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Caveat emptor and recommended readings

These lecture notes are very much a work in progress, intended exclusively to ac-
company the MMathPhys lectures in Oxford during Hilary term 2019. They will be
updated regularly during term. Please let me know of any mistake and confusion
you may find.

The content of these lectures is standard. I have tried to collect the most
important aspects of supersymmetry that can be explained in some introductory
lectures, but of course that involved some choices, and I would encourage you to
read more broadly.

In these notes, I have also tried to present the material so that, once you un-
derstand supersymmetry in our own space-time (4d Minkowski space-time, in good
approximation), you can easily move on to other dimensions and other contexts,
depending on your needs and interests.

Last updated on: March 8, 2019.

References:

The main sources for these lectures are:

e The Wess and Bagger book [I], the most widely used reference for 4d N’ =1
supersymmetry. Chapters I to VIII are recommended reading.

e Weinberg’s QFT book, Volume III [2]. A great book if you need more detail.
Not the easiest read but always worth the effort.

e The lecture notes on 4d N' = 1 supersymmetry by Philip Argyres, available on
his website: http://homepages.uc.edu/~argyrepc/cu661-gr-SUSY/index.
html.

e The classic lectures by Intriligator and Seiberg [3] on 4d N' = 1 dynamics.
e The original literature cited in the notes.

Other references you may find useful:

e The lectures by Joseph Conlon, here in Oxford: https://www-thphys.physics.
ox.ac.uk/people/JosephConlon/LectureNotes/SUSYLectures.pdf.

The supersymmetry lectures by Adel Bilal [4].

The very detailed supersymmetry lecture notes by Matteo Bertolini: https:
//people.sissa.it/~bertmat/susycourse.pdf.

A recent set of lectures by Yuji Tachikawa [5] dealing with more recent devel-
opments.
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1 Supersymmetry: why and what?

1.1 Motivations for supersymmetry

We are accustomed to symmetries playing an important role in physics. This is
especially true for the (so-called) fundamental physics of the XXth century, from
special relativity to quantum mechanics to QFT.

In classical physics, continuous symmetries are associated to conservation laws,
by Noether’s theorem. More precisely, let us consider classical field theory in
Minkowski space-time RM~! (that includes ordinary mechanics for d = 1). For
any Lagrangian mechanics with degrees of freedom ¢(x), E| and action:

ﬂwaﬁm$wm@mm, (1.1)

a continuous Lie group symmetry is closely related to the existence of conserved cur-
rents. Let us have a symmetry group G with algebra g = Lie(G), with infinitesimal
action:

o(x) = ¢p(x) + e Fo(p(x), 0pd(x), - -+ ) + O(e?) . (1.2)
Here, the parameters ¢*, with a = 1,--- ,dim(g), run over the group generators.
(In other words, € € g.) Let us assume the action is left invariant by the
infinitesimal transformation , in the sense that:

6.816] = S[6 + €“Fu] — S¢] = 0 . (13)

This means that the symmetry variation of the Lagrangian is a total derivative: E|

0L (@) = €*Ou Al . (1.4)
Then, there exist conserved currents, the Noether currents, given by:
. 0L .
Ja(x) = AG — mFa , Ot (z) = 0. (1.5)

Here, for simplicity, we assumed the Lagrangian is at most of second order in
derivatives. We have also used the equations of motions. [

Symmetries play a similarly important role in quantum mechanics (QM) and in
quantum field theory (QFT). In a QFT in space-time dimension d with continuous
symmetries, the Noether currents j (x) are now viewed as local operators, and the
generator of the symmetry on the QFT Hilbert space is the charge operator:

Qu = /E Kz} (1.6)

1We use the notation = = (z#) € RV,

2Here, we assume that the space-time measure dz = dtdz' - - - d of Minkoswski space-time
is left invariant by the symmetry. This is the case, in particular, for the Poincaré symmetries
(translations, rotations and Lorentz boosts), pretty much by definition.

3We should note that the definition of any Noether current j* is slightly ambiguous, since one
can always shift j, to j* + 0, B*”, with B"” an antisymmetric tensor.

md*l
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Here, the integration is over a spatial slice £4_1 = R? at constant time t. The
conservation equation, %Qa = 0, follows from 0,j" = 0, assuming appropriate
boundary conditions for the fields at spatial infinity. E|

1.1.1 A very brief history of supersymmetry

A bit more than fifty years ago (in the 1960’s), Particle Physics was in state of
creative confusion. There were many new “elementary” particles being discovered
(all the many “mesons” and “baryons”...), and no obvious way to organise them and
explain their interactions. Recall that, a little bit earlier, quantum electrodynamics
(QED) was developed and gave us an extremely satisfactory quantum theory of
the photon interacting with charged particles, E| using the explicit Hamiltonian of
a Maxwell potential A, coupled to matter, and relying on perturbation theory.

When it came to the interactions of hadrons—the baryons (proton, neutron,...)
and mesons—, that success seemed hard to reproduce at the time, however. This
led to a proliferation of new and clever ideas, many of which are still being pursued
today. One general theme, at the time, was to try and “define” QFT by its observ-
ables only (as we should, in quantum mechanics), without relying on a particular
“microscopic” Hamiltonian or Lagrangian. For this approach to work, one would
have to rely heavily on symmetries (as well as on other more subtle but general
principles, such as unitarity). The only observables in scattering experiments are
the S-matrix elements, and therefore a natural question was: What is the more
general symmetry of the S-matriz?

Coleman-Mandula theorem. An apparently definitive answer was given in a
famous paper by Coleman and Mandula, in 1967, in the case of continuous sym-
metries [6]. The Coleman-Mandula (CM) theorem deals with a relativistic QFT
in R3 such that (i) only a finite number of particle types H are associated with
one-particle states of any given mass, (ii) there exists an energy gap between the
vacuum and one-particle states, (iii) there is non-trivial scattering. Then, the most
general symmetry of the S-matrix is:

Poincaré x G internal - (1.7)
The Poincaré group is the invariance of the relativistic QF'T, by assumption: |Z|

Poincaré = 1SO(1,d — 1) = SO(1,d — 1) x RbV41 | (1.8)

4Recall the one-line derivation:

d — b st
@Qa*/gatj* /261] *07

where 4 are the space coordinate indices, (z*) = (2°,z%) = (¢, z*).
5The Nobel price for QED was awarded to Schwinger, Feynman and Dyson in 1965.
SHere, by “particle type,” we mean positive-energy representations of the Poincaré group.
"The Poincaré group is also know as the “inhomogeneous Lorentz group,” hence the name
ISO(1,d — 1). The translations, R"»*~!  form a normal subgroup.
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and here we are specifically in the case d = 4. The theorem deals with the symmetry
group component connected to the identity. In other words, it states that, in a
non-trivial “massive” QFT, the most general space-time symmetry Lie algebra is
the Poincaré algebra (the generators of rotations, boosts, translations), and any
other “internal symmetries” G ipternal Must commute with it. (For instance, the
historically important ‘isospin,” and any similar ‘flavor symmetries.’)

Note that we assumed that the theory was “massive”—there is an energy gap
in the spectrum. One way to evade the theorem is to consider theories without any
built-in mass scales (for instance, with massless particles). Then, we can have a
larger group of space-time symmetries, the conformal group SO(2,d)—this would
lead us to the study of conformal field theories (CFT).

An important (implicit) assumption in the CM theorem, as stated above, is that
the symmetry generators are bosonic, so that they satisfy commutation relations.
If we allow fermionic generators, which satisfy anti-commutation relations, we can
generalize the CM theorem, by replacing the Poincaré algebra with a so-called super-
Poincaré algebra. This is the content of the Haag-Lopuszanski-Sohius theorem [7],
from 1975. (The theorem was worked out after supersymmetry had been already
discovered explicitly in QFTs.)

Historically, supersymmetry first appeared in the early days of string theory,
in a paper of 1971 by Neveu and Schwarz [§]. This was supersymmetry on the
string worlsheet, a d = 2 field theory—the first appearance of what we now call 2d
superconformal theories. (See [9] for further details and references.)

The d = 4 (4d N = 1, in modern language) super-Poincaré algebra was first
introduced at the same time by Golfand and Likhtman [10], in 1971 in the USSR.
That work went unnoticed by the larger community for several years, however.
Then, 4d supersymmetry was independently discovered by Wess and Zumino in
1974 at CERN [I1], 12]. This launched a sustained investigation of supersymmetric
QFTs (and supergravity theories), which is still on-going 45 years later.

1.1.2 Motivations for the particle physicist

Once 4d supersymmetry was theoretically discovered, in the mid-1970s, it became
natural to expect that it might play an important role in particle physics. Real-
world particles do not form representations of the supersymmetry algebra, however.
This leaves us with the tantalising possibility that supersymmetry might be spon-
taneously broken at the relatively low energies probed by particle accelerators—the
TeV scale.

Let us say from the get-go that we do not know of any airtight argument why
supersymmetry should be required in Nature, and certainly not why it should be
experimentally accessible in the near future. One can hope, however.

GUT and supersymmetry. One curious observation indirectly hints at super-
symmetry at the TeV scale, however weakly. It has been a long-running idea
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in Particle Physics that the gauge group of the Standard Model (SM), Ggmy =
SU(3) x SU(2) xU(1), might be “unified” by embedding into a larger GUT (‘grand
unified theory’) gauge group Ggur, such as SU(5) or SO(10). At some GUT scale
Mgy, the gauge group Ggyr would be spontaneously broken down to Gsy. The
known renormalisation group (RG) running of the SM gauge coupling constants
is approximately compatible with this scenario. When a particular supersymmet-
ric version [f] of the Standard Model is considered instead, the agreement of the
coupling-constant unification with a GUT scenario becomes much more impressive,
with Mgur ~ 10'%GeV.

The hierarchy problem. The other and main reason why many particle physi-
cists believe (or believed, until recently) that supersymmetry might be discovered
at the LHC is called “naturalness,” which is a rather theoretical—some would say,
philosophical—construct. Naturalness already motivated searches for supersymme-
try at LEP, the precursor of LHC at CERN. At the time of this writing, the LHC
results from proton-proton collisions at 13TeV are all in perfect agreement with
the Standard Model, and show no hint of supersymmetry. The jury is still out,
but the mood is rather more somber than a few years ago for those who hoped for
supersymmetry at the LHC.

What is naturalness, then? Roughly, it is the idea that numbers in physics that
are very small must be small for a reason. The Standard Model, with its Higgs
boson at 125GeV, does a great job at explaining the experiments so far. What
is odd, however, is that the Higgs-potential parameters in the standard model
seem “fine-tuned.” The Higgs mass term in the SM Lagrangian is renormalised
very strongly (“quadratically” in the RG scale, unlike the fermion masses, which
only run logarithmically), and its “natural” scale should be at whatever threshold
at which new physics appears. Since we know experimentally that the electroweak
(EW) scale is at ~100GeV, this means that the Higgs mass is fined-tuned—in QFT,
one has to cancel two very large “bare” numbers against each other “by hand.”
This is, in a nutshell, the so-called hierarchy problem: what explains the apparent
‘hierarchy’ between the EW scale at 102GeV and whatever scales kicks in next—
for instance the GUT scale at 10'GeV, or the Planck scale of quantum gravity at
10GeV. The “natural” solution is that there is a scale with new Physics soon after
the EW scale. Supersymmetry offers such models of particle physics beyond the SM
which would “solve the hierarchy problem.” However, even if supersymmetry were
discovered tomorrow, there would still be some relative “unnaturalness” creeping
in—a fully natural solution to the hierarchy problem has (likely) already been ruled
out experimentally.

At this point, I should also point out that I am not an expert in Particle Physics,
at all. I encourage you to directly ask experts in the Physics Department about
what is the current status of supersymmetry experimentally. The situation is likely
to keep evolving in the next few years.

8The MSSM with one Higgs doublet. See section 28.2 of Weinberg [2] for a detailed discussion.
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1.1.3 Motivations for quantum field theorist and/or string theorist

However successful the Standard Model may be—and it is very successful—, we
know it is not the full story. If anything, it does not incorporate gravity. Our best
candidate for a quantum theory of gravity, to this day, is String Theory.

Supersymmetry historically appeared within string theory, and is intimately tied
to it. In fact, supersymmetric QFT is part of the larger picture of (super)string
theory in multiple, complementary ways. To name a few:

e The string worldsheet itself can be described by a 2d superconformal theory
(2d SCFT). Interesting subsectors of string theory on non-trivial geometry
are captured by observables in 2d supersymmetric theories, including 2d su-
persymmetric gauge theories.

e Supersymmetric quantum field theories (without gravity) in every possible di-
mensions (d < 10) appear naturally in the open-string sector of string theory;
in particular, at low energy on so-called D-branes—and also on M-branes in
11-dimensional M-theory. The closed-string sector of string theory also con-
tains supergravity theories, which tie supersymmetry with general relativity.

e The AdS/CFT duality, discovered by Maldacena in 1997 [13], is the statement
that various QFTy’s with conformal invariance are dual to quantum gravity
on an Anti-de-Sitter space-time in d + 1 dimensions (AdSg11). This means
that, although a QFT looks very much different from a gravity theory in
curved space-time, quantum-mechanically they are one and the same things:
once we understand the proper dictionary between the two languages, all the
observables agree! The best-studied instances of the AdS/CFT duality involve
supersymmetric field theories dual to superstring theory in AdS. Thus, in
the last 20 years, supersymmetric QFT (and, more precisely, superconformal
theory) has become a tool to study quantum gravity.

Moreover, independently of string theory, supersymmetry is an important tool-
box to better understand QFT more generally. Many problems that would be too
hard in ordinary QFT, with our current technology, can be tackled analytically in
the supersymmetric context.

Let us just give one outstanding example: We still have no analytic theoretical
tools to study the confinement of quarks in QCD, because we lack the tools to ad-
dress the strong-coupling regime quantitatively. On the other hand, the low-energy
solution of 4d N/ = 2 supersymmetric gauge theories by Seiberg and Witten in 1994
[14] provided a rather explicit derivation of confinement in some supersymmetric
version of QCD (by monopole condensation, an idea that appeared in early work
by Gerard 't Hooft).

This is arguably the one main motivation for many people who study super-
symmetric QFT these days: to understand better Quantum Field Theory itself.
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1.1.4 Motivations for the mathematician

In recent decades, there has been a very fruitful interplay between ideas in pure
mathematics—especially, but not only, in geometry—and development in string
theory and QFT. It works both ways: mathematical ideas inform and inspire the
work of physicists, but results in theoretical physics have also often produced sur-
prising mathematical conjectures, which are then studied by mathematicians in
their own right.

Supersymmetry is the central beam on this bridge between Physics and Math.
For instance, one can get a “physics proof” of the Atiyah-Singer index theorem
in the context of supersymmetric quantum mechanics. More recently, there has
been a rich interplay between Physics ideas in supersymmetric QFT (in particular,
S-duality in 4d NV = 4 theory) and the geometric Langlands correspondence in
algebraic geometry [I5]. The list goes on and on.

1.2 Supersymmetry: a first definition

As mentioned above, supersymmetry is the only way to extend the Poincaré sym-
metry group by evading the Coleman-Mandula theorem. (In the case of QFTs with
an energy gap.) It evades the CM theorem by introducing new generators which
satisfy anti-commutation relations amongst themselves. The anti-commutator of
two fermionic operators A and B is denoted by:

{A,B} = AB+ BA . (1.9)

Aside: quantizing fermions. Recall that fermions in QFT obey Fermi-Dirac
statistics: we pick a minus sign upon exchanging two identical particles. Let |m)
denote the fermionic particle in some one-particle state indexed by m, which is
created from the vacuum by some operator bln:

my=0h,10) . [min) =BLhI0), e (1.10)
Fermi statistics means that the creation operators anti-commute:
Im;n) = —|n;m) TS {bl by =0. (1.11)
This includes the Pauli exclusion principle:
|m;m) =0 (1.12)

More generally, as we shall review below, quantization of a fermion leads to
anti-commutation relations such as:

{bp, bl } = hépm . (1.13)

The point, here, is just that: (1) Fermionic operators are nothing exotic. They
exist necessarily in any theory with “fundamental fermions,” such as e.g the real-
world electron and quarks. (2) Fermionic operators satisfy anti-commutation rela-
tions amongst themselves, not commutation relations.
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1.2.1 Mathematical definition

We can be a bit more formal:

Definition: A superalgebra (over C) is a Zy graded vector space:
A=Ay ® A4 (1.14)
with a bilinear multiplication A x A — A such that:
apay € Ag, apay € Ay, aya) € Ap , if ag,ap € Ao, ar,ay € Ay . (1.15)

We call the elements of Ay bosonic (or ‘even’) and the elements of A; fermionic (or
‘odd’). It is obvious that the bosonic algebra Ay is a sub-algebra of A.
Let a,b € A, and let |al,|b| denote their Zy degree. The super-commutator is
simply:
[a,b} = ab — (—1)lPlpg . (1.16)

Thus, we arrive at our first formal definition of supersymmetry:

Definition: A supersymmetry algebra over the space-time R? is a superalgebra
that contains the d-dimensional Poincaré symmetry algebra iso(1,d — 1) as a sub-
algebra of its bosonic subalgebra.

A super-Poincaré algebra is a supersymmetry algebra whose bosonic subalgebra
is the Poincaré algebra. In these lectures, unless otherwise specified, we will use
the term “supersymmetry algebra” to mean a super-Poincaré algebra, in keeping
with common usage.

1.2.2 Schematic form of the supersymmetry algebra

Let X denote either Poincaré symmetry generators, or internal symmetry genera-
tors. Then, a general supersymmetry algebra will have generators:

X € AO ) Q € Al ) (117)

and it will take the schematic form:

X XT=x", [XQ=Q", {QQ}=X. (1.18)

This a priori form can be constrained further by studying the closure of the algebra.
In particular, Jacobi identities impose strong constraints.

The fermionic generators () are the supersymmetry generators, by defini-
tion.

Depending on the space-time dimension, we can have slightly different forms of
the supersymmetry algebra. As we will see, we always have some relations of the
form:

{Q,Q'} ~ Py, (1.19)
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with P, the momentum operator, generator of translations. Thus, the supersym-
metries can be thought of as a “square root” of space-time momentum.

But first, let us study an interesting ‘toy model’ of supersymmetry, in quantum
mechanics.

1.3 Supersymmetric quantum mechanics (a first look)

It is sometimes useful to view QM as a ‘QFT in d = 1’ (the “fields” depend only on
time, not space). The 1d Poincaré algebra is simply generated by E = —i%. We
introduce N supersymmetry generators:

Q', I=1,--,N. (1.20)

The 1d supersymmetry algebra takes the form:
QT E]=0, {(Q1,Q7}y =2E67 + 217 | (1.21)
where Z17 = Z71 (I # J) are some real central charges (that is, which commute

with Q! and E).

Relativistic massless spinning particle. In the Feynman path integral lan-
guage for quantum mechanics, a “1d fermion” is simply a Grassmann-valued field
= (t): ]

{(1),¥(t)}=0. (1.22)

A free fermion has a Lagrangian:
d
&= iwd—f ) (1.23)

corresponding to the 1d “Dirac equation” (i% +m)y = 0.

