi(x) , \qquad (1)$$

where $\phi(x)$ is the electric potential and $A_i(x)$ is the magnetic potential.

- (a) Find the canonical momentum conjugate to the coordinate x_i .
- (b) Derive the equations of motion corresponding to this Lagrangian.
- (c) Find the Hamiltonian of the system.

Compare your results to a free particle case.

2. Consider the Hamiltonian of a quantum harmonic oscillator:

$$H = \frac{p^2}{2m} + \frac{m\omega^2 x^2}{2} \,. \tag{2}$$

- (a) Diagonalise the Hamiltonian by introducing ladder operators.
- (b) Calculate the expectation values of the number operator $N \sim a^{\dagger}a$. Calculate the expectation values of the x and p operators for a general state $|n\rangle$.
- (c) Evaluate the variances Δx , Δp and ΔN in the state $|n\rangle$ and use them to determine the Heisenberg uncertainty of $|n\rangle$.
- (d) Show that the coherent state

$$|\alpha\rangle = e^{\alpha p}|0\rangle \tag{3}$$

is an eigenstate of the annihilation operator.

(e) Calculate the time-dependent expectation values of x, p and N in the coherent state: $\langle \alpha | x(t) | \alpha \rangle$, $\langle \alpha | p(t) | \alpha \rangle$ and $\langle \alpha | N(t) | \alpha \rangle$. Find the corresponding variances to determine the uncertainty of the state $|\alpha\rangle$.

3. Consider the following action for a relativistic point particle

$$S = -\alpha \int ds = -\alpha \int \sqrt{\eta_{\mu\nu}} \frac{\partial X^{\mu}}{\partial \tau} \frac{\partial X^{\nu}}{\partial \tau} d\tau , \qquad (4)$$

where τ parametrises the worldline of the particle $X^{\mu}(\tau)$.

- (a) Show that the action is invariant under Poincaré transformations.
- (b) Show that the action is invariant under reparametrisation of the worldline time $\tau \to \tau'(\tau)$.
- (c) Show that

$$p^{\mu} = -\frac{\alpha \dot{X}^{\mu}}{\sqrt{\eta_{\nu\rho} \dot{X}^{\nu} \dot{X}^{\rho}}} \,. \tag{5}$$

(d) Parametrise the path by the time coordinate $t=x^0$ and take the non-relativistic limit $|\partial_0 x^i| \ll 1$ to determine the value of the constant α .