Possibly the simplest 1d N/ = 1 supersymmetric model is a theory of D free
1d bosons X*(t) and D free 1d fermions 1*(t), of vanishing mass (with the index
pw=1,--- D). It is defined by the Lagrangian:

1. . o
L= §XMX“ + it (1.24)
Here, we use the standard notation z = ‘fl—”t”. The indices u,v are lowered with

a “target-space metric” g,,—for simplicity, we choose g,, = 7., the Minkowski
metric in D space-time dimensions. This system describes a relativistic massless
spinning particle in RVP~1. The 1d “worldline” fields X#(t) are the coordinates
of the point particle in R"P~1 and the 1d fermions 1* are the spin degrees of
freedom [16]. Classically, they satisfy:

{vt, "} =0. (1.25)

9Here, 9 denotes a classical field, not an operator.
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We have the conjugate momenta:
e =X+, T =i (1.26)
so that a 1d fermion is conjugate to itself. Quantum mechanically, we then have:
X0, 11%] = ig™” [0y = g (1.27)
in canonical quantisation. Thus, the classical Grassmann algebra becomes

the Clifford algebra quantum mechanically.
The Lagrangian ((1.24)) enjoys 1d A/ = 1 supersymmetry, which acts on the fields

as:
60X = 2iet) oh = —eX | (1.28)
with € a constant supersymmetry parameter. Indeed, we can check that:
. d ;
5L::zegg<wMXﬂ> . (1.29)
The Noether charge for supersymmetry is then the Hermitian operator:
Q=P X" . (1.30)

We also have the energy operator:
1.
E:—%:ixﬂ (1.31)

which is associated to translations in time. The operators () and E are conserved,
since @ = 0 and E' = 0 upon using the 1d equations of motions. One also sees that:

{Q,Q} = {t, ¥} XIXY =2F (1.32)
using the canonical commutation relation for the operator ¢ in (1.27)).

On quantising a real fermion. The careful reader must have wondered how
one obtained the canonical commutation relations ([1.27)) for the real fermions. One
apparent issue is that the phase space variables ¢ and 11, = %) are linearly related:

b +illy, =0. (1.33)

This is an example of a (second class) constraint, in the Dirac formalism for con-
strained dynamical systems. We also find that the Hamiltonian of the free fermion
is identically zero:

H=0. (1.34)

To quantize this theory in the canonical formalism, one should use the so-called
Dirac bracket instead of the Poisson bracket, and then replace the Dirac bracket
by the (anti)-commutator quantum-mechanically. One can then eliminate I, from
the description using the constraint, to finds:

{0} =1. (1.35)

We refer to section 7.6 of Weinberg volume I [I7] for a general discussion. The case
of interest here is treated explicitly in chapter 7 (section 7.1.1) of [18].
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1.4 Supermultiplets (a first look)

A supermultiplet is a representation of the supersymmetry algebra.
For instance, in the 1d example above, the fields X* and ¥* form the super-
multiplets:

XH = (XK ). (1.36)
The supersymmetry transformations ([1.28]) realise the supersymmetry algebra:
{Q,Q}=2F, (1.37)
on fields, with § = €@, since:
d d
2 . 2 2 . 9
X =-2ie*—X = —24e"—1) . 1.
) e X, ) i€ dtw (1.38)

1.4.1 General properties
Consider the general supersymmetric algebra in QM,
{Q1,Q7} =2E8" + 27, [E.Q1=0. (1.39)

The trivial commutator [F, Q'] = 0 implies all the states in a given super-multiplet
have the same energy. Moreover, in a supersymmetry theory, the energy of any
state is non-negative:

(1B = S (0HQ" Q") ) = Q)P >0 (1.40)

We define the fermion number operator (—1), which acts as:

(=DFy=1b),  (=DFIf) =~If), (1.41)

on bosonic and fermionic one-particle states, respectively. Since () sends bosons to
fermions, and vice-versa, we have:

(DR = -Q'(-1)", (1.42)
for any Q. We then find:
Tr (-D)QN, Q™) =T (-D7Q'Q7 + (-1n"QQ") =0, (1.43)

using (1.42) and the cyclicity of the trace. This holds for any finite-dimensional
representation of the supersymmetry algebra (so that the trace is well-defined).

Using ((1.39)), we find:
Tr ((-1)F (2B + Z!7)) =0, (1.44)

and, in particular, we have:

Tr (-)FE) =(E)Tr (-1)F) =0, (1.45)

where (E) is the fixed energy of the supermultiplet. If (E) is non-zero, we must
have as many bosonic as fermionic states, so that the trace vanishes. In other
words, finite-energy supermultiplets contain as many bosons as fermions.
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1.4.2 1d N =1 supermultiplet
[This subsection has been rewritten on Feb. 1, a previous version was misleading.]

The simplest case is N/ = 1, with the supersymmetry algebra (1.37)). Consider
Q) acting on some set of states of energy . We define the rescaled operator:

1
b=—=Q, (1.46)

so that the supersymmetry algebra (on those states) takes the simple form:
{b,b} =1. (1.47)

This supersymmetry algebra is isomorphic to the anti-commutator of a single real
fermion, as in (|1.35). (That is, a 1d Clifford algebra.) It can be represented on a
two-dimensional Hilbert space H, where b is realized as the matrix:

b= \2 (‘1) é) | (1.48)

We then simply have a two-component supermultiplet:
{|E) , bIE)} , (1.49)

as in ((1.36|). Here, the boson and the fermion in the supermultiplet can be repre-
sented by the vectors:

1 0
|E) = <O> eH, |E) = V/2b|E) = <1> eH,
respectively. Note that this obviously is in agreement with the discussion in terms
of fields; in particular, acting twice with ) gives back the same state times its
energy, Q?|E) = E|E).

Caveat: The two-dimensional representation of the 1d Clifford algebra ((1.47)) that
we just gave is not irreducible. Instead, (1.47)) has two irreducible one-dimensional
representations, which can be given as:

1

b=t (1.50)

However, such irreducible representations correspond to the linear combinations:
|E) £ |E)", (1.51)

which mix a bosonic and a fermionic state (corresponding to the fields X and ).
The physical 1d N/ = 1 supermultiplets are the two-dimensional ones, as given
above.
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1.4.3 1d N = 2n supermultiplets

For applications to higher-dimensional field theories, it is convenient to focus on
the case N’ = 2n an even integer. We then introduce the complex supercharges:

Q' =Q +iQ"t, Q' =Q —iQ"", i=1,--,n, (1.52)
in terms of which the supersymmetry algebra takes the form:
{Q!, O} = §V4E {9, Q1) =2i2% | {9V, Q7 = —2iZ% | (1.53)
with Z4 = Znti,

The “massive” (Clifford) supermultiplet. For simplicity, let us assume that
Z% = (. Then, we define:

7Ql ) az‘ - 7Q’L 1) (154)

so that we have a Clifford algebra:
{ai,a; =0 , {ai,a;} = {ag,a;-} =0. (1.55)

This is isomorphic to the algebra obtained upon quantising n complexr fermions.
Given a Clifford vacuum, |Q2) such that a;|2) = 0, we have the states:

[Qyigiy) = al al, --al 1Q) . (1.56)

Since the a!’s anti-commute, we have such states and the highest state is the

n
k
unique state at k = n. The total number of states in the supermultiplet is then:

zn: <Z> =" (1.57)

k=0

In later lectures, we will see that this “massive” multiplet structure arises in
higher-dimensional QFTs in the case of a massive one-particle state with P, =
(E,0,---,0), where 2n is the number of real supercharges of the QFT,;. We will
also come back to the case when the 1d central charges might be non-trivial (that
might be the momentum operator in QFT).

1.5 The Witten index

Consider a supersymmetric quantum mechanics with (by assumption) a discrete
spectrum of H = E and a finite number of vacua. One defines its Witten index as:

Iy = Try, ((—1)Fe—5H) , (1.58)
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where the trace is over the full Hilbert space of the theory. However, any states
with E > 0 contribute trivially to the index, by the property (1.45). Thus, the
Witten index is really a property of the vacuum only:

Iy = Try, =0 <(—1)F) =ng—nr, (1.59)

and it is given by the number of bosonic vacua minus the number of fermionic
vacua. This quantity plays an important role in supersymmetric QF T—it was first
introduced by Edward Witten to explore the possibility of spontaneous supersym-
metry breaking [19], as we will explain in a later lecture, but it also plays a central
role in many more recent developments.

The main interest of the Witten index is that it is invariant under (appropriate)
deformations of the theory. As we deform various parameters, the spectrum might
change, but the index does not. This is because non-zero energy states come in a
boson-fermion pairs. As we vary the parameters, states can leave or hit the ground
state, H = 0, but only in boson-fermion pairs, therefore is invariant.

2 Spinors: a review

2.1 Spinors in various dimensions

In any space-time dimensions, the supercharges transform like spinors under the
Lorentz group SO(1,d —1). Moreover, to discuss supersymmetry at all, we need to
be very familiar with fermions in QFT, which are also spinors (by the spin-statistic
theorem).

Consider first the Lorentz group in space-time d dimension. At first, we may
consider the general case SO(p,q) with p + ¢ = d. This is the invariance of the
metric:

(n,ul/) = dlag(_lv 7_1a1a17"' 71) . (21)

p times q times

We focus on the Minkowski signature, (p,q) = (1,d — 1). For many purposes, it is
also useful to consider the Euclidean signature, (p,q) = (0, d).

The generators of SO(p, q) are designated by M, = —M,,. They satisfy the
so(p, q) algebra:

[(Myws Mpo] = i (uo Mup + MupMuo — NupMue — MueMyp) - (2.2)

The fundamental representation of SO(p, ¢) is the vector representation, of dimen-
sion d. The spinor representations, on the other hand, are not strictly speaking
representation of the group SO(p,q) but rather of its double cover, Spin(p, q). m

10Tn particular, Spin(d) is simply-connected for d > 2.
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For low d, it is useful to keep in mind the (accidental) isomorphisms:

Spin(2) = U(1) , Spin(1,1) = GI(2,R) ,

Spin(3) = Sp(1) = SU(2) , Spin(1,2) = SI(2,R) , 23
Spin(4) = SU(2) x SU(2) , Spin(1,3) = SI(2,C) , '
Spin(5) & Sp(2) , Spin(1,4) = Sp(1,1)

Of course, SO(p,q) and Spin(p, q) have the same Lie algebra (2.2)), denoted by
s0(p, q)-

The (Dirac) spinor representation of so(p,q) can be constructed explicitly as
follows. First, let us introduce the gamma matrices v* which satisfy the Clifford
algebra:

{7 =29 (2.4)

Then, the spinor representation matrices are given explicitly by: E

)
Mw/ = Z['Yua'yu] . (2-5)

The gamma matrices can be constructed explicitly in any dimensions. They are of
dimension:

D=2" if d=2n or d=2n+1. (2.6)

Thus, D = 2" is also the dimension of the Dirac spinor. It particular, we have
D=4ind=4.

The Dirac spinor representation is not necessarily an irreducible representation
of so(p,q), however. Which are the actual irreducible spinor representations de-
pends non-trivially on p and q. We see this below, in the physically-important
examples in d < 4.

2.1.1 Lorentzian signature

Consider the case (p,q) = (1,d—1). Suppose we are given a set of gamma matrices
{7*} in d = 2n dimensions, with = 0,---,2n — 1. Then, we directly have the ~
matrices in d = 2n + 1 dimensions, by introducing additional matrix:

2n+1 __ ( )n—i—l 0.1 2n—1 ) (27)

Y vy

Since p runs from 0 to d — 1, we should really denote 72”“ by “y2"” but the
notation is customary. (In particular, for d = 4, we have +° used to deﬁne chirality.)
Given 4" in d = 2n, we can also construct the matrices '™ in d = 2n + 2, with:

TH=at@e, T =P2tlgel 282 — 1, 0. (28)

Therefore, we can build the v matrices inductively, for any d. Let us now discuss
the first few cases, by making some convenient choices:

1Be mindful of what is a representation matrix—here, denoted M—and what is an “abstract”
generator My, of the algebra. This should always be clear from context.
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d =2 and d =3: In the case n = 1, it is useful to introduce the Pauli matrices
ol (i=1,2,3):

T O T () BT CHCA DY

Recall that: o 3 .
ool = (51]12><2 +,L'€Z]k0k’ . (2.10)

We can then choose:

0 -1 0 1 1 0
0 2 1 1 3 3
v = —io® = <1 0) , v =0 = <1 0> , Y =0"= (O _1> . (2.11)

d =4 and d =5: For n =2, we take the 4 x 4 gamma matrices of so(1, 3) to be:

o (0 -1 i (0 o

with 7 = 1,2, 3, and with 1 the 2 x 2 identity matrix. We then have:
. 1 0
v =iyl = (0 _1> : (2.13)

Note that is not the choice of the 4d y-matrices that would follow from the
general construction starting from . Instead, this is a particularly con-
venient choice of 4d v matrices for later purposes. It corresponds to an equivalent
general construction with:

I = 190,90 ® (—ic?) , I'=+~"@ct, 22 — iy @ ot | (2.14)

up to a permutation of the spatial coordinates. Here, the index ¢ runsover 1, - ,2n,
where i = 2n corresponds to the v2"*! matrix.

2.1.2 Euclidean signature

In the case (p,q) = (0,d) with d = 2n, with indices p = 1,--- ,2n, we similarly
define:
P = (=)l (2.15)

This is the same matriz as in (2.7)) provided that we take:
=iyl (2.16)

Consider again the cases n =1 and n = 2:

d =2 and d = 3. In Euclidean signature, we now simply have:

V=0, (2.17)
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d =4 and d = 5. In this case, we have the so(4) gamma matrices:

i (0 o s (0 —il

1 0
7P = ="yt = <o _1> : (2.19)

and the 7° matrix is:

2.2 Spinors in 4d

In these lectures, we will focus on d = 4 in Lorentzian signature.

2.2.1 Weyl spinors

From the explicit gamma matrices (2.12)), it is easy to see that the Dirac spinor
representation is reducible. We use the projector:

1
Pr= (%7, (2.20)

which commutes with the 4d gamma matrices, to decompose Dirac spinors ¥ =
(U,), with Dirac indices a = 1,--- , 4, into Weyl spinors:

= @g) . (2.21)

Here, ., with a = 1,2, denotes a so-called two-component left-handed Weyl
spinor. B It it a two-component complex vector, ¢ € C?, which sits in the fun-
damental representation 2 of SI(2,C). The dotted index & corresponds to the
conjugate representation 2; the corresponding right-handed Weyl spinor is denoted
by 1%, with:

(Pa)* =9%, (o) =a - (2:22)

Note that undotted («) lower indices are row index, while undotted upper indices
are column index, while the dotted (&) index follow the opposite convention—upper
dotted indices are row index, as is apparent in , and lower dotted indices are
column indices.

It is useful to note that SI(2,C) can be viewed as:

SL(2,C) = SU(2) x SU(2)* , (2.23)

where the two SU(2) factors are exchanged under complex conjugation, as we will
discuss further in the exercises. A spinorial representation of so(1,3) can then be
denoted by (j,k), with j, k € %Z the SU(2) spins, and with (j,k)* = (k,j) the

12The terminology “left-handed” or “right-handed” in this context in somewhat imprecise, albeit
standard. The more correct terminology is to simply call P+ W the (left- or right-) chiral fermions.
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conjugate representation. A left-handed Weyl spinor 1 sits in a representation
( %, 0) and its conjugate, the right-handed Weyl spinor ), sits in (0, %) The vector
representation corresponds to:

1 1 11
=0 0,2)=(5,2
(5:0®0.3)= (3
Any other representation of so(1,3) can be obtained by tensor products, which
follow from the tensor products of SU(2) representations. For instance,

(%,0) ® (%,0) = (1,0) & (0,0) , (2.25)

where (1,0) corresponds to a self-dual anti-symmetric tensor of so(1,3).
The isomorphism between Spin(1,3) and SI(2,C) can be made explicit by in-
troducing the o-matrices:

). (2.24)

(") = (00",  with 0%=—-gp=-1. (2.26)

‘We have:

—Xo+ X3 Xl—iX2> (2 27)

pYX, —
7 <X1+z’X2 ~Xo - X3
for any 4-covector X,. We have the following index structure, following the con-
ventions of Wess and Bagger [1]:

al. . (2.28)

a
In particular, we have the bi-spinor X,4 = aZqu in (2.27), in agreement with
(12.24]).

“We lower and raise the @ and ¢ indices with the anti-symmetric tensors ¢ and
£ defined by:

812 = *621 =1 y €12 = —€921 = —1 y (2.29)
such that Ea5€ﬂ7 =0,"7. Then:

Y =eYs . o =capy’ (2:30)
and similarly for the dotted indices. We then define the g-matrices, with raised
indices: _ »

ghae = 6“560‘60;6 . (2.31)

We can check that: ‘
(") = (0, —0c?) . (2.32)
Finally, we choose the following implicit notation for contraction of spinor indices:

UX=V"Na s XU =Xa¥® (2.33)
Note that, in these conventions,

(x)T = vx . (2.34)

We also have y© = ¥y, for anticommuting spinors.
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2.2.2 Lorentz symmetry generators.

Note that the gamma matrices (2.12)) read:

0 o
b
7 - (_O_,u, 0> 9 (235)

and therefore:

sz bl o 0
where we defined the matrices:
1
o = (015" = a¥5") o = (ot — 5o, (2.37)
with indices:
(@), ()% (2.38)

Therefore, —ic*” and —ic"" are the Lorentz group generators on left- and right-
handed Weyl spinors, respectively. Note the relations:

(octa” + U”&“)aﬁ = —217‘“’50/3 ,

e 8 b (2.39)
(cta” +avot),” = —2n""0 o

which ensure that v* satisfy the Clifford algebra. Finally, we should point out that:

; 1
iot? = E(0162 —o%el) = o3, (2.40)
4 2
which has eigenvalues :I:%. That corresponds to the usual J3 = —Mj, spin in the

{x!, 22} plane.

2.2.3 Fierz identities

Given some Weyl spinors, we can write down various bilinears by contracting the
Weyl indices, such as:

%Z)X ) T/_ﬁMX ) @Z}U”X ) o (241)

In explicit computations, it is often necessary to use some non-obvious-looking
identities amongst spinor bilinears, such as, for instance:

()X = —5 (00 X)) - (242

Here, we assumed that the Weyl spinors 1,7, x are also fermionic (that is, ¥an5 =
—nga, etc.). Such identities are known as Fierz identities. We will study them in
a problem sheet.
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2.2.4 Majorana spinors

A Majorana spinor is a “real Dirac” spinor, of the form:

)= (%) - (243

Recall that, by definition, Majorana fermions are their own anti-particle.

2.3 Spinors in 2d

The d = 2 case is useful for string theory. More generally, 2d QFTs, with or without
supersymmetry, are very interesting toy-models of more general QF T phenomena.

Two-dimensional Dirac spinors are two-component vectors, which we denote by

1o. Using the projector:

1
Py= (14 3, (2.44)

we can decompose them into two one-component Weyl spinors, denoted by ¢:

(Vo) = (Z;) : (2.45)

Note that, unlike in 4d, the two Weyl spinors are not related by complex conjuga-
tion. In Euclidean signature, Spin(2) = U(1), with the spinors having half-integer
charges. In this language, the 2d Weyl spinors 1)+ have spin i%, respectively.
Further discussion of 2d spinors is left for the problem sheets.

3 Supersymmetry in various dimensions (but mostly
d=4)

Given the above discussion of spinors, we are ready to write down super-Poincaré
algebras in various dimensions. Recall the Poincaré algebra, in any space-time
dimension d:

[PM’ PV} =0,
(M, Pp] = —i(up P — mupPp) (3.1)
[M;un Mpa] =1 (77,uUMVp + nlszua - 77,ule/0 - nl/UMpp> .

The supersymmetry generators, which we will denote by “Q” or “Q,” transform
as spinors under the Lorentz group. Given a supercharge Q in some irreducible
D-dimensional spinor representation S of so(1,d — 1), E] this determines the com-
mutators:

[Pl“ Qa] =0 ) [M/U’? Qa] = _(Mul/)abe . (32)

130r so(d), if we are interested in Euclidean signature.
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d | spinor N max R-sym. No [NRUSY [ ASUGRA
1 | “Dirac” N=n SO(N) N 16 32
2| Weyl |N = (ng,ng)|SO(np)xSO(ng) | np+ngr| (8,8) | (16,16)
3 | Dirac N=n SO(N) 2N 8 16
4| Weyl N=n U(WN) AN 4 8

Table 1: Supersymmetry in d < 4. Here, “spinor” denotes the irreducible so(1,d—1)
spinor representation in each dimension, and n € N. We highlighted the case
d = 4, which will be our main object of study. We will briefly discuss the higher-
dimensional case, d > 4, at the end of this section.

Here, we wrote down explicitly the spinor indices a,b = 1,---,D. The constant
D x D matrix M, is the generator M, in the representation §. For a Dirac
spinor, it is given by .

The super-Poincaré algebras in d dimensions are labelled by a number:

NeN, (3.3)

the number of distinct irreducible spinors Qf (I =1,---,N) amongst the genera-
tors. In dimensions 1 to 4, the types of supersymmetry are summarized in Table
Note that, for d = 2, there can exist an independent number n; and ng of “left-
chiral” and “right-chiral” Weyl spinor supercharges, @’ with I = 1,--- ,nz and
Q¥ with K =1,--- ,ng.

In Table [1, Ng denotes the number of “real supercharges”—that is, effectively,
the number of independent supersymmetries. Many general aspects of supersym-
metric QFTs in various dimensions depend on N, essentially because the size of
the supermultiplets is determined by Ng, not N.

We also indicated Mpax in the Table, corresponding to Ng = 16. This is the
“maximal supersymmetry” in each dimension. This means the maximal amount
of supersymmetry that can be realised by interacting quantum field theories. For
higher A/, we necessarily need to include gravity. Indeed, even with gravity, we
can only consider Ng < 32. EI Thus, for any d, there is a finite list of “physical”
supersymmetry algebras.

In addition to the commutators and , the d-dimensional super-Poincaré
algebra consists of the anti-commutators amongst supercharges. Schematically, we
have:

{Qm Qb} = C(l;bPu + Zap - (34)

The second term in (3.4), Z4, is the central charge—that is, a generator of an “in-
ternal symmetry” which commutes with the full Poincaré symmetry. In particular,
Z% is a Lorentz scalar.

4 More on this later, and on the problem sheets.
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For any d and N, the right-hand-side of can be fixed by consistency
with Lorentz invariance and the super-Jacobi identities. Let us define the super-
commutator:

[Oa, Op} = 00 — (=1)“?0p 0, (3.5)

where €, € {0, 1} is the Zy grading of O, the Jacobi identities of a super-algebra
read:

(—=1)%%a[[Oq, Op}, Oc} + (—1)?[[Op, Oc}, Og } + (—1)*[[Oc, Og }, Op} =0 .

This can be used to constraint the form of (3.4]). Indeed, using (3.2)) and the Jacobi

identity, we must have:

[P,u, {Qaa Qb}] = {[P,ua QCL]? Qb} + {[P,u? Qb]’ Qa} =0. (36)
and

[M,u,zly {Qay Qb}] - {[Muw Qa]a Qb} + {[Mp,ua Qb]a Qa}

o (M)t{0), O} — (Mo ) (O, Q0 (3.7)

This implies that the commutator {Q,, Oy} can only give a linear combination of
the momentum operator P, and (possibly) a central charge—and the last identity
can be used to completely fix the structure constants Cgb.

3.1 R-symmetry

In a supersymmetric QFT, almost any internal continuous Lie group symmetry
commute with the super-Poincaré algebra. In particular, in any supermultiplet—to
be discussed below—all states must transform in the same representation (possibly
trivial) of any such internal symmetry. Such internal symmetries are often called
“flavor symmetries.” There is one important exception to this, known as an R-
symmetry.

Definition: An R-symmetry is an automorphism of the super-Poincaré algebra.

The maximal possible R-symmetry, for a given d < 4 and N, is shown in Ta-
ble[I] This corresponds to the R-symmetry without central charges. Central charges
will generally break the R-symmetry explicitly to a subgroup of the maximal R-
symmetry.

Consider the supersymmetry generators Q!, I = 1,--- ,N. An R-symmetry
acts on the supercharges as:

R, Qll=-R'; 0, (3.8)

where R is a representation matrix of the R-symmetry group, while leaving the
supersymmetry algebra invariant. Note that R must commute with the Poincaré
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algebra (and, in particular, with so(1,d — 1)), in agreement with the Coleman-
Mandula theorem.

The actual R-symmetry of a given supersymmetric QFT depends on the details
of the theory. In general, only a subgroup (possibly trivial) of the maximal R-
symmetry is actually realised in a given QFT. For instance, in a theory defined
by a Lagrangian, the Lagrangian might not be invariant under the R-symmetry.
Even if the classical Lagrangian is R-symmetry invariant, one still has to check
whether the symmetry still holds quantum-mechanically. We will see examples of
this phenomenon in later lectures.

Since R has a non-trivial commutator with Q, the different components of a
supermultiplet will necessarily span different representations of the R-symmetry

group.

3.2 Minimal supersymmetry in 4d

Let us now, finally, consider in detail the supersymmetry algebra we will most
study: minimal supersymmetry in four dimensions, also known as 4d N' = 1 super-
symmetry. There are four real supercharges, Ng = 4, which fill out one complex
Weyl spinor @, and its conjugate Q%. The supersymmetry algebra reads:

{Qa, Qs = QUZBPM , {Qa,Qs} =0, {Qa,Qs} =0, (3.9)

Of course, we also have:

[Py, Qal =0, [Py, Qa] =0, (3.10)

and: B -
[M;waQa] = i(UuuQ)a 5 [M/WaQo'z] = *i(Qa-uV)d . (3'11)
This, together with the bosonic Poincaré algebra (3.1)) itself, gives the full 4dd N =1

supersymmetry algebra.

Note that the structure of the RHS of (3.9) is consistent with the decomposition

(2.24) . Note that we also have (2.25)), which imply that {Q.,Qs} could be given
by the sum of a spin-(1,0) (self-dual antisymmetric tensor) and of a scalar. This

could only be:

{Qa, Q/g} = Maﬁy + Eaﬁz R (3.12)
where M, is the so(1,3) generator written as a bi-spinor, and Y and Z are con-
stants. From (3.6]), one can see that Y = 0; we must also have Z = 0 since the LHS
is symmetric in (a <> ().

3.2.1 R-symmetry U(1)gr

The maximal R-symmetry of 4d N = 1 supersymmetric theories is the abelian
group U(1)g. It acts on the supercharges as:

Qo — e_iaQa ) Qa — eian . (3.13)
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This clearly leaves the supersymmetry algebra (3.9)) invariant. In other words, we
assign U(1)g charges —1 and +1 to @, and Qg, respectively. We have:

[R,Qal = —Qa,  [R,Qsl=Qa - (3.14)

Thus, acting on a state |2, r) of non-zero R-charge r € R with @,, we decrease the
R-charge by 1 unit:
QalQr) ~ |Vsr —1) (3.15)

and similarly Qg increases the R-charge by 1 unit.

At this point, the R-symmetry might look like a curiosity, but it will play an
important role in the discussion of the dynamics of actual 4d N/ = 1 supersymmetric
theories, later on.

3.2.2 Supermultiplets: Massive representations

In QFT, essentially by definition, a “particle” is an irreducible finite-dimensional
unitary representation of the Poincaré algebra. Using Wigner’s induced represen-
tation method, one labels particle states by their mass and spin (for a “massive
particle”) or by their energy and helicity (for a “massless particle”).

Let us define:

1
WhH = 56’“’”"P,,Mp0 , (3.16)
the Pauli-Ljubanski pseudovector. One can show that:
Ciy = P,P" Cy =W, WH, (3.17)

are Casimir operators of the Poincaré algebra—that is, they commute with every
Poincaré generator. In fact, they are the only two Casimir operators of 1.50O(1, 3).
For massive particles, they define the mass and spin, respectively.

Consider then a massive particle of energy-momentum P, = p,,, for which we
have O] = —M? < 0. We can go to the rest frame,

p* = (M,0,0,0) . (3.18)

Then, particle are classified in terms of finite-dimensional unitary representations
of the “little group” that leaves (3.18|) invariant, namely SO(3). We then have:

W= (0,W), W'=-MJ', with J'= —%a’ﬂ“Mjk : (3.19)
where J? are the SO(3) spin operator, satisfying:

[J8, J7] = iedk gk (3.20)

Therefore, we have the massive particles classified by their mass M and their spin

Jje %Z: '
Ci=-M?, Cy=M>JJ =M*5G+1). (3.21)
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Let us now build the supermultiplets, which are collections of one-particle states
that form representation of the super-Poincaré algebra. Since we obviously have:

[ClaQa] = [PMP#’Qa] =0, [Clde] = [PMP#7QQ] =0, (3'22)

all particles in a supermultiplet have the same invariant mass, M?. In other words,
(1 is a Casimir the full super-Poincaré algebra. This is not the case of Cs, on the
other hand.

Note that J* acts as:

1

[Jiv Qa] =75

4 . 1. s
500a"Qs . [7,Qal = 5Q5(01 s (3.23)

on the supercharges, in term of the Pauli matrices . In particular:

[ngQa] = (_;)QQOZ ) [ngéd] = _(_1)an y (324)

for the four supercharges, where o = 1,2 and & = 1, 2.

At fixed mass M2, a representation of the Poincaré group is a representation of
SO(3)—more precisely, of the spin group Spin(3) = SU(2), since the spin can be
half-integer. The spin-j representation consists of 25 + 1 states:

iy ={lim) m=—j =1, i =15} (3.25)
In the rest frame (3.18)), the supersymmetry algebra (3.9)) reads:

with all other anticommutators vanishing. Defining the annihilation and creation
.. 1 1 A . . .
fermionic operators a, = WQQ and aly, = WQ@ (with a = &), respectively, we

have:
{aa,a};} =008 - (3.27)
Note that:
haf) =gl )=~ gal (3.2

so that, while J3|j,m) = m|j, m),

, 1 . . 1 .
Jallj,m) = (m+ S)alljm) . Sablim) = (m - ablim) . (3.29)

In fact, acting on a spin-j set of states |j) with aJ&, we obtain the spin j + % and

) — % representations, since aJ& carries spin %:

je3=0+3)®6-5), (330)
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assuming j > 0. (In the spin-zero case, j = 0, we simply have a single spin—%
representation.) More explicitly, we can build the states:

1 1 1 1 . 1
’j:ﬁ:2,m> :C%J(j:tﬁ,m;ﬁ,m—i)a]; j,m—2>
(3.31)
+C (:l:lm'—fval) ] 'm+1
%,j j 27 9 27 2 2 .]7 2 9

with C 1 the Clebsh-Gordan coefficients for coupling a spin j to a spin % Acting
with two creation operator, we obtain the states:

e*Palal|jm) . (3.32)

of the same spin that we started with. Thus, the massive supermultiplet has the
schematic form:

. N SR | ,
5) alj)~li+5)eli-3) a'a’|j)
dof : 2j+1, (25 +2) @ (2)) , 2j+1.

(3.33)

Here we indicated the number of degree of freedom at each level. As expected, we
have as many bosons as fermion (namely, 45 4+ 2). Let us consider some examples:

Massive chiral multiplet. Consider the spin-zero case, j = 0. Then, we have
two scalar bosons and a spin—% fermion:

bosons: |0) , a{a£|0) ;
: (3.34)
fermions: a:&\()) ~ §> )

giving us two bosonic and two fermionic one-particle states. There is thus 4 states
in total, in agreement with the discussion around (1.57)).

Massive vector multiplet. This multiplet starts with j = %, which is fermionic.
We then have: )
bosons: aLB) ~ 1) @ |0) ,
(3.35)
ons: Lo ratd
fermions: |§) , a1a2|§) .

Thus, this multiplet contains an SO(3) vector and a scalar, as well as two spin—%
fermions.
3.2.3 Supermultiplets: Massless representations

Let us now consider massless representations of the supersymmetry algebra, such
that Ch = —P,P* = 0. We can choose a frame such that:

P = (E,0,0,E) . (3.36)
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Recall that massless particles are indexed by their energy F, which we assume to be
positive, and by their helicity, which is a representation of the little group SO(2).
More precisely, the helicity A € %Z is a representation Spin(2), a double cover of

S0(2) =U(1).[7]
Plugging in P, = (—FE, 0,0, E) in the supersymmetry algebra (3.9), we obtain:

{QbQI} =4F ) {QQ)QQ} =0 5 (337)

and all other anticommutators vanishing. Thus, we define a; = ﬁQl’ aJ{ =

1 A . . . . 1. . .
in, and we have a single pair of fermionic creation and annihilation operators:

{ar,al} =1. (3.38)
The helicity operator corresponds to J3 = —Mjs, the rotation in the (2!, z?) plane,
with:
J3|E,\) = AE,\) , (3.39)
by definition. We have:
3 T Lo 3 1
[J°,a)] = 391 [J°,a1] = —301 (3.40)

Using the fact that {Q2, @5} = 0, one can check that:
Q2|E,\) =0, (3.41)

on any state. Thus, the supermultiplets consists of pairs of states:

1
BN, allBA) = [BA+ ) (3.42)
Massless chiral multiplet. One of the most important example is the chiral
multiplet, for A = 0. It consists of a scalar boson and a massless A = % fermion:
1
boson : |E;0) , fermion : |E; §> =dl|E;0) . (3.43)

A X = £1 particle is a massless Weyl fermion, which is left-chiral (¢,) or right-
chiral (%), respectively. In a QFT, every particle must be accompanied by its
CPT conjugate, by CPT invariance. We will often write “chiral multiplet” for the
A= % supermultiplet that contains v, while the CPT conjugate that contains 1)
is called “the anti-chiral multiplet:”

1
boson: |E;0) , fermion : |E; —§> = |E;0) . (3.44)

On the other hand, it is also common to just refer to the CPT-invariant pair of
both multiplets as “the chiral multiplet.”

15The full little group on the light-cone is the double cover of I1.50(2), but the finite-dimensional
representations just correspond to representations of the compact subgroup Spin(2).
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Massless vector multiplet (a.k.a. gauge multiplet). Starting with A = %,
we obtain the pair:

1 1
boson: |E;1) = aJHE; 5) , fermion : |E; §> . (3.45)

The A = 1 particle, together with its CPT conjugate with A = —1, give us a massless
vector, which necessarily has some gauge invariance. Thus, a massless vector mul-
tiplet (generally just called “vector multiplet”) contains a four-dimensional gauge
field A,. Its fermionic superpartner, generally denoted by Aoy A, is called the
“gaugino”.

Supergravity multiplet. If we take A = % and its CPT conjugate, we get the
states:

fermion : \E;:l:;) , boson: |E;+£2) . (3.46)
A massless particle of helicity |A| = 2—in other words, a spin-2 massless particle—
is a graviton—it can only appear in a supersymmetric theory of gravity, known as
a supergravity. The superpartner of the graviton, of helicity %, is a fermion called
the gravitino.

3.3 Non-minimal supersymmetry in 4d

Non-minimal supersymmetry in 4d means that we have N' > 1 Weyl spinors Q!,
and their complex conjugates Qé The supersymmetry algebra takes the form:

{QL Qs =20" Pty {QLQII =7, {Qur,Qut=71s .| (3.47)

Here, there is the possibility of a non-trivial complex central charges Z'/, with:
zl = 71 (3.48)

By a Hermitian transformation, we can always bring Z!” to a canonical block-
diagonal form, where each block is a 2 x 2 anti-symmetric matrix. For N = 2, we
simply have:

717 =2 7 (3.49)

with a single complex central charge, denoted by Z. The factor of 2 was introduced
for future convenience.

3.3.1 Massless multiplets

Consider first the case of massless multiplets. From the fact that QI and Qg are
realised trivially on such massless states, as in the N/ = 1 case, we find that the
central charges must also vanish, i.e. Z!/ = 0, on massless multiplets. We then
simply have:

{Q{> QIJ} = 4E61J ) (350)
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with all the other anticommutators vanishing. We thus have N pairs of helicity-
lowering and raising operators:

ar = ——Q7 , ay = ——=0Q;:; , ar,a;} =461y . 3.51
I 2\/EQl I 2\/EQH {ar,a;} =615 (3.51)
Starting from a state |E; \) of helicity A\, we obtain the states:
k
a}l--~a§k|E;)\) ~ \E;)\+§> ) (3.52)

with k running from 0 to N. Thus, an extended supersymmetry multiplet takes
the form:
1 k
|E; ), /\/'><|E;)\—|—§> TR (g) X yE;/\+§> ,o \E;/\+j;/> . (3.53)
Any such extended massless multiplet spans helicities A to A+ %N B N %[,

we also need to add the CPT conjugate supermultiplet.
In the case N even, N = 2n, the minimal helicity in a supermultiplet is:

1 n
| Amax| = 1/\/ =5 (3.54)
with helicities A = {—%/, %/ + % S %/ — % , AT/}’ which is CPT invariant. For any

other multiplets, for any A, we also need to add the CPT conjugate multiplet in
any physical theory.

Rigid supersymmetry and supergravity. Massless particles of helicity || > %
are associated to gauge symmetries:

Al =1 > Lie group gauge theory (“local” symmetry G) ,
Al = 3 < local supersymmetr:
By persy v (3.55)
Al =2 “~ gravity (local Poincaré) ,
Al > 2 > higher-spin theories—always free.

For gauge theories, this is the statement that the Lagrangian of a free massless
vector field has a invariance:

Au(x) = Ay(z) + Opa(x) (3.56)

for any function a(x)—here, we consider the Abelian case, G = U(1), for simplicity.
Equivalently, the so-called gauge field A, couples to a conserved current:

Saj = /d%A,Jﬂ : S — S+/d4xauaj“ = S/d‘*:ca@w’“ =S . (3.57)
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We will come back to gauge theories, and to the |A| > 1 generalization, later in
the lectures. For now, we would just like to point out that theories with massless
particles of helicity |A| = 3 or |A| = 2 necessarily involve gravity. Indeed, an helicity
2 massless particle is a graviton; moreover, we claim that an helicity % massless
particle, called a gravitino, is necessarily paired with a graviton in a consistent field
theory. The rough idea is that the gravitino couples to a supersymmetry current,
while the graviton couples to the energy-momentum tensor; but, per the structure
of the supersymmetry algebra, we cannot have “local supersymmetry” without also
having “local super-Poincaré”—that is, supergravity.

Supersymmetric theories without massless particles of helicity |\| > 1 are called
rigid supersymmetric theories—we can just keep calling them supersymmetric the-
ories, for short.

Any supersymmetric theory with a graviton and gravitinos is called a super-
gravity.

Theories with massless particles of helicities |\| > 2 are called higher-spin the-
ories. It is known that such theories are either free, or must contain an infinite
tower of particles of essentially every spin. This is a rather esoteric subject, and we
will not mention it again.

Thus, if we are interested in rigid supersymmetry only, there is a finite list of
4d supersymmetries:

N=1,234. (3.58)

Four-dimensional 4d N = 4 theory is known as maximally supersymmetric Yang-
Mills (SYM) theory. From our discussion above, we easily understand that it must
be a gauge theory—i.e. a Yang-Mills (YM) theory, since there is only one possible
multiplet in the case, with [Apax| = 1.

If we are interested in supergravity, we can consider supergravities with:

N=12,---,7,8. (3.59)
In particular, 4d N = 8 supersymmetry is called mazimal supergravity in four
dimensions. It has is a unique massless multiplet with [Apax| = 2.

We will study extended supermultiplets further in a problem sheet.

3.3.2 Massive multiplets and BPS condition for N = 2

With extended supersymmetry, there is another important type of massive super-
multiplet that we should discuss—the so-called BPS multiplets. E

For simplicity, we focus on the case N/ = 2, which has a single central charge
Z € C, as in . The supersymmetry takes the form:

{Q{a Ql]} = {Qé? Q2J} = 2M5IJ )
{Q1,QF} =22, (3.60)
{Qi Qs,} =2Zers ,

BPS stands for Bogomolnyi-Prasad-Sommerfield.
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and all other anticommutators vanishing. It is useful to define the operators:

7(@1 +0a1Qy) af = T(Qll +@Q3) .
_ Lo ..B S L 2
az = \1@(@2 0426;212) ’ a) = \[( 51 — a2Q7) , 561
by = E(Q% —a1Qs) bJr \[(Qn a1Q3)
b= = (Qh+a2Qy) b = = (Qy + @20QD) |

N
S5l

with a1, as some pure phases. One can check that the only non-zero commutators
amongst these operators are:

{al,aJ{} = 2M+0112+ ar s,
(b1, b} =2M —a Z — a1 Z , (3.62)
{al,b];} = 0412 —a1 7,

as well as similar commutators for as, bo, ag, ag, with a; — ao. For any fixed Z, we
can choose o = ag = ¢'#8(%) | 50 that the RHS of the last line in (3.62) vanishes.
We then have the interesting conditions:

{aj,al}y =2M +2Z] >0,  {b,bl} =2M —2|Z| >0, (3.63)

since {al,aJ{} and {bl,bJ{} are positive-definite. These so-called BPS inequalities
are very important in the study of 4d N' = 2 quantum field theories.

We can easily study the supermultiplets of one-particle states, as before. For
M # +|Z|, we have an ordinary massive multiplet, also known as a long multiplet.
It has 2% = 16 states, 8 bosonic and 8 fermionic. When the so-called BPS condition:

= |z|, (3.64)

is satisfied, on the other hand, we have a short multiplet, with half the number of
components, since by, bI in (3.63)), and similarly bs, b;, are then realised trivially on
one-particle states.

3.3.3 R-symmetry

The maximal R-symmetry of 4d extended supersymmetry is U(N), with (Q7)
transforming in the fundamental representation, and (Q;) transforming in the anti-
fundamental representation.

In particular, in the rigid-supersymmetry case, the maximal R-symmetry of 4d
N = 2 theories is U(2)g = U(1), x SU(2)g. The maximal R-symmetry of 4d
N = 4 supersymmetry is U(4), but the actually realized symmetry in N’ =4 SYM
is SU(4) = SO(6).
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3.4 Supersymmetry in 3d

Supersymmetry in 3d, in Lorentzian signature, can be discussed similarly. The
irreducible spinor of SO(1,2) is the Dirac spinor 1,, where the spinor index takes
values a = 1, 2.

Consider the v matrices as in (2.11)), namely:
(1)’ = (=io? 0" 0", (3.65)

with ¢ = 0,1,2. We may raise and lower the spinor indices with ¢*? and €af, aS
for Weyl spinors in 4d. They satisfy:

Yy =g — Py, (3.66)
with %12 = 1. Therefore, the so(1,2) matrices in the spinor representation are:
1

MMV = _ieuyp’}/p . (367)

The supersymmetry generators are real Dirac spinor supercharges Q7, and the
supersymmetry algebra must take the form:

{QL, Q%) = 295 Pud" +eapz" . (3.68)

We leave it as an exercise for the reader to check this, using the Jacobi identity; the
overall constant can be chosen at will, by rescaling the Q'’s. The possible central
charges are antisymmetric, Z// = —Z17,

The most well-studied supersymmetric d = 3 QFTs are with NV is even. Then,
we can organise the supercharges into complex Dirac spinors, similarly to . In
particular, for N' = 2, we define:

Qo =Qn+iQ%,  Qu=Q)—iQ2. (3.69)
The 3d N = 2 superalgebra is closely related to the 4d A/ = 1 superalgebra. (We
will make this more precise in an exercise.)

3.5 Supersymmetry in 2d

Supersymmetry in 2d can be discussed similarly. We leave this as an exercise.

3.6 Supersymmetry in higher dimensions

Let us give a very brief overview of supersymmetry in space-time dimensions d > 4.
We list the types of supersymmetry up to d = 11 in Table

We may focus on the general structure of the massless supermultiplets, similarly
to the d = 4 case discussed above. Let us just state two important results:
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d | spinor N max R-sym. No NEUSY NSUGRA
1 | “Dirac” N=n SO(N) N 16 32

2 | Weyl |N = (np,ng)|SO(nL)xSO(ng) | nr+ng (8,8) (16, 16)

3 | Dirac N=n SO(N) 2N 8 16

4 | Weyl N=n UWN) AN 4

5 | Dirac N=n Sp(N) 8N 2

6 | Weyl |N = (ng,ng)| Sp(np)xSp(ng) | 8(np+ng) | (1,1)or (2,0) | np+ng =4
7 | Dirac N=n Sp(N) 16N 1

8 | Weyl N=n UWN) 16NV 1

9 | Dirac N=n SO(N) 16N 1

10| Weyl | N = (np,ng) | SO(ng)xSO(ng) | 16(nL+ng) (1,0) (1,1) or (2,0)
11 | Dirac N=n SO(N) 64N 0

Table 2: Supersymmetry in 1 < d < 11. There is no rigid supersymmetry beyond
d = 10, and no supergravity beyond d = 11.

e There is a maximal dimension in which one can have rigid supersymmetry,
namely d = 10. The corresponding 10d A" = (1,0) SYM is closely related to
4d N =4 SYM.

e The maximal dimension in which one can have a supergravity (A < 2) is
d = 11. The corresponding unique supergravity theory is simply called 11d
SUGRA.

e There are also two types of maximal superrgavities in d = 10, called type
ITA and type IIB, which have N' = (1,1) and N' = (2,0) supersymmetry,

respectively.

These maximally supersymmetric theories appear prominently in string theory—
in particular, IIA/B supergravity is the low-energy limit of the ten-dimensional
type-I1TA /B superstring. On the other hand, 11d SUGRA is thought to be the low-
energy limit of a conjectured theory of quantum gravity in 11 dimensions, called
M-theory.

4 Supermultiplets, superfields, and superspace

4.1 Representing supersymmetry on fields

In a QFT, we would like to realise supersymmetry explicitly on fields—namely, some
functions of the space time coordinates, ¢(z), which may also transform in some
non-trivial representations of the Lorentz group—, not only on one-particle states.
Moreover, if at all possible, we would like to realise the supersymmetry algebra
off-shell—that is, without the need to impose the equations of motion of fields (in
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fact, without the need of specifying the equations of motions, or equivalently the
Lagrangian).

We are familiar with the way the Poincaré algebra is realised on fields. In
particular, the momentum operator P, is simply realised as:

P, = —i0, , (4.1)
acting on fields of any spin. On a classical field, it acts as:
" Prip(z) = ol +a) (4.2)
This is equivalent to:
e ()™ P = p(z+a) & [Pugl=-Pup, (4.3)

for the corresponding field operator.
Similarly, we would like to realise the supersymmetry algebra on fields, with
explicit transformations such as:

[QOM ¢] = ¢a ) [QOM@Z},B] = Pap » ) (44)

for instance, for 4d A" = 1 supersymmetry. (In this schematic example, ¢ and ¢,z
are bosonic fields, and 1), is a fermionic field.) We would like to find supersym-
metry transformations as in which close on a set of fields (¢, 1, ¢, - )—the
supermultiplet—and which realise explicitly the supersymmetry algebra (by defini-
tion).

In any dimension d, we denote the action of supersymmetry on the fields by:

0 =1e"Q, , (4.5)

where € are supersymmetry parameters, which we choose to be anti-commuting. For
4d N = 1 supersymmetry, we have:

§=6+06: (4.6)

with:

b = 1€Q = i€“Q, , 0c = i€Q = —ie*Qy | (4.7)
where the supersymmetry parameters are constant, anti-commuting Weyl spinors,
® and €. Since the supersymmetry parameters are chosen to be fermionic, the
variations themselves are bosonic operators.

(Note: The variations 6. and & are not independent, since eQ and &éQ are
Hermitian conjugate of each other. Nonetheless, for all intents and purposes, we

can treat the parameters ¢ and € as independent. This is effectively what we do
below.)

€

The supersymmetry variations should satisfy the supersymmetry algebra, namely:

[56, (5g] = —2(60'“6) PN , [(561,(562] = 0 y [5517652] = 0 . (48)
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In principle, one can try and work out the supersymmetry transformations for the
most general supermultiplet, by writing down the most general transformations on
fields allowed by Lorentz covariance, and then fixing all the coefficients by requiring
that the variations satisfy . In the following, we present the result of this
procedure for the off-shell chiral multiplet, the simplest supermultiplet of 4d N =1
supersymmetry.

4.1.1 The chiral multiplet, off-shell
A 4d N =1 chiral multiplet consists of the fields:

¢ = (qbawouF) ) P = (an&dap) : (49)

Here, ® and ® are CPT-conjugate of each other. They are often called the ‘chiral
multiplet’ and the ‘anti-chiral multiplet,” respectively. The corresponding on-shell
multiplets were discussed in the previous section. In the massive case, we have
a spin—% fermion and its complex conjugate, giving two real degrees of freedom;
in the massless case, we have an helicity |\ = % fermion, again giving us two
real degrees of freedom. In all cases, we also have two bosonic particles which
are Lorentz scalars. Those bosons are accounted for by the complex scalar field ¢
in . |Z| On the other hand, the fermionic particles should correspond to the
Weyl spinor field ¢, 1. Since a Weyl spinor 1, has four real degrees of freedom
off-shell (but only two real degrees of freedom on-shell!), we should add (by hand)
two real bosonic degrees of freedom in the off-shell description, to maintain the
fermion-boson degeneracy. These so-called auziliary fields are scalar fields denoted
by F, F in . They are called ‘auxiliary’ because their equations of motion are
algebraic (and therefore they can be eliminated from the description by imposing
those equations of motions).
The supersymmetry transformations of the chiral multiplet ® reads:

56 = V2e
5o = iV2(01€)00,b + V2eo F (4.10)
OF = iv/2e" 0,1 .

One can easily check that this realises the supersymmetry algebra (4.8]). For future
convenience, we take the following convention for two successive variations of a field

¢ (of any spin):
(515290 = 52(51(,0) . (411)

17As a side comment, we should note that the two real scalars A and B in the complex scalar
¢ = A+iDB are really a scalar and a pseudo-scalar, respectively. (That B is a pseudo-scalar means
that it changes sign under a parity transformation.) Indeed, the scalar EaﬁaJ{ayO) in is
really a pseudo-scalar, if |0) is a proper scalar (the telltale sign, as always, is the presence of the &
symbol). In other words, parity maps the multiplet ® to ®, as is clear at the level of the fermions.
We refer to Weinberg’s book [2] for a detailed account of parity in supersymmetric theories; in
these lectures, we are not keeping track explicitly of the discrete symmetries.
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For instance:
[0c1, 0es ] = V2(€16e,1) — €206,00) = 2(e1€2 — €261)F =0 . (4.12)
Similarly, we can check:
[0c, 0c)p = V/2e021p = 2ieat€d, ¢ . (4.13)
This indeed realises , with P, = —id,. We also have:
0,0t = V2eadeF — iv2(0"8)ady(6.0)
= 2ieq (€61 0u1)) — 2i(0"€)q €0 (4.14)

= 2iec" €01y
Here, to go from the second to the third line, we used the non-trivial Fierz identity:
ea(€0t)) — (01€)qer) = (€0 €)1y .

One can check the remaining anti-commutators (4.8]), acting on the fields ¢, and
F, in a similar manner. (The reader is encouraged to do so.)
Similarly, the transformations rules for the anti-chiral multiplet, ®, are:

8¢ = V2ep
5P = ivV2(a"€)* 0,0 + V2EF (4.15)
OF = iﬂea“@uﬂ .

One can then write down supersymmetric Lagrangians for chiral multiplets. The
simplest one is:

Liin = —0udpO"¢ — 5" 0, + FF . (4.16)

This is the sum of the canonical kinetic terms for the scalar and Weyl fermion,
respectively, plus a trivial “kinetic term” for the auxiliary field F'. (Ezercise: check
explicitly that this is supersymmetric!) More interestingly, we can introduce inter-
action terms coupling the bosons to the fermions. For instance, the term:

gcubic = 90(}7(252 - Wﬁ(ﬁ) + gO(F(52 - &&&) ) (417)

is supersymmetric, for any complex coupling constant gg. Indeed, using (4.10) we
easily check that:

S(F&? — popop) = 8, (iﬂ@a#w?) , (4.18)
and similarly for the complex conjugate term. Considering:

Z = gkin + ciﬂcubic ’ (419)

and “integrating out” the auxiliary fields F' by using their equations of motion, we
find: - B
L = —0,00"p — iyt =V, (4.20)
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with the potential:

V =lgol*[6* + gotvoe + Gobié - (4.21)

Thus, we find a simple supersymmetric $* model with Yukawa couplings, where the
coupling constants are related as shown—this exact relation between a priori very
different coupling constants is the hallmark of supersymmetry, and one technical
reason why it is so powerful. We will come back to this class of models (known
as Wess-Zumino models, historically the first 4d N' = 1 models to be studied)
after we introduce some more powerful technology for constructing supersymmetric
Lagrangians.

4.2 Superspace (4d N =1)

The procedure just outlined to realise supersymmetry on fields, known as “super-
symmetry in components,” is perfectly fine, but one can do a bit better. The
formalism of superspace, which we will now describe, allows us to work with super-
multiplets more efficiently, in a way which is essentially covariant with respect to
the super-Poincaré algebra.

4.2.1 Coset manifolds

Let us start with a mathematical digression, by reviewing the general construction
of coset manifolds for Lie groups, and the resulting induced action of the group on
the coset.

Consider a Lie group G with a subgroup H C G. At the level of the Lie algebra,
g = Lie(G) and h = Lie(H ), we have the direct sum:

g=he R, (4.22)
where K is the complement of h inside g. Let T4 denote the generators of g, with:
(T4, Tp] =iCap“Tc , (4.23)

and the indices A, B,--- = 1,--- ,dim(g). Let us split the generators of T into
generators of fh and K, respectively:

(Ta) = (M1, Ka) My eib, K, €if (4.24)

with the indices I = 1,--- ,dim(h) and a = 1,--- ,dim(R). We then write general
group elements g € G and h € H as:

€Ty e Mir+ia® K, , h = @ My (425)

g = € y
; A_ (0 ,a ~I ; ; .
= (w’, . :

with € (w', @) and @' some real coefficients. The coset manifold

M=G/H, (4.26)
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is defined as the set of equivalence classes under right multiplication by H:
MG/~ with g~g ff SheH|gh=4g . (4.27)
To obtain a good manifold, we assume that the coset is reductive, meaning that:
h, Rl C R. (4.28)
Furthermore, if we also have:
R,/ Ch, (4.29)

the coset manifold is a symmetric space. In terms of the Lie algebra generators, we
thus have: .
[My, M| =iCr;" Mk ,
[Mb Ka] = Z'Oﬂzblfb ) (4'30)
(Ko, Kp] = iCap K +iCap" My

with Cy¢ = 0 for a symmetric space. Let us denote by x(y) the points in (4.27)),
with y some local coordinates on the manifold M. In the following, we will consider:

x(y) =e W' e c @ | (4.31)

as representatives of the equivalence classes that define M; in the examples we
consider, y® form a natural set of coordinates on the coset. In general, one could
choose any convenient set of coordinates y on M.

Given this coset construction, there is an induced action of G on M (with G
acting from the left). Indeed, for any g € G, we should have: H

9 x(y) =% )h(g,y) , (4.32)

for some h(g,y) € H, which generally depends on the coordinate y and the group
element g. In explicit computations, we will need to use the Baker-Campbell-
Hausdorff formula:

1
eApB — pA+B+3[AB]+-

: (4.33)

for the product of exponentiated generators (there is an infinity of terms on the
RHS, but we will just need the first non-trivial one).

The relation implies a transformation g : y — 3 on the coordinates on
M. At first order around the identity in g, we find:

g=1+i"Th, Y=y + k() , (4.34)

for some functions k% (y). Then, the differential operators:

0

Ta= _Zkix(y)aTJa )

(4.35)

8We act with ¢! instead of g for later convenience; this is just a convention.
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realise the algebra g on scalar fields ®(y)—that is, functions—on the coset manifold
M. [@] Note that the infinitesimal action of:

9 =919 " 992, (4.36)
on y® induced by (4.32)), using the expansion (4.34)), is:
gyt =y =yt e e (Kaohk — kpOnkY) =y — ') [Ta, Tp]" + -+, (4.37)
o)

where we used the short-hand notation 9, = P

Note on conventions. We are using conventions in which the action of G on

(classical) fields is defined to be:
U(g)®(y) = (1 +ie'Ta+--)0(y) = D(y/) , (4.38)
which is sometimes called a “passive transformation,” with:
ieAT
Ulg) =€ "4, (4.39)

some explicit representation of the group. Correspondingly, for a quantum-mechanical
operator ®(y) on M, we have:

Ulg)'e(y)U(g9) = 2(y) . (4.40)
with U(g) = ei<"Ta a G-valued operator. We then have:
Ug)'@)U(9) = @(y)(y) —ilTa, 2(y)] + -+ , (4.41)

and:
[Th,®] = —Ta?, (4.42)

where T 4 is a particular representation of Ty on the field ® in terms of differential
operators. The minus sign in the RHS (4.42) is necessary for consistency with the
Jacobi identity:

(T4, Tg],®] = [Ta,[Ts,®]] — [TB, [Ta, ®] , (4.43)

since [TA, [TB, <I)H = TBTA(I).

9Moreover, the coset manifold has a natural metric g induced from the Killing metric on G,
and one can show that the real vector fields:

0

KA = ZTA = kaA(y)aiya )

are Killing vectors of the pseudo-Riemannian manifold (M, gam).
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4.2.2 Minkowski space as a coset manifold

Consider the 4d Poincaré group:
IS0(1,3) = SO(1,3) x R | (4.44)
Any group element (connected to the identity) can be written as:
g = ea""Mur+it"Pu ¢ 150(1,3) | (4.45)

for some parameters w*” and x*. Then, Minkowski space-time itself can be thought
of as a coset manifold with G = ISO(1,3) and H = SO(1,3). That is:

R =~ 1S0(1,3)/50(1,3) , (4.46)

where SO(1,3) acts from the right. Here, the generators K, are simply the trans-
lation generators P,. The quotient gives a symmetric space, since trivially
holds.
Let us parameterise the coset 150(1,3)/SO(1, 3) with the coordinates y = (z*),
with:
x(z) = e @b (4.47)

where the minus sign is introduced for convenience. Let us see how translations and
rotations act on G. Consider the left-multiplication by either a translation
or a rotation: _

gp = @ Pu gr = e Muv (4.48)

For the translation, we have:

g7 x(z) = x(z + a) = x(2') , (4.49)
trivially, therefore we find:
D (4.50)
and the differential operator constructed in (4.35]) is simply:
.0
P'u = —Z@ s (451)

as expected. Similarly, for a rotation, we find:
gﬁlx(x) = e_ix“Pu_%WWMW_%"JWW[Mpaqu]'*"“
= x(a')h = e Pug 3977 Myo (4.52)

s P~ 1 ’
— i B Py— @M My — 3wl 2’ [Py, Mps |+

At first order, this gives w"’ = WM and:

1
o't =zt + §wp‘7:c”(—77,,p5g“ + e, . (4.53)
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This gives us the generators:

‘ 0 0
Mpa’ =1 (.Tpaxo_ — 1’0—83;,)) 5 (454)

where z,, = nu,2”. The differential operators (4.51)) and (4.54) satisfy the Poincaré
algebra (3.1)) on scalar fields (y) in R3, as one can readily check.

4.2.3 4d N =1 superspace as a coset super-manifold

The four-dimensional N = 1 superspace is defined similarly to (4.46)), as the coset:
R34 =~ 150(1,3]4)/50(1, 3) . (4.55)

Here, 150(1,3|1) denotes the 4d A/ = 1 super-Poincaré “group” (or supergroup)
obtained by exponentiating the super-Poincaré algebra generators:

g = e Muvtish Putif®* QotifsQ ¢ 190(1,3|1) (4.56)
The parameters % and 0, are Grassmanian numbers—that is, they anti-commute:
{0°,0°y =0,  {0a,0;} =0, {0a,0°}=0. (4.57)

We parameterise the quotient by:

x(y) = o (@ PutifQ+i0Q) : (4.58)

with the superspace coordinates:
y = (", 0% 0% , (4.59)

bosonic and fermionic—the central new players are the four Grasmmanian coordi-
nates 6 and 6.

The key idea of superspace is that we can view supersymmetry geometrically,
as a “translation” along the fermionic coordinates of superspace. Indeed, consider
the supersymmetry “group element:”

gsusy = e (4.60)
for some arbitrary Grassmanian parameters n%, 5. We have:

Using the supersymmetry algebra, we get:

1Q,0Q] = 170°{Qa, Qa} = 2n"0P, (4.62)



46 4 Supermultiplets, superfields, and superspace

for any two anti-commuting spinors n and @. Therefore, we find the induced action
of supersymmetry on the superspace coordinates:

2 =t —inot + 0oty
0 =0+, (4.63)
0 =0+17,

Since supersymmetry should act on classical fields as:
U(gsusy)®(z,0,0) = e+ &(z,6,0) | (4.64)

we obtain the differential operators on superspace:

_ (9 - ga O ~ (0 o O
ro = —1 (89a w'ao.ﬁ W) s Qa =1 <6004 10 UO&O.‘W) . (465)
The Grassmanian derivatives are defined as:
0 0 =4 :
Y g8 5B g8 =5° . 4.
890‘0 oy 39019 oy (4.66)

We refer to subsection for further discussion. The differential operators (4.65))
realise the supersymmetry algebra, since:

{QOH Qa} = _Qio-gda,u = 20—ZQPM ) {QOH Qﬂ} = 0 ) {Qén QB} = 0 . (467)

Note that the field ®(y) is a function of superspace, not only space-time-this,
almost by definition, is a superfield. (We’ll give a more precise definition of what
is a superfield momentarily.)

Ezxercise: How are the SO(1,3) generators M, represented on superspace? It
should be clear that it cannot be simply as in (4.54). (Ezplain why.)

4.2.4 On manipulating the superspace coordinates

Since 6 and § are Grassman numbers, we have to be a bit careful with signs. Let
us introduce the short-hand notation:

0 _

\‘Q.)

0 0 y
o = —— = — iy = —— , * = 4.
0 00« ? 00, ? 00« 0 00 (4.68)
As mentioned above, we define:
0,07 =68 | 950° =4 . (4.69)

This implies:
905 = —05 , W@:-@. (4.70)
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All derivative are taken from the left; this means that we first need to move any
6“ to the left (incurring whatever signs) before using the definition dgf* = 03, and
similarly for the 0y derivative. Note that, in particular, we have:

0n 00 = 20, , 06 00 = 20, , (4.71)
and therefore: .
€0, 00 = 210 | €90, 00 = 260 . (4.72)

Because Grassman numbers are anti-commuting, we can always expand any
function into a polynomial in 6% and 0%—the Taylor expansion truncates. For
instance, a function of only z* and a single Grassman number, #', is given by:

F(z,0") = fo(z) + 60" fi(x) , (4.73)

where fy and f; are arbitrary functions of x. The expansion truncates because
()2 = 0. Thus, derivation is always a purely algebraic operation. For instance, in
this example:

O F(@,0") = i) (4.74)

In the following, we will also use a notion of integration over Grassman numbers—
known as Berezin integration. For a single Grassman number, say 6!, the integra-
tion can be defined as:

/delal =1, /delg(x,92,9) =0. (4.75)

In other words, it acts just like a derivation. One can check that this is a linear
operation. We also have a fermionic “Stoke’s theorem:”

)
/d@laelF =0. (4.76)

Integration over superspace. In 4d A = 1 superpace, we define:
/d29 = ;/d91d62 , /d26: ;/d92d91 . (4.77)
Since 00 = 266! and 00 = 2662, this is such that:
/d20 00 =1, /d29 06 =1. (4.78)

In particular, an integral over the four Grassman coordinates is equivalent to col-
lecting the 00600 coefficient in the Taylor expansion of the integrand:

(4.79)

/dzedzéF(ﬂcﬁ,@_) = F(2,0,0)] 955 -

One can also check that:

/d20 = €a'8(9a85 , /d2§ = 75d6‘5d58 . (4.80)



48 4 Supermultiplets, superfields, and superspace

4.3 Superfields

A superfield is a function over superspace,

S(z,0,0) , (4.81)
which transforms according to:
eia“PH—&—ieQ—i-iEQ S(.’L’, 0’ 9_) — S(SU/, (9/7 9‘/) (4 82)
=S(z +a—iecl+i0oE, 0 +¢ 0+ €, '

under translations and supersymmetry (that is, any superspace translations). It
is clear that linear combinations of superfields are superfields, and products of
superfields are superfields.

We can expand an arbitrary superfield S in the Grassman coordinates, to obtain:

S(z,0,0) = C(x)+i0x(x) —ifx(z) + %QQM(JJ) - %ééﬂ(m)
- - B 1 (4.83)
— 0ot 0v,(x) + 106007 (x) — i006n(z) + 50900 D(z) .

The coefficients in the expansions are ordinary fields in Minkowski space-time, Eﬂ
the components of the superfield. Assuming that the fields C, M, M, v, and D
are bosonic, the fields x, x, 7,7 are fermionic. The simplest example of a general
superfield is when C' is a scalar field—then, x4, X are spinor fields, and so on and
so forth.

If C is a real field, the superfield S contain 8 bosonic and 8 bosonic degrees of
freedom. This is too many to furnish an irreducible representation of the super-
symmetry algebra. For instance, we saw in section that the off-shell chiral
multiplet has 4 + 4 degrees of freedom. To obtain irreducible supersymmetry mul-
tiplet in superspace, therefore, we will need to impose superspace constraints.

4.4 Superspace for other dimensions and/or N’s?

Before we specialise to 4d N' = 1 superspace in most of the following, we should
briefly mention how the superspace formalism can be generalise to other space-time
dimensions and other amounts of supersymmetry.

In four dimensions, it turns out that there is no useful superspace formalism (of
the simple type we just discussed) for NV > 1. E More precisely, for N' = 2 there
exists a superspace formalism for pure gauge theories, but not for matter fields (in
so-called hypermultiplets). In the A/ = 4 case, there is no superspace formalism at
all.

20The numerical coefficients in are just a matter of conventions, of course.

ZIThere exists more sophisticated approaches to superspace for extended supersymmetry, but
they are rather more complicated, and it is fair to say that none has been particularly useful in
explicit computations.



49

In other space-time dimensions, the rule of thumb is that there exists a useful
superspace formalism for less than or equal to 4 real supercharges, Ng < 4; in
particular, only in dimensions d < 4. The basic reason can be understood as follows.
In a general supersymmetric theory with Ng supercharges, we would introduce Ng
superspace coordinates 0%, a = 1,--- , Ng, and a general superfield would take the
form:

F(2,0) = folx) + 0°fu(x) + %eaeb Fap(@) 440670 (2) . (4.84)

That gives a total of:

No
Z <]\;€Q) = 2Ne = 2Ne~1 hogonic + 2Ve ™! fermionic (4.85)
k=0

components. In general, this is much larger than the number of degrees of freedom
expected in an irreducible representation of supersymmetry. For instance, for 4d
N = 4 rigid supersymmetry, the vector multiplet contains 4 Weyl spinors, for a total
of 16 off-shell fermionic components, while 2¥e~1 = 215 which is much larger than
16 = 2%, In general, there might not exist any consistent sets of constraints that
give rise to the correct off-shell supermultiplets. There are also no-go theorems to
that effect. For instance, there does not exist any off-shell formulation of 4d N' = 4
SYM with a finite number of auxiliary fields [20].

5 4d N =1 supersymmetry, part I: chiral multiplets

In this section, we write down supersymmetric field theories explicitly. More pre-
cisely, we construct 4d N’ = 1 supersymmetric Lagrangians systematically, restrict-
ing ourselves to theories of chiral multiplets. These are theories that contain only
scalar fields and Weyl fermions.

(Later on in the lectures, we will discuss in detail the final ingredient necessary
to describe anything resembling the “real world” of Particle Physics: the gauge
fields.)

5.1 The SUSY-covariant derivatives

Since P, commutes with the supercharges, space-time derivatives 9, commute with
the supercharge operators Q and Q. This is also clear from their explicit expres-
sions,

Qo = —i (0o — i(0"0)a0y) Qa =i (9a —i(6%0")ady) - (5.1)

This is necessary so that various differential constraints, such as for instance the
on-shell condition P2 = —M? for a free scalar field, commute with supersymmetry.
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On the other hand, the naive superspace derivatives 9, and 94 do not commute
with supersymmetry. For instance:

(6,04 = [i€Q, 0s] = —i(c"€)00, # 0 . (5.2)

Then, the derivative 9,8 of a superfield S is not itself a superfield. There exists,
however, supersymmetry-covariant derivatives. They are given by:

Dy = 0 +1i(0"0)00,, , Dy = 04 +i(00")40,, . (5.3)

The same way that the supercharges (5.1]) are constructed by looking as left multi-
plication in (4.61)), one can define ([5.3)) in the coset construction by right multiplication—
one can readily check that:

X(y)gS_I}SY _ e—iz“PH—iOQ—iQQ e—ir]Q—iﬁQ _ X(y,) 7 (54)

gives a superspace translation generated by (5.3). The differential operators (/5.3])
anti-commute with the supercharges:

{Da, Q,B} = {DCH Qﬁ} =0 ) {Dda Qﬁ} - {DCH Q/B} =0. (55)
They also satisfy the supersymmetry algebra with the opposite sign:
{Do, D4} = —20/,Py, {Da,Dp} =0, {D4,Dy}=0. (5.6)

Using D, D and Oy, we can build an arbitrary superfield by taking product of
superfields and their covariant derivatives. Note the curious property:

{Dqa,Dg} = 2ic" .0, . (5.7)
In the language of differential geometry, this means that the connection:
V = (9,,Dq, D) (5.8)

on “flat” superspace has a non-trivial torsion, with Tos" = 2i0’,, being the super-
space torsion tensor. For future reference, we also compute the commutator:

Do, Da] = 20004 — 2i(00") 4,040, + 2i(6"0) 000,

5.9
— 00"0(0,0a0”0, — 204,40,0,) - (59)

(Ezercise: Check this!)

5.2 General multiplet and real multiplet

The “general multiplet” is a long multiplet with components:

gz(C,x,X,M,]\Z[,w,n,ﬁ,ﬁ) , (5.10)
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as introduced above. One often considers the case when the bottom component C'
is a scalar, but it could also transform in any representation of the Lorentz group.
Let us again write down the component expansion of the corresponding superfield:

5(,0,0) = C(z)+ifx(x) — ifx(z) + %HGM(x) _ %ééM(x) -
— 00"Gu,, () + 10607 (z) — i000n () + %9959‘ D(z) . |

It is a tedious but straightforward exercise to derive the supersymmetry transfor-
mations in components, using the definition:

6 = 0c + 0z = 1eQ + 1€Q . (5.12)

We simply write down:

08(p) = S(de) , (5.13)

where ¢ denote the component fields, and match the result term by term in the
0,0 expansion. One then finds:

0C = iex — i€x ,
Xa = €aM + (0"€)a(0,C +ivy,) ,
(S)Zd = EO'CM + (60"“)@(8MC — ’L'UM) ,
OM = ieah0ux + 2¢€n ,
M = ieatd, X + 2¢n ,
1 1 5.14
0v,, = t€o, ) + 1€0,m — 560”5#61,)( — 555”0;#9119_( , (5.14)
~ 1 i
Mo = i€ D — i(a”a“e)aauv,, + §(U“€)af)pM ,
o~ 1 __, i
0N = —1€D — 5(60’“0’ a0y vy — 5(60“)@(9“M ,
5D = —ect0,n + eat'oun .
These transformations law look rather cumbersome. Thankfully, we can find a

simpler-looking form by a simple field redefinition. Let us introduce the new fields
A, A and D to replace n, 77 and D, respectively:

7
Aa = 1Mo — 5(‘7#8/02)06 )
. g .
3 = i — L ero,00 (5.15)

~ 1
D:D—§82C,
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where 0% = 0,0". Then, the supersymmetry variations are simplified to:

6C = iex —1€x

IXa = €aM + (0"€)a(0,C + iv,) ,

6Xa = éaM + (€0")5(9,C —iv,) |

§M = 2iec" 0, x + 2€X ,

M = 2iea” 9, X + 2€ (5.16)
Sv, = i€a N + i€\ + €D, X + €0uX

o = i€ D +2(c"€) o0y,

§Ag = —ieaD — 2(e") 50,0y

0D = —60“(9#5\ +eat'ouN

as one can readily check. This is the most convenient parameterisation of a general
multiplet:
S:(C,X,)_(,M,M,’U“,)\,)\,D) . (5.17)

When C' is real, this is called a real multiplet—in that case, the fields y, M, A and
X, M, X\ are complex conjugate of each other, as implied by the notation. In the
general case, however, all the fields in can be complex and unrelated to each
other. The corresponding general superfield is given by:

S(x,0,0) = C(x)+i0x(x) —ifx(x) + %QGM(x) - %ééM(m)
— Oo* Qv (z) + 000 ()\(x) + %(6*‘8”)((9:)) (5.18)
. P 1 1.,
— 16006 </\ + 20“(%)((30)) + 59699 (D(x) + 5(9 C(m)) ,

when expanded in components.

By direct computation, one can show that the supersymmetry variations (|5.16|)
indeed satisfy the supersymmetry algebra —We know this has to be true, by
construction, but it never hurts to check it explicitly.

5.3 Chiral multiplet

The chiral multiplet contains a complex boson and a left-chiral Weyl fermion, but
no right-chiral Weyl fermion. Looking at the general multiplet (5.17)), we should
therefore set to zero the right-chiral fermions:

Xa =0, Ao =0. (5.19)

For this constraints to be consistent with supersymmetry, the supersymmetry vari-
ations of ¥ and A should vanish, too. We easily see that dxy = 0 implies M = 0 and
v, = —i0,C. Then, 60X = 0 just implies that D = 0, and §M = 0 (for consistency
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with M = 0) fixes A = 0 as well. In short, the chiral multiplet ® is obtained from
the general multiplet S by setting:

S* = (€% =, x® = —iv20, X" =0, M® = ~2iF, M® =0,
v® = 0,6, A% =0, A® = 0 D‘I’—o) (520)
w o n®s — U, — U, - .

The numerical factors are a matter of convention, of course. One can readily check

that plugging into the supersymmetry transformations reproduces the

chiral multiplet transformations (4.10]). Similarly, we can construct the anti-chiral

multiplet as:

s = (C‘I’ =6, x® =0, ¥® = ivV2p, M® =0, M® = 2iF,
5 - B & N (5.21)

v? = 0,6, A* =0,A* =0, D :o) .

Such supersymmetry-preserving constraints can be imposed more elegantly by
using the supersymmetry-covariant derivative. By definition, a chiral superfield ®
is one that satisfy the differential constraint:

Dy ®(z,0,0) =0 . (5.22)

Similarly, an anti-chiral superfield ® satisfies:

Do ®(z,0,0) =0 . (5.23)

One can readily solve these constraints by the following trick. Introduce the “chiral
coordinates:”

M =M+ ifotb | ZH =t —ifoHh . (5.24)

They satisfy:

Dgzt =0, D.z* =0. (5.25)
A chiral superfield is simEly a function of (z#,6%) only, while an anti-chiral super-
field is a function of (z#,6%) only:

® = d(2,0) d = d(z,0) , (5.26)

since Dgf = 0 and Do0 = 0. Thus, a chiral superfield in chiral coordinates has the
simple expansion:
®(z,0) = ¢(2) + V200 (z) + 00F (2) , (5.27)

and similarly for the anti-chiral multiplet:

D(2,0) = 4(2) + V200(2) + 00F (%) . (5.28)



54 5 4d N =1 supersymmetry, part |: chiral multiplets

Expressing (5.27) in terms of (z, 6, 6), we find:

O(x,0,0) = p(x) + V200(x) + 00F ()

_ o 1

+i00"00,6(x) + ——0006",(x) + ~00000%H(x) .
V2 4

Comparing to the general multiplet (5.18)), we see that (5.29)) indeed corresponds

to the specialisation ([5.20)) of the general superfield. Similarly, for the anti-chiral
superfield, we have:

(5.29)

®(x,0,0) = d(x) + V20i(z) + 00F (z)

T DUT (5.30)
—i00"00,¢(x) + —=0000" 0,4 (x) + —00000°¢(x) .
V2 4
The product of two chiral superfields is again a chiral superfield, since:
Dg(®1P2) =0 . (5.31)

We can work out the product rules in components, for instance by using the chiral
coordinates z*, for simplicity:

1By = (1 4+ V2001 + 00F,) (dy + V20105 + 00F) . (5.32)
Collecting the terms at each order in 6, one finds: 7]

¢T = g1y ,
YP1P2 = hy do + Paihy (5.33)
F®1%2 = By o + Fopy — h1eh

On the other hand, the product of a chiral with an anti-chiral superfield is a
general superfield; in particular, the product of ® with its complex conjugate ® is
a real superfield,

S =33, (SN =5%T. (5.34)

The whole point of the superfield formalism is that it makes it easy to take “products
of supermultiplets.” In this example, the bottom component of S*® is the real
scalar C®® = ¢¢, and all the other components can be found similarly to ,
with a little bit more algebra. Note also that the sum of superfields ®+ ® is another
real superfield.

22In the last line, we used the simple Fierz identity:

2001 00py = —00p11)s .

This can be checked using the identity (A.4) in Appendix.
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5.4 Supersymmetric Lagrangians—D-terms and F-terms

We can now answer the question of how to build supersymmetric actions—namely,
an action

S= / 2L (0,00, ) (5.35)

such that:
65 =0. (5.36)

Note that the Lagrangian density £ (which we call ‘the Lagrangian,” for short)
itself cannot be supersymmetric—if 45 = 0, the commutators imply that
S is a constant. However, for the action to be invariant, it is sufficient for the
supersymmetric variation of .Z to be a total derivative:

0L =0,V oy | (5.37)

By abuse of notation, we call such a £ ‘a supersymmetric Lagrangian.’

5.4.1 D-terms

Looking at the supersymmetry transformation laws of a general multiplet in equa-
tion (5.16)), we see that the only field component whose variation is a total derivative
is the field D(z)—or, equivalently, D(z) in ; the two definitions are related

by a total derivative anyway. Indeed, since the supersymmetry parameters are
constant (we are doing “rigid supersymmetry”), we have:

6D = 0y (—ea" X + &' N) . (5.38)

Thus, there is a straighforward way to build a supersymmetric action: construct a
general superfield S“—more precisely, S* should be a real superfield, so that the
action is real—, for instance by taking products and sums of elementary superfields,
and consider the so-called “D-term Lagrangian:”

1
Zp = EDSL . (5.39)

This can be written more elegantly as a superspace integral over the real superfield
itself:

Lp = / d?0d*6 St . (5.40)

The supersymmetric action is an integral over 4d N' = 1 superspace, R34

Sp = /d4x/d20d208L : (5.41)
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5.4.2 F-terms

In the presence of chiral multiplets, there is another possibility for constructing
supersymmetric Lagrangians. Indeed, from the transformations laws (4.10]) of a
chiral multiplet, we see that the field F'(z) also transforms as a total derivative:

SF =0, (i\/ﬁa—fw) , (5.42)

and similarly for the anti-chiral multiplet. Thus, given any chiral multiplet ®, we
can construct the so-called F'-term and anti-F'-term Lagrangians:

L =F* Lp=F? (5.43)

which are separately supersymmetric. (We should add the two of them to obtain a
real action, though.) The F-term action can be written as an integral over half of

superspace:
Sp = /d4x/d29<1> : Sp = /d4x/d20<i> : (5.44)

5.5 Lagrangians of chiral multiplets

Consider now a theory of n chiral multiplet ®, with i = 1,--- n—that is, a
theory of n complex bosons ¢’ and n Weyl fermions . Since ® is complex, it is
convenient to denote the anti-chiral multiplet by ®*, with indices i = 1,--- ,n. A
general supersymmetric Lagrangian takes the form:

= /d29d2eK(<i>,<1>) +/d29 W(®) +/d29W(<i>) : (5.45)

It is fully determined by two functions:

e The real superfield K(®, ®), which is an arbitrary real function of the funda-
mental chiral multiples ® and ®. It is called the “Kéahler potential” (more on
this in subsection below). It encodes the kinetic terms of the theory.

e The chiral superfield W (®), which is an arbitrary holomorphic function of
the fundamental chiral superfields ®*. It is is called the superpotential and it
encodes the interaction terms. The anti-holomorphic function W (®) is the
complex conjugate of W(®).

Comment on notation: The term “superpotential” can denote either the chiral

superfields W (®), or the holomorphic function W (¢), an holomorphic function of
the scalar fields ¢’. Of course, W(¢) is the bottom component of the superfield
W(®).
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In order to obtain a quantum field theory which is local, we should restrict
ourselves to polynomial functions K (®,®) and W (®). Even so, for general polyno-
mials, the Lagrangian would be non-renormalisable. Recall that .Z is renormalis-
able (at tree level) if and only if every operator in the Lagrangian has engineering
dimensions less or equal than 4, which ensures that the coupling constants have
non-negative mass dimensions. Schematically, we denote this by:

(] <4, for renormalisability. (5.46)
Note also that we have:
(d6) = [d6] = % L ld'a) = -4, (5.47)
therefore, in a supersymmetric theory, we need:
K] <2, W] <3, for renormalisability. (5.48)

Since the engineering dimensions of a four-dimensional scalar is 1, we have [®] =1,
and therefore the only renormalisable Kéhler potential is quadratic:

K(®,®) = g;0'®" (5.49)

with g;; a constant Hermitian matrix. This is often called the “canonical Kéhler
potential.” Similarly, a renormalisable superpotential is at most cubic in the chiral
superfields:

W = gi®' + g;; @' + g; ' DI D" | (5.50)

with g;, gij, gijx some coupling constants.

5.5.1 R-symmetry and the superpotential

It is often useful to keep track of the R-symmetry, U(1)g, of a given theory. Con-
sider the U(1)g action on chiral multiplets:

D, — €i”a¢)i R (T); — eiiriafi)g R (5.51)

which leaves the canonical Kéhler potential term invariant. We say the “the chiral
multiplet ®; has R-charge r;, denoted as R[®;] = r; (and then R[®;] = —r;). This
means that the R-charges of its component fields are:

R[gf)z] =T, R[¢Z] =T; — 1 s R[.FZ] =T; — 2. (552)

This U(1)p is a symmetry of the canonical kinetic terms. In fact, this is a symmetry
for any choice of the R-charges r;. This is best understood as follows. Consider the
“reference R-symmetry” Ry such that:

Ro[®i] =0. (5.53)
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We also have the ordinary flavor symmetries U(1)g, which rotate each ®; individ-
ually, with charge 1:

Fz[(I)j] = (51']' . (554)

A flavor symmetry, by definition, is such that all the component fields have the
same flavor charge; here:

Fi[¢j] = Fi[ys] = Fi[Fj] = 0i; . (5.55)

Then, a general R-symmetry as above is simply a mixing of Ry with the flavor
symmetries:

R=Ry+ Z rF; . (5.56)

In general, the flavor symmetry might be larger. For a free theory with diagonal
kinetic term, we actually have a U(n) flavor symmetry; here we just considered the
Cartan subgroup [[, U(1)g, C U(n).

This is an important lesson, valid more generally in 4d N' = 1 supersymmetric
theories: what we mean by “the R-symmetry” is often ambiguous, because one can
redefine R by mixing with abelian flavor symmetries.

The interaction terms generally break the flavor symmetry of the free theory
to a subgroup (possibly trivial). They also constrain the possible choices of R-
symmetry. Indeed, since R[Q,] = —1 and R[Qs] = 1, the superspace coordinate
themselves are charged under U(1)g:

RO =1, RIO) = 1. (5.57)

Since Grassman integration acts like a derivation, we also have R[df] = —1 and
therefore we see that, for the action (5.45)) to be R-symmetric, the superpotential
must have R-charge 2:

RW]=2, (5.58)

and of course R[W] = —2. A generic superpotential breaks U(1)g explicitly.

5.5.2 General superpotential

For future reference, let us compute the interaction Lagrangian for an arbitrary
superpotential W (®). This is a simple exercise, generalising the product of two
chiral multiplets in to an arbitrary function W (®%). It is easiest to carry
out the computation in components. Given the bottom component ®"V = W (), a
composite scalar field, its variation is given by:

5OV = 66 W (¢) = V2e’ W () (5.59)
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where 0; = a%“ which allows us to read off /" by comparing with (4.10]), and
similarly for the F-term. We then find:

oV =W(9p),
PV = oW (¢) (5.60)
FV = Fov () - 5o 00, (9)

Therefore, the interaction Lagrangian that follows from the superpotential is:
. 1 . .
L = [ BOW(®) = FOW ()~ i 6.0,W (). (5.61)
Similarly, from the anti-holomorphic superpotential, we have:

Ly = [@OW(@) = FOWEG) - J0 TG . (66

5.6 The Wess-Zumino model
A four-dimensional supersymmetric Wess-Zumino model is simply a supersymmet-

ric theory of chiral multiplet, with canonical kinetic term.

Kinetic term. The canonical Kéhler potential gives the supersymmetric kinetic
term:

g = / d?0d?0 o . (5.63)
Expanding in component, this gives:

1- 1.,- 1. - _
Lpe = 0%+ ~0*¢p — ~0,60'p + FF

oo (5.64)
- 5755’@;@ + §0MZ_)5“¢ .

This gives:

Lro 2 —0,00"¢ + FF —ipg"0,1) (5.65)

up to a total derivative. Of course, this is a free theory of a massless complex scalar
and a massless Weyl fermion.

This was written for a single chiral superfield ®, but the generalisation to n
chiral superfields with canonical kinetic terms is trivial—we just have ®;®?, where
we contracted the indices with a constant “metric” g;; in the obvious way:

ZLyo = g5 (—0.F0°¢ + FIF — il 0,07) . (5.66)

We can always set g;5 = d;; by a U(n) redefinition of the fields gl
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5.6.1 Interaction terms: superpotential and scalar potential

Consider the superpotential term:

A 1 . . S I

Ly = FOW — 5WW 0i0;W + F'O;W — §WW oW, (5.67)
as computed above. The equations of motion for the auxiliary fields F* and F i are:
g = -0, 9T = —oW . (5.68)

Imposing those relations (“integrating out” F and F), we find the scalar potential:

oW (¢) }2 : (5.69)

d¢

Vo(9,9) = g W oW = |

The scalar potential of a supersymmetric theory of this type is necessarily positive
definite. It is given by the square of the first derivative of the superpotential, hence
the name for the latter.

The other interaction terms in are Yukawa-type couplings, involving the
fermions and the bosons:

V = Vo(,6) + guvd GO + L B0 (570

In particular, the cubic terms in W give rise to the actual Yukawa interactions,
which are related by supersymmetry to the |$|* scalar interactions.

5.6.2 Majorana and Dirac mass terms

A quadratic superpotential is a supersymmetric mass term. Consider first a single
chiral multiplet, ®. This corresponds to a single Weyl fermion (the left-chiral spinor

¢ and its CPT conjugate 1), making up a single Majorana fermion, and its bosonic
partner ¢. The mass term superpotential:

1
Wy = Su® (5.71)

induces the masses: )
Ly = —Inl66 — 5 (ppv + i) . (5.72)

This is a Majorana mass term for the fermion. Indeed, adding this mass term to
the kinetic term (5.65]), we find the Majorana equation, in Weyl spinor notation:

i 0, + i) =0, (5.73)

The scalar mass squared is the square of the Majorana mass, Mg = |u|?. The
equality of masses is expected from supersymmetry. If we only have this quadratic
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superpotential, this is still a free theory of massive bosons and fermions, and their
spectrum has to be degenerate.
On the other hand, we could consider a Dirac fermion (say, the electron):

Ya
U=1=a]. .
() -

Those fermions sit inside two distinct chiral multiplets ® and ® (together with the

anti-chiral multiplets ® and EIVJ), of charge +1 and —1 under a U(1) symmetry, re-
spectively (say, the electric charge, under which ¥ has charge 1). The corresponding
Dirac mass term in the superpotential is simply:

W =mdd (5.75)
corresponding to:
L = —|m (16> + |]*) — mapp + M) . (5.76)

Note that we can always fix the masses p or m to be real, by a redefinition of the
chiral superfields. Adding this mass term to the massless kinetic Lagrangian for
and ®, we get the Dirac equation:

T+ =0, "0+ mh =0 . (5.77)

The main difference between the superpotentials ((5.71]) and (5.75) is what sym-
metries they preserve. The Majorana mass term breaks the U(1) flavor
symmetry that rotates the single chiral multiplet ® explicitly, and fixes the R-
symmetry to be R[®]=1. On the other hand, the Dirac mass term ({5.75|) preserves
a U(1) flavor symmetry (the “electric charge”) out of the U(2) symmetry of two
massless chiral multiplets (@, Cf)), therefore, we can choose any R-symmetry with
R[®] + R[®] = 2.

5.7 Supersymmetric vacuum equations

In our discussion of supersymmetric quantum mechanics, we saw that the energy
of any state has to be non-negative—see equation ([1.40)). This is true also in 4d
N =1 supersymmetric QFT:

E=—(@[R¢) 20| (5.78)

Indeed, we have:

(01QaQ; + QsQalt) = 20" (WIPJu) . (5.79)
from the supersymmetry algebra. Taking the trace, Tr(c#P,) = —2Py = 2F gives:

oy (@ + @i ) 20 (5.50)
a=1
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5.7.1 The supersymmetric vacuum.

Since the relation (5.80)) gives the energy as a sum over perfect squares, it implies
that the vacuum |vac) of the QFT is supersymmetric (i.e. it is preserved by the
four supercharges) if and only if its energy vanishes:

— Pylvac) =0 & Qalvac) =0 and Qglvac) =0 . (5.81)

This is a very important relation, which holds in any (rigid) supersymmetric theory,
in any space-time dimension. In ordinary QFT, the vacuum formally has an infi-
nite energy, at least in a semi-classical approximation (from the zero-point energy
of harmonic oscillators at every point in space), and we can always redefine (renor-
malise) it to be whatever we want. Supersymmetry gives a well-defined meaning
to the zero of the energy, because the Hamiltonian of a supersymmetric theory is
necessarily a perfect square—schematically:

H=1|Q*. (5.82)

Side note: In any theory including gravity, unlike in pure QFT, there is an
intrinsic meaning to the zero of the energy as well. The vacuum energy of a QFT
should gravitate, like any other form of energy-impulsion. The vacuum energy
gives rise to a cosmological constant (CC) term in the Einstein equations. In a
non-supersymmetric theory, the natural scale of the CC is the Planck scale. In
a supersymmetric theory, on the other hand, the CC would be exactly zero. Of
course, our world is not supersymmetry. Then, even if supersymmetry exists a high
energy, the natural scale of the CC is the supersymmetry-breaking scale, which is at
least 103GeV. On a logyg scale, that is essentially half-way between the Planck scale
(1019GeV) and the experimentally observed value of the vacuum energy, which tiny
(and positive), at about (pvac)% = 10712GeV. We have no good idea how this tiny
number comes about—that is the famous cosmological constant problem.

5.7.2 The vacuum equations in a theory of chiral multiplets

Consider a 4d N = 1 theory of chiral multiplets only. We have seen that the scalar
potential (in a theory with canonical kinetic terms) is given by:

Vo(¢,0) = Z 05 W ()] . (5.83)

This is a sum of perfect squares. Therefore, the supersymmetric vacuum (V = 0)
exists if and only if:

oW (9)
9

=0, Vi. (5.84)
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The solutions to these equations determine the possible vacuum expectation values
(VEVs) for the scalar fields ¢. A supersymmetric vacuum is a configuration of
constant VEVs:

¢i = (i) = (vac|gs|vac) , (5.85)

which solve (|5.84]).

When the superpotential is a polynomial in the fields, the set of supersymmetric
vacua is determined by a set of algebraic equations for ¢*. Moreover, the equations
are holomorphic equations in the complex scalars ¢!. Thus, determining
supersymmetric vacua is really a problem in algebraic geometry—given a set of
polynomials p;(z), p2(2), - - - in several complex variables z = (2!,22,--- ") € C",
we want to know what is its zero set p1(z) = p2(2) =--- = 0.

The expression for the scalar potential Vj is slightly modified in the case of a
non-canonical kinetic term, as we will see momentarily, but the vacuum equations

remain the same

5.7.3 Vacuum moduli spaces

In a theory of n chiral multiplets ®°, the vacuum equations (5.84)) are n equations
for n unknowns. Depending on the particular form of the superpotential W, there
are three possibilities:

e There are no solutions. Then, supersymmetry is spontaneously broken. We
will come back to this possibility later in the lectures.

e There are a finite number N of solutions. They correspond to N “discrete
vacua,” local minima of the potential with Vj = 0.

e There could be a continuum of solutions. This is called a vacuum moduli
space. In an ordinary QFT, any such “flat direction” in the potential would
generally be lifted by quantum corrections. In a supersymmetric theory, we
will see that supersymmetry actually preserves the moduli space to all orders
in perturbation theory.

Let us give some simple examples:

Example 1. Consider first a theory with a single chiral multiplet ® and a super-
potential:

A
w="p21 293, (5.86)
2 3
The vacuum equations reads:
OW =me + \p* =0, (5.87)

so that we find two discrete vacua:
6=0, ¢:—% (5.88)
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Here, we take the (widespread) notational convention of denoting the VEV (¢) of
¢ simply by ¢. The fact that it is a VEV of a field and not the field itself should
always be clear from the context.

Example 2. Consider a theory with three chiral multiplets and a cubic superpo-
tential:
W = o 109P3 . (5.89)

The vacuum equations are:
Op W = 293 =0, 0p, W = 9103 =0, 0 W = 192 =0 . (5.90)

These equations are equations for singular quadrics in C3. There are now continuous
solutions. One can check that there are three branches that intersect at the origin:

{01 #0,02 =3 =0} U{d2# 0,1 =3 =0} U{p3 #0 ,¢1 = ¢o = 0} . (5.91)

This is the vacuum moduli space, denoted by M.

M as an affine variety. Note that, in the free theory of n chiral multiplets
without superpotential, the vacuum moduli space is simply:

Myy—o =C" . (5.92)

Namely, all the scalar fields ¢' can take arbitrary VEVs simultaneously. A non-
trivial superpotential then defines the vacuum moduli space as an affine variety,
with coordinate ring:

Clg1, -+ ¢nl/(OsW) , (5.93)

where (04W) is the ideal generated by the n polynomials 0y, W. (The reader not
familiar with algebraic geometry can ignore this last comment.)

5.8 General Kahler potential & Kahler geometry

Finally, consider a general theory of n chiral multiplets with an general Kahler
potential K (®,®) in (5.45)). This is not a renormalisable theory, but it can still be
considered as an effective field theory.

To understand what the general kinetic term looks like, we should build the real
superfield K whose bottom component the real scalar:

CK = K(6,9) . (5.94)

to find the D-term. This is a tedious but straightforward computation. One finds:

Lk = /d29d29K(<I>,q>)
. . ] (5.95)
= 95(6,0) (0,006 + FF' — i 5 9,07) + -
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where the ellipsis denotes additional interaction terms involving the fermions. (Ez-
ercise: compute them.) This is similar to (5.66)), but now the coefficient of the
kinetic term is a non-trivial function of the scalar fields:

K

7 = 815-1{ = .
9ij J 8¢’La¢j

(5.96)

In a theory of scalar fields, it is always a good idea to think of the “field space”
for the scalars as a manifold—albeit infinite-dimensional, in general. More precisely,
we view the fields ¢(x) as maps from space-time to a target space, I:

¢ RV M o2t () . (5.97)

From this point of view, the scalar fields are viewed as local coordinates on the
target space 9t (of complex dimension n).

The entire field space is the infinite-dimensional space of maps . A partic-
ularly important submanifold of field space is the vacuum moduli space, which we
discussed in the last subsection. It corresponds to the space of constant maps to
target space, which is isomorphic to the target space itself. Thus, in the absence of
superpotential, we have Myy—o = 9. In the presence of superpotential, the target-
space picture still holds, except that the vacuum moduli space is a submanifold (or
rather, subvariety) of 1.

The target space can have additional structure. In a general theory of real
scalars ¢', it would simply be a real manifold. A Lagrangian of the general form:

L =" gii(0)0u 00" = =" (@* Py (5.98)

defines a so-called non-linear sigma model (NLSM), with g = gijdgpidcpj a choice
of Riemannian metric on target space. The kinetic term is given in term of the
pullback of the metric g;; through the map ¢ : RS — 9. E

Here, we are considering a theory of complex scalar fields, therefore 91 is nat-
urally a complex manifold, with complex coordinates (z¢, ') = (¢%, '), and a La-
grangian of the form:

L= g5, qﬁ)ﬁqu@“(;ﬁi 4o (5.99)

Here, g is an Hermitian metric on 9. A particularly nice class of Hermitian man-
ifolds are the so-called Kdhler manifolds. They are complex manifolds with an
Hermitian metric g;; such that the associated two-form w is closed:

w = 2ig;;(z, 2)dz" A dz dw=0. (5.100)
This means that:

alg]k(z72) - a]gzk(z72) =0 ) %gk’j(zvg) - 539]{3;(’272) =0. (5101)

ZRecall the definition of the pullback of a map f : M — N from your differential geometry or
general relativity course.
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These condition actually imply that the Hermitian metric of a Kahler manifold—
the Kahler metric—can be written in terms of a real function K(z, z), the Kdhler
potential, exactly as in (5.96). Thus, we conclude that:

the target space of a 4d N =1 supersymmetry field theory is a Kdhler mani-
fold. We have just shown this for a theory consisting only of chiral multiplets,
but this conclusion holds true in AV = 1 supersymmetric gauge theories as well.

The simplest example is the canonical Kdhler potential:
n .
K=Y 167, (5.102)
i=1

which obviously gives the flat metric d;; on the target space C". A more general
Kéhler potential simply gives a non-flat metric (on a space which is still topologi-
cally C"). [

Finally, we can also consider a non-trivial superpotential. The presence of a
more general K(®,®) does not affect the discussion of the vacuum structure given
above. It is easy to check that the scalar potential still takes the form , where
now g¢* is the inverse of the non-trivial Kiahler metric. Then, assuming that there
are no metric singularities in g;5, the vacuum equations are still given by the critical
points of the holomorphic superpotential.

6 Renormalisation of supersymmetric theories

In this section, we finally start discussing some quantum properties of 4d N' =1
supersymmetric theories. Supersymmetric quantum field theories are much better
behaved than non-supersymmetric ones, which is the main reason why they are so
interesting and useful, from a theoretical perspective.

6.1 The Wess-Zumino model at one loop

Consider the original Wess-Zumino model, which consists of a single chiral multi-
plet, ®, with canonical Kéhler potential and a cubic superpotential:

A
W= %@2 +59°. (6.1)

For simplicity of notation, we take m € R and A € R. After integrating out the
auxiliary fields F, F', the full Lagrangian takes the form:

L = =0,00"¢ — m*66 — "0, — (¥ + P)
= N629% —mA(@%0 + 66%) — Ao+ Yd) .
We would like to analyse this QFT in perturbation theory, in the regime A < 1.

(6.2)

24What could consider target spaces of different topologies, too.
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/
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Figure 1: Tadpole Feynman diagrams for the scalar ¢. The bosons and fermions in
the loop cancel each other due to supersymmetry, so that the tadpole vanishes.

6.1.1 Feynman rules for the WZ model

The scalar propagator is given by:
(6.3)

as usual, and the fermions propagators are given by:

_ —ictpy, - —iotp,
—_— =5, —_———— =,
G ¥ P2+ m?—ie ¥ ¥ p2 +m? — e
" b = —im - - —im
p? +m? —ie v w_p2+m2—ie'

Here, the momentum always flow from left to right. Note that the (y1)) and (1))
propagators reverse the fermion (chirality) arrow. ﬁ

The propagators are easily derived from the first line of , which can be
written as:

. 1 _ —mdé,”  —io" .9
L = 6(0,0" — o + (67 5a) (_i;ﬁdﬁ e F) (7). e
s B

up to a total derivative. From the second line in (6.2)), we also read off the interac-
tion vertices. There are two types of cubic vertices, the scalar cubic vertex:

\ ¢ \ é

> ) <
\/\F”jﬁ,, = —im\ \/\f———i——— = —imA (6.5)
// (/

7 o

%In your QFT course, you have probably seen Feynman rules for fermions in Dirac notation,
while we are using the two-component Weyl notation. It is relatively straightforward to translate
expression between the two languages. For a (very) detailed discussion of this point, see [21].
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and the Yukawa interaction:

(i
———g——— = —i\, (6.6)
(4
There is a unique quartic vertex:
b K.
\‘ /1/
N = —i)\? (6.7)
PN
¢ K

Using these Feynman rules, one can study the 4d A/ = 1 Wess-Zumino model in
perturbation theory, as we would do for any particular quantum field theory.

6.1.2 Some one-loop corrections

Recall that there are, roughly, two types of “quantum corrections” to the quantum
effective action, m at some renormalisation group (RG) scale p:

e Wavefunction renormalisation. The quantum correction to the (massless)
kinetic terms take the form:

geﬁ‘ = —Z¢ 8M<138“¢ — qu Z"(/;a"uauiﬂ , (68)

where Zy = Zy(p) and Zy, = Zy(p) are known as the “wavefunction renor-

malisation” factors. One often defines the renormalised fields:

¢R = \/Zi(;ﬁq5 ) ¢R = \/Zw ) (69)

to rescale the kinetic term back to its canonical form. The so-called anomalous
dimension of the field ¢ is defined by:

o)
Yo ="Ha, log Zy , (6.10)

and it is itself a function of p. In term of 74, the “quantum dimension” A of
the field ¢ is then:

Al =1+ %7(15 : (6.11)

26We will be interested in the so-called Wilsonian effective action, although for the following
discussion can we equivalently consider the 1PI effective action. We’ll come back to this point
soon.
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Indeed, by constuction, ¢r = \/Zy¢ has dimension 1. Then, the dimension-

less field: )
b=u226 (6.12)
scales as: _
oler ~
L _A . 6.13
ng, = —Alold (613)
A similar discussion holds for the fermions, with:
3 1 0
Al = = + = =—u—1ogZ, . .14
Wl=5+5mw, Moy 1082y (6.14)

e Coupling constant renormalisation. The various coupling constants g in
the Lagrangian, for a term . = gO(x), can be renormalised independently
of the wavefunction renormalisation:

Ly = 92,0(x) = g(1+--)O(x) | (6.15)

where the ellipsis denotes the loop corrections.

Absence of tadpole. The one-loop contributions to the scalar tadpole (the one-
point function of ¢), are shown in Figure The contribution from the scalar
running in the loop is:

q
P N 4 —i
bt :(im)\)/(d q . (6.16)

| 2m)% q% +m? — e
-4

The contribution from the fermion loop reads:

q

4 —im
b Q e N (S0

where the used the (1) propagator in the loop. Note the overall —1 in ,
because of the fermion loop. The two (divergent) tadpole contributions cancel out
precisely. The same holds, of course, for the ¢ tadpole.

Let us insist on the fact that this cancellation relies on the precise values of the
cubic vertices and (—imA and —i), respectively), which is a consequence
of supersymmetry. In a non-supersymmetric theory, the two divergences would not
cancel, and we would have to renormalise this term to zero “by hand.”

The vanishing of the tadpole also means that the vacuum expectation value
in a supersymmetric vacuum is not renormalised at one loop (and in fact the
same holds at all orders).
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Scalar self-energy at zero external momentum. Consider the one-loop con-
tribution to the self-energy of the scalar ¢—in other words, the (¢p¢) two-point
function. Diagrammatically, it is given by a sum of three contributions:

' ! (6.18)
-~ . X
R — :'r~>~ —i—»@» SRR SRR
C .
This expression vanishes in the limit of zero external momentum:
. 2
lim Iz, (p°) = 0. (6.19)

p2—0

At a formal level, this is easy to check, without the need of any regularisation.
From the three diagrams (6.18) with p# = 0, we have:

_ d4 —i \?
150) = Cim” [ 5 ()
. 1 d*q tr(—ota” v . d* —1

This “miraculous” cancelation should give us pause. What vanishes, here, is the
potential divergence that would renormalise the scalar mass, m?. For instance, if
we had a fermion-fermion-scalar vertex with some random coupling y € R, namely:

&L =y +pe) , (6.21)

the fermion in the loop would give a contribution:

4 2
’Q':_(_iyy/(%zl (q2—i(—]m2)2 oyt AT+ (6.22)

if we use a hard cut-off regulator |g| < A (the ellipsis denotes a lower-order, loga-
rithmic divergence). Whatever the chosen regularisation method, there is a para-
metrically large parameter that one must cancel “by hand” to fix the scalar mass
m? at its physical value. In the Standard Model of particle physics, for instance,
this is the one-loop contribution from fermions to the mass of the Higgs boson.
That quadratic divergence cancels out in a supersymmetric theory, due to exact
and opposite contributions from the other two diagrams.

(6.20)

Vertex corrections. One can similarly check, with some more work, that the
total one-loop corrections to the vertices (¢pp¢) and (ppp¢@) are also trivial, in the
limit of vanishing external momenta.
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6.1.3 A simpler perturbation theory

One can better understand the nature of the cancellations due to supersymmetry by
considering an (equivalent) theory where we keep the auxiliary fields F', F'. Then,
the WZ Lagrangian:

&L = —0,00"¢ — ip5" Oy + FF +m(Fo + F — %W + 1)

o o (6.23)
+AFG* + FQ* — gp — i)
In this formulation, we have the scalar propagators:
. . 2 .
_ —1 — 1p - = mm
- - FFy= —" F)={(¢F) = —— 6.24
0= oo (PR =5t (0F) = (G6F) = 5" (629

while the fermion propagator are unchanged. The second line in (6.23)) only gives
two types of cubic vertices. In this language, one finds that [12]:

e The only renormalisation needed at one loop is due to the divergent contribu-
tion to the two-point functions. These give rise to a non-trivial wavefunction
renormalisation (proportional to |A|*—namely, Zy, = 1 + co(u)|A* + ),
which is the same for all the chiral multiplet field components:

Z¢:Zw:ZFEZq> . (625)

e The mass m and coupling constant A are not independently renormalised.
Instead, in a convenient renormalisation scheme, the renormalised quantities
can be written entirely in terms of Zg:

mr=25'm,  Ap=(Zs) 2X. (6.26)

In summary, there is a unique divergence that appears at one-loop in the WZ
model, corresponding to the anomalous dimension 4 of the chiral multiplet ®.
That anomalous dimension is the same for all field components—that is:
1 3 1 1
Alp] =1+ YR Alp] = 5 + YRR AlF] =2+ 27 - (6.27)

All order result. These one-loop results generalise to all order in perturbation
theory [22]. In fact, it turns out that one can always write down the effective action
as:

Loy = Zag (—0,00"$ — ip5"0,1p + FF) +m(Fp+ F — %ww + 1))
+ANF¢? + F¢* — pp — i)

where the only non-trivial renormalisation factor is the wavefunction renormalisa-
tion factor Zg, in front of the (massless) kinetic term. Then, the coupling constants

(6.28)
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m and A are only renormalised in the sense that, when we write down the effective
Lagrangian in term of the renormalized fields

Pr = Zq%;b ; (6.29)
we simply have:
L = (—0,0r0"dR — WRG IR + FRrEFR)
+mg(Fror + Fror — %d}R@DR +YRYR) (6.30)
+ Ar(Fro% + FroR — VrUROR — VRVROR)
with the renormalised mass mpg and coupling constant Ar defined in .

6.2 Wilsonian effective action and the power of holomorphy

The above discussion of the Wess-Zumino model can be generalised to any field
theory of n chiral multiplets with canonical kinetic term. In the effective action,
we always have:

L = / d*0d°0 ) Zg:®:®' + / d2OW (®) + / 2w (®) . (6.31)

with just a wavefunction renormalisation factor for each chiral multiplet. The
simple slogan is that:

the superpotential W(®) is not renormalised, at all!

This is the famous non-renormalisation theorem of 4d N' = 1 supersymmetry. In
the early 1990’s, Seiberg gave a very simple proof of it, based entirely on symmetry
arguments [23].

6.2.1 Wilsonian effective action, in one word

At this point, we should mention, a bit more explicitly, that we are thinking of
quantum corrections in the so-called Wilsonian framework. In short, the idea of
the Wilsonian renormalisation group (RG) flow is to start with a field theory, with
an action S, defined at a scale pg = Apyy (which might be sent to infinity, if the
theory is renormalisable), and to compute the effective action Seg(n) at a scale
1< po by “integrating out” all degrees of freedom from pg down to p. That is, in
momentum space, one splits the fields into into high and low momentum modes:

o(q) = {wH(q) if p<lgl < po (6.32)

er(q) if g <p,

so that the path integral takes the form:

7= [D¢] exw isiel) = [IDen)iDon] exp (Sunloroonl) - (6:3)
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Then, the Wilsonian action is defined by integration over the high-momentum
modes:

exp (it ulior]) = / (Do) exp (iSexlior, o)) - (6.34)

In general, the effective action at “low” energy pu is a very complicated (and
generally unknown) sum over many operators:

Sut= [ @23 g0(1) O(a) . (6.35)
@]

Moreover, the fundamental fields of the UV description might not be the most
natural variables to describe the low-energy effective theory. For instance, the low-
energy effective action for real-world QCD is well-approximated by the so-called
chiral Lagrangian describing interactions amongst mesons. This is a very different
low-energy effective description from the “fundamental” quarks and gluon of QCD
in the UV.

If the RG flow is reliably perturbative, we have more control. For a theory
without massless excitations, the Wilsonian effective action is essentially the same
as the 1PI effective action of standard textbook, in the limit 4 — 0 (in that case,
since there are no massless excitations, we can essentially “stop integrating” below
the scale of the lowest excitation). One advantage of the Wilsonian framework is
that we do not take the strict IR limit (1 — 0), which would correspond to “doing
the full path integral”—instead, we stop “path integrating” at some intermediate
“low energy” but finite energy scale p, and obtain an “effective” QFT (i.e. a
path integral) for the remaining low-energy modes (which may include massless
particles).

For a pedagogical introduction to the Wilsonian approach to renormalisation,
you are invited to read, for instance, chapter 12 of Peskin & Shroeder [24].

6.2.2 Holomorphy and non-renormalisation of the superpotential

In QFT, as in quantum mechanics, symmetries lead to selection rules. In the
Wilsonian framework, this means that they constraint the form of the operators
that can appear in the effective action.

A powerful way to make such selection rules manifest is often to treat all cou-
pling constants g as “background fields,” g(z), which are frozen to some constant
value g = (g)—for instance, we can think that they appear as very massive fields
in some larger theory; it is also perfectly fine to think of background fields only as
a convenient bookkeeping device.

Then, consider a theory with global symmetry G = U(1), for simplicity, and
consider adding the perturbation:

%, = g0, (6.36)

which breaks that U(1) explicitly, because the operator O has charge a ¢[O] = qo.
If we think of the coupling g as a background field, we can assign it a charge
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qlg] = —qo, so that the Lagrangian term is actually invariant. In that
formulation, the U(1) symmetry is now spontaneously broken by the “VEV” g of
the background field g(x). Then, the quantum corrections to any observable after
the deformation must depend on ¢ in a way that respects the symmetry.

When dealing with the superpotential of a supersymmetric theory, we apply the
same logic. Consider:

W =)0, (6.37)

with O a chiral superfield. Then, by supersymmetry, A should also be thought as a
chiral superfield, with lowest component a complex scalar. The coupling constant
is then a VEV A € C of that scalar. Now, we directly have a very powerful
constraint: since the superpotential is holomorphic in the chiral superfields, any
quantum correction can only appear holomorphically in A, as well.
Thus, a correction:
W =)0+ N0+ | (6.38)

may be allowed, but any correction involving A is ruled out. Moreover, an holomor-
phic function is entirely determined by its singularities and its asymptotics. Thus,
it is not too surprising that analyticity combined with our knowledge of the weak
coupling limit often completely determines the effective superpotential.

The WZ model, revisited. For illustration purpose, let us again specialise to
our simple WZ model:
m A m A
Wy = =0+ 203 = pg— + 203 6.39
Here, we introduced the dimensionless coupling:

. m
m=—,
Ho
while A is already dimensionless. The free theory at W = 0 has a U(1) x U(1)g
symmetry. Treating m and A as background fields, we assign the charges:

|U(1) U)r
;fl _12 L (6.40)
Al =3 -1

Then, the most general form allowed for the effective superpotential as a scale
w < po is:
~ AP
WM = /_Lm(I)Q f (~7 /’L) ) (641)
B o
with f an arbitrary function of its dimensionless, neutral parameters. The function
f should be analytic in its first argument, and regular in the A\ — 0 limit. Therefore,
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expanding out f, we find:

oo An
W, = E SAR— UE 42
g n_oc (pm)n—t (6.42)

We should also have a regular m — 0 limit, so the terms with n > 1 are disallowed.
Thus, we find:
W, = coum®? + c] \®? | (6.43)

for ¢ and ¢ some functions of /. Consider now the limit A — 0; then, the
theory is free and the mass terms at the scales po and i can be matched. This fixes
co = % when A = 0. Indeed, in a free theory we simply have a classical running of
the mass coupling m, which is just dimensional analysis:

1 - m Ho ~
W, = §um(u)<1>2 , m(p) = — = —m(po) - (6.44)
T
At X # 0, we can match the term ¢; in ((6.43)) by comparing to perturbation theory.
We can just consider the tree-level approximation, which fixes ¢; = %
In conclusion, we find:

W, = quﬂ 428 : (6.45)
2 3

where the only “renormalisation” of the couplings between the UV scale pg and

the IR scale p is through the classical scaling of the coupling constants. This sort

of analysis can be generalised to any W(®) in a theory of only chiral multiplet.

We can then conclude that the superpotential is not renormalised at any order in

perturbation theory (and even, in fact, non-perturbatively).

6.3 “Exact” pg-functions for the physical couplings

The above discussion was valid in a choice of renormalisation scheme as in ,
where the wavefunction renormalisation factor appears explicitly in front of the
Kahler potential. Thus, the precise statement of the non-renormalisation theorem
is that there exists a (supersymmetry-preserving) renormalisation scheme, which
we might call the “holomorphic scheme,” in which the superpotential is not renor-
malised, and the only renormalisation is through wave-function renormalisation
that only affects the Kéahler potential.

Classical j-functions. Recall that the S-function of any coupling ¢ is defined
as:

Blg) = 28 (6.46)

These first order equations determine how the coupling constants “flow” as we
change the scale pu.
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In the holomorphic scheme, the running of the superpotential coupling constants
is purely classical. Consider a coupling:

W =X0 =X []@)*, (6.47)

with O an operator of classical dimension A = ). d;, so that A\ has classical di-
mension 3 — A. We define the dimensionless coupling, at any scale p, to be:

A=A (6.48)

This obviously gives the “classical” S-function:

BA) = (A —=3)X. (6.49)
Recall that, from this (classical) § function, we classify the possible operators O
into:

e Relevant operators, if the 8 function is negative. That is, if A < 3. These
couplings—which, for A = 2, are just mass terms—go to zero in the UV, but
dominate in the IR.

e Irrelevant operators, if the g function is positive. That is, if A > 3.
Such couplings blow up in the UV and they make the theory power-counting
non-renormalisable.

e Marginal operators, if 5 = 0. These are the classically marginal operators
of dimension A = 3.

This is just a fancy way to do dimensional analysis.

Physical coupling constants. While the so-called holomorphic superpotential
couplings, that appear in W, are not renormalised in the holomorphic scheme, does
that mean that a physical observer in, say, the WZ model, would conclude that the
quartic vertex does not change as we vary the energy of incoming particles
in some scattering experiment? Indeed, no. The point is that, in computing such
physical observables, we would consider the canonically normalised fields:

: f
b= 22,0 . (6.50)
In term of these, the superpotential coupling (6.47) takes the form:

. i
W = AgOr = Ar [ [(®R)" Mg = (H(Zq)i)—z) A (6.51)
with A the “physical” coupling constant. We again define the dimensionless cou-
pling:
d

Ap = pt3 (H(Zq)i)—J) A (6.52)

7
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Its B-function is then given by:

B(AR) = (—3 - Z <1 - ;w) di) AR (6.53)

with 7, the anomalous dimension of ®’, as defined in The equation
is an “exact” expression for the S-function of Ag, in the sense that the running
of the physical coupling Ag is entirely determined if we know the exact quantum
dimensions of the chiral fields ®’. Of course, unlike the superpotential,
the anomalous dimensions 74 (or, equivalently, the wavefunction renormalisation
factors Zg) receive corrections at every order in perturbation theory.

6.4 General comment on non-renormalisation theorems

This concludes this discussion of supersymmetric theories of chiral multiplets. It is
worth pausing to absorb the main lesson. We have seen that superpotential terms,
often reffered to as “F-terms,” are not renormalised. This is a very general lesson
that apply to other supersymmetric theories, and even to string theory: supersym-
metry often allows us to consider some “holomorphic sector” of the larger theory,
which contains observables that are not renormalised at all, or only renormalised at
one-loop order. Such non-renormalisation theorems are very powerful, since they
often allow us to reach interesting conclusions about supersymmetric QFTs which
are otherwise in a strong coupling regime.

However, we should always keep in mind that the “holomorphic sector” is not
the full theory. To answer many finer questions—or, indeed, many basic questions
such as “what are the physical Yukawa coupling constants?”—, we will inevitably
need some knowledge of the quantum corrections to the Kéahler potential—often
referred to as “D-terms.” That remains a very hard problem beyond perturbation
theory, just like in any other non-supersymmetric QFT.

7 4d N = 1 supersymmetry, part II: gauge theories

In this section, we discuss how to write down 4d N = 1 supersymmetric theories
that contain gauge fields.

7.1 Classical and quantum gauge theory: executive summary

Let us first briefly review (non-supersymmetric) gauge theories, mostly to set up
our notation.
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7.1.1 Classical gauge theory

We denote by G a Lie group, with g = Lie(G) its Lie algebra. Let 7% denote the
Hermitian generators, which satisfy: E]

[To, Tp] = ifap’Te (7.1)

with f¢ the structure constants. We normalise the generators such that, in the
adjoint representation, we have:

Te(TT%) = k6%,  k>0. (7.2)

Let A, denote a gauge field for some “gauge group” G. This is a covector field
valued in the adjoint representation of g—that is, g itself (or rather, ig):

Au(z) = A(2) Ty, - (7.3)

For many purposes, it is more convenient to view A, as a Lie-algebra-valued one-
form:

A=A, (x)dz" | (7.4)

although we will not emphasise that geometric viewpoint in the following.

Non-abelian gauge field. Mathematically, a gauge field A is a connection on
a principal G-bundle over space-time, P — R3. For physicists, that essentially
means that we declare that two gauge fields A, and AL are physically equivalent if
they are related as:

A = g(@) (A +i0,) g7 (x) (7.5)

with g(x) some group-valued function:
glz) :RY = G . (7.6)

This is called a gauge transformation. We mostly care about infinitesimal gauge
transformations connected to the identity. Consider:

g(z) = @) a(z) =a(z) Ty € ig . (7.7)
Then, we have:
da Ay = Opa+ i, Ayl (7.8)

with d, 4, = A;L — A, at first order in a.
We define the field-strength of the gauge field (a.k.a. the curvature of the

connection A) by:
F =0,A,-0,A,—i[A,,A)] . (7.9)

2"TNote that the actual generator of the Lie algebra g is iT,, which we denote by T, € ig.
We follow the usual physics notation where T, are Hermitian generators. Mathematicians would
consider the anti-Hermitian generator 17" = 4T, € g, so that the commutator of two generators
is a generators, instead of ¢ times a generators in the “physics” convention.
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By construction, we have:
F;/w = gFqu_l ) A 5aFw/ = Z'[Ol, Fp,y] s (710)

under gauge transformation.

Abelian gauge field. An abelian gauge field is a special case of the above,
when G = U(1)". For each U(1) factor, we have an abelian gauge field A, which
transforms simply as:

0 Ay = Opax . (7.11)

In that case, the field strength:
F =0,A,—0,A, , (7.12)
is gauge-invariant.

Yang-Mills action. Consider G a simple gauge group. The Yang-Mills (YM)
action reads:

1
sykfzt/}#xtr<—4gjawaV> . (7.13)

This is obviously gauge invariant—that is, invariant under any gauge transforma-
tion (7.5)) of the gauge field A,. Here, ¢g* is the Yang-Mills gauge coupling. The
YM action is the canonical kinetic term for a gauge field.

Matter fields. Given a gauge field A,, we can introduced charged matter fields
¢ (which might be scalars or spinors) in some representation R of G. By definition,
the matter field ¢ transforms in the representation R if we have: @

¢ = R(g9)¢, R(g) € R, (7.14)

under the gauge transformation (7.5)). Note that R(g), like g itself, depends on the
space-time coordinates. At the level of the Lie algebra, we have:

bap = iaMp = iaTMy | (7.15)
with T, ém) the the Lie algebra generators in the representation 9i. For instance, if
¢ is in the adjoint representation, we simply have d,p = i[a, ¢].

The gauge-covariant derivative (or covariant derivative, for short) is defined as:

D,y = (0, —iA,)p , (7.16)

Z8Mathematically, a charged field is a section of a vector bundle V — E — RY3 associated to
the principal G-bundle G — P — RY3, with V the representation vector space.
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with the gauge field acting in the appropriate representation, A, = AZTém). By con-
struction, D, ¢ transforms covariantly, in the same representation as ¢: 6,0, =
iaD,p. Note also that we have:

[Dua DV]SO = _iFuuSD . (717)

In term of the covariant derivative, the gauge transformation of the gauge field
itself can be written as:

5uA, = Do . (7.18)

We can easily write down gauge-invariant kinetic terms, by replacing the deriva-
tives with covariant derivatives—for instance:

¥ =-D,¢pD"¢ , (7.19)

for a scalar field. Here, we assume that ¢ and ¢ transform in conjugate represen-
tations.

7.1.2 Quantum gauge theory: running of the gauge coupling

To properly quantise a gauge theory, recall that one has to carefully “fix a gauge.”
There are various methods to do that, at various levels of mathematical sophis-
tication. Then, the gauge-fixed quantum theory makes perfect sense, at least in
perturbation theory.

In our discussion of supersymmetric gauge theories, we will need to keep in
mind two important aspects of the quantum theory:

e The YM gauge coupling constants undergo RG flow—they vary as we vary
the RG scale p. Depending on the sign of the S-function, the theory is either
asymptotically free (free in the UV, and strongly-coupled in the IR), or IR
free. Only asymptotically free theories are believed to be “fully consistent
QFTs,” but any gauge theory can be considered as an effective QFT, in the
Wilsonian framework.

e Gauge theories can be anomalous. This means that the gauge invariance of
the classical action is violated by the quantum effective action (due to a non-
trivial transformation of the path-integral measure). When that is the case,
the theory is inconsistent.

In the following, we review some key results, without derivation.

One-loop S function. Consider a four-dimensional YM gauge theory coupled
to complex scalars ¢ and Weyl fermions 1 in representation Ry and R of the
gauge group, respectively. (The representations can be reducible.) Schematically,
the “minimal-coupling” Lagrangian reads:

1

Z=15

F,F" — D, ¢D'¢ — iha" Dyap + - -+, (7.20)
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where the trace over the gauge indices is left implicit. Here, the YM coupling only
appears in the front of the first term. The physical (or “canonical”) normalisation,
however, corresponds to rescaling the gauge field as A, = gA,(f), so that positive
powers g appears in interactions vertices, including through the covariant derivative
D, = 8, —igAY.

The Yang-Mills coupling ¢ runs with energy. At one-loop, the S-function is
given by:

1 bo 11 1 1
— | == bo = —T(adj) — =T(Rs) — =T (R 7.21
6() =gk = gTad)- TOW - TR (T
thus 1/¢? runs logarithmically in p:
1 1 bo W
= + —log — . 7.22
g7~ gl " 5e % g (7:22)

In ((7.21), T(R) denotes the quadratic index of the representation R, defined by:

tr (T@Tb(m)) - T(iﬁ)% . (7.23)

(If R is reducible, T'(R) is the sum of the indices of its irreducible representations.)
In the following, we will only deal with G = U(1) or G = SU(N). We normalise the
generators so that the index is equal to 1 for the fundamental and antifundamental
representations of SU(N):

T(N)=T(N)=1, for g=su(N). (7.24)

Then, we have:
T(adj) = 2N , for g=su(N), (7.25)

for the adjoint representation. Note that, for G = U(1), we have T'(adj) = 0 and
thus ((7.21)) specialises to:

by =V = —é %:(%)2 - ;%:(qﬁ : (7.26)

a sum over the U(1) charges, ¢, of the matter fields. Note that bg:U(l) < 0, so
that the U(1) gauge coupling (i.e. the effective “electric charge”) goes to zero at
low energy, @ and blows up at high energy (that is called a Landau pole).

For G a simple Lie group without too many matter fields, we can have by > 0.
In that case, the theory is asymptotically free, meaning that the YM coupling ¢°

291f all the matter fields are massless. Matter fields with a non-zero mass m decouple from the
RG flow at scales < m. That is what happens in the real-world QED, since the electron has a
mass.
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goes to zero in the UV limit. Conversely, it becomes large at low energy. One
defines the dynamically-generated scale by:

82

A = pe bo*® (7.27)

This scale is independent of u; more precisely, if we fix g2(ug) in the UV, then
A(p) = A(po) at any scale, in the one-loop approximation, due to (7.21]). This is
the (infrared) scale at which the gauge coupling blows up, and perturbation theory
become unreliable.

Anomaly-free conditions. Consistency of the quantum theory requires that the
gauge symmetry G be non-anomalous. Four-dimensional anomalies are only due
to chiral (Weyl) fermions. The potential gauge anomaly is proportional to the
following numerical coefficients:

1
Agpe = tr (TEHT TEY) = SAROY) dage (7.28)

where dg. is a symmetric invariant tensor. Amongst simple Lie groups, it is non-
trivial only for g = SU(N) with N > 3. In that case, we have the cubic index
coeflicients:

AN)=1, AN)=-1, A(adj)=0, (7.29)

for the (anti)fundamental, anti-fundamental and adjoint representations, respec-
tively. In particular, a QCD-like gauge theory with G = SU(N) with N]'f fermions
in the fundamental representation and IV, fermions in the anti-fundamental repre-
sentations (and possibly a number of fermions in the adjoint) will be anomaly-free
if and only if:

ARPY) =N} - N; =0. (7.30)

Thus, we must have as many fundamental as anti-fundamental fermions, so that the
total gauge anomaly vanishes. The number Ny = N T = N; is called the “number
of flavors.” In QCD, for instance, we have G = SU(3) and Ny = 6 (called up,
down, strange, charm, top, bottom).

Similarly, in an abelian gauge theory with G = U(1), we have the anomaly-free

conditions:
D @w)?=0, D q=0. (7.31)
P P

The first condition is the vanishing of the cubic anomaly , while the second
one is the vanishing of the so-called gravitational-gauge mixed anomaly.

We will give a more detailed account of anomalies, for both gauge symmetries
and global symmetries, in section [8, to the extend that we will need it.
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7.2 Abelian vector multiplet

Let us now consider the 4d A/ = 1 supersymmetric version of a gauge theory. The
first ingredient is the vector multiplet, which combines the gauge fields A, with a
fermionic superpartner A\, A called the gaugino.

We first consider the supersymmetric version of an abelian theory, G = U(1).
That is, we want to build a supersymmetric version of Maxwell theory, with a gauge
field (i.e. an ‘electromagnetic potential’) A, subject to the gauge invariance:

Ay(x) = Ay(z) + Opal(x) . (7.32)

Looking at the general multiplet , we see that it contains a four-vector vy,
which we would like to identify with A,. In fact, the gauge field is real, so a natural
guess is that it will sit in a real multiplet, which satisfies ST = S.

A massless gauge field A, has 2 degrees of freedom off-shell—recall the helicity
states A = £1 from the discussion around equation . On the other hand, an
off-shell gauge field should have 4 — 1 = 3 degrees of freedom—that is, 4 degrees
of freedom modulo one degree of freedom which is pure gauge, due to . The
fermion superpartner consists of one Weyl fermion, which we denote by A, \, for a
total of 4 off-shell degrees of freedom. Thus, we would like to introduce one real
auxiliary field, which we denote D, to preserve the fermion-boson degeneracy.

The real superfield seems to contain too many fields, but there is a simply way
out. To combine gauge invariance with supersymmetry, one should really find a
superfield generalisation of the gauge transformation (|7.32]).

Definition: An abelian m vector superfield, V, is a real superfield,
vi=v, (7.33)

subject to the gauge equivalence relation:

i
VoV (Q-9), (7.34)

where Q, Q are chiral and anti-chiral multiplets, respectively, conjugate to each
other.

This is obviously compatible with the reality condition (7.33]). We write the corre-
sponding infinitesimal gauge transformation as:

sV =-(2-Q) . (7.35)

N =

The supersymmetric gauge transformation ([7.34)) gives us the expected counting of
off-shell degrees of freedom. The real multiplets has 8 4+ 8 real degrees of freedom,
but the Q-valued gauge equivalence removes 4 + 4 degrees of freedom.

30Here, for G = U(1). Of course, for any abelian gauge group G' = U(1)™, we would just have n
distinct vector superfields.
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The expansion of the superfield V in components is given by:

V(z,0,0) = C(z)+i0x(z) — ibx(z) + eeM() L6a (x)

[\ \

— 00t A, (z) + 1000 <5\(:c) —(d"0ux () >

— 060 ()\(a:) + ;a“aux(a:)> - 5999’@ (D(x) + 2820(37)) ;
(7.36)

just like in (5.18), with v, = A,. It is easy to work out the form of the gauge
transformation ([7.34]) in component. Let us denote by:

Q= (v FY, Q=@ F? (7.37)

the chiral multiplet component fields. Then, we have

7 B w + @
C’—>C+§(w—w), AM—>AM+8M( 5 >,
1
)2—>>2+L1EQ A=A (7.38)
\/i )
M — M+ F% D—D.
M — M+ F?

Thus, the field A, transforms like an abelian gauge field (7.32)), as needed, with the
real gauge function:

(7.39)

We also see that the field components C, x, X, M and M are pure gauge—that is,
they are gauge-equivalent to zero.

7.2.1 Supersymmetry in the Wess-Zumino gauge
For many purposes, it will be useful to fix the so-called Wess-Zumino (WZ) gauge,
defined by:

C=x=x=M=M=0. (7.40)

Note that the WZ gauge is not compatible with supersymmetry. Indeed, even

if we start from the WZ gauge ([7.40)), we see from (5.16)) that a supersymmetry
transformation will generate the new components:

5C =0, 6Xa = i(0"€)a Ay , SM = 2e\ ,

_ 7.41
IXa = —i(ed")s Ay , OM = 2eX . (7.41)
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However, one can compensate ((7.41)) with another gauge transformation, to restore
the WZ gauge. Namely, let us define the gauge transformation:

i _
5QWZV = i(QWZ - QWZ) ) (7.42)
with the gauge parameters:
Wz = wﬁwzzo,
Wz = _i\/2(0"E) 0 Ay J;SWZ = iV2(ea") Ay (7.43)
FOWzZ — _9¢) | FOWzZ — _9¢)

Then, by construction, the modified supersymmetry transformation:
0 =64 Sy, (7.44)

preserves the W7 gauge.

Supersymmetry transformations. A vector multiplet in WZ gauge only con-
tains the physical fields:

Vivz = (A, A\, D) . (7.45)

The corresponding superfield reads:
_ _ 1
V = —00c"0A, 4 1000\ — 000X + 59099 D, (7.46)

After fixing the WZ gauge, we still have the residual gauge invariance with param-
eters:

Q=0=(a,0,0), (7.47)

which just gives the U(1) gauge transformation ((7.32). Note that A\, A\ and D are
gauge-invariant. The supersymmetry transformations of Viyyz are:

0A, = iea N\ +iEa,\

g = i€g D + (" €)alpu ,
OAs = —ieaD — (€")oF
6D = —60“8#5\ + eat'ouN

(7.48)

with F),, the (gauge-invariant) field strength defined in (7.12). Note that we have:

OF,, = ie(0,du\ — 0,0,)\) + i€(7,0,\ — 5,0,)) . (7.49)
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7.2.2 The abelian field-strength multiplet

The fields:
)\a ) S\d s F;w ) D ) (7'50)

form a gauge-invariant supersymmetry multiplet on their own. In fact, looking at
the supersymmetry variation of A in , we see that it is proportional to a €
only, without € contribution. Thus, we may suspect that we can organise the fields
into a pair of chiral and anti-chiral multiplets, which we will call W3 and

WB—they are just like any chiral multiplet, except that they have an overall spinor
index: W
¢B = )‘ﬂ )

{ 1 y
VYRS —Eeaﬁl) - ﬁ(a” Vs Fuw (7.51)

ng = i(0"0uN)a -
Note that the bispinor wg\é has a natural decomposition into a scalar (the field D)

and an self-dual two-form (namely, the self-dual part of F),,), in agreement with
[2-25).

Definition: Given an abelian vector superfield V', the field strength chiral and
anti-chiral superfields are defined as:

i

Wo = —-DDD,V Wy = _iDDDdV . (7.52)

The superfields W and W, defined in this way, are fully gauge invariant under the
gauge transformation ([7.34]). Indeed, a gauge transformation gives:

1-~ ~ 1-. -
5QW = gDDDa(Q - Q) = —gDa{DdaDa}Q =0 3 (7'53)

where we used D) = 0, Do = 0 and (5.7). From the definition (7.52), it also
follows that: B B
DBWQ =0, DgWs =0 (7.54)

We also have the non-trivial identity:

DW, — DWW =0 . (7.55)

This is the superspace generalisation of the Bianchi identity:
P70, Fpe =0 . (7.56)
In components, we have:
Ws(2,0) = Ag — 0% ((6")apFuv + icasD) + i00(a" 0, \)5 , (7.57)

and similarly for WB' Here, we used the chiral coordinate z# for simplicity.
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7.3 Non-abelian vector multiplet
Consider now a non-abelian vector superfield:

Voo RYM g (7.58)
with g the Lie algebra of some compact gauge group G.

Definition: For any g, a vector superfield V is a real superfield subject to the
gauge equivalence:

e~V 5 ¢V i (7.59)

with Q, Q some chiral and anti-chiral multiplet valued in the adjoint representation
of g, and conjugate to each other.

The corresponding infinitesimal gauge transformation is given by:
oV = % (Q-0Q)+ %[Q +Q.V], (7.60)
generalising (7.35]) to the non-abelian case.

7.3.1 Supersymmetry in the Wess-Zumino gauge

We can again make use of the large gauge invariance and go to a Wess-Zumino
gauge, exactly as in (7.40). In WZ gauge, the vector superfield reads:
_ I 1
V = —00"0A, + 000\ — 000\ + 59099 D | (7.61)

where all the fields are valued in the adjoint representation of g. We can again
define modified supersymmetry transformations compatible with the WZ gauge,

6 =0+ oy (7.62)
with the compensating gauge parameters given in ([7.43). We have:

%(QWZ + Qwz) = OcteA,, + 05" €A, — i00eN — i0fe + - - - (7.63)

where the ellipsis denotes higher-order terms in 6,0. Then, a direct computation
shows that, in the WZ gauge, the supersymmetry transformations of the vector
multiplet take the form:

SAH = iﬁaﬂx_\ +1eo, A\,

oo = i€aD + (0" €)aFuv ,

OAg = —i€aD — (€6 Vo F

0D = —ea" D\ + @ Dy
where F),, is the non-abelian field strength, and D,, is the covariant derivative—for

instance, D, A = 0, A — i[A,, A]. The new Lie-algebra commutators terms in ((7.64)

arise from the commutator in:

7 ~ ) =
Saw,V = 3 (Qwz — Qwz) + §[sz + Qwz, V] .

(7.64)
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7.3.2 Non-abelian field-strength superfield

The non-abelian field-strength superfield should transform covariantly under gauge
transformations, namely:

W, — e Wye , Wi — emV_Vde_iQ , (7.65)
Note that these gauge transformations are compatible with the chirality conditions:
DsWs =0, DaW;=0. (7.66)

This can be achieved with the following definition:

W, = éf)f)eWDae*?V , Wy = —éDDe*QVDdeW . (7.67)

which reduces to ((7.52)) in the abelian case. Expanding out the superfield, we find:

Wia(2,0) = Ag — 0% (0 )ap Fy + icasD) +i00(a* DyN)s |

i | . (7.68)
Wj(2,0) = Xy = 0° (645 — iez5D) — i00(DuA "),

in the chiral and anti-chiral coordinates, respectively.

7.4 The super-Yang-Mills Lagrangian

Given the field-strength superfield, it is very easy to build a supersymmetric La-
grangian. A very important property of the vector multiplet of 4d ANV = 1 super-
symmetry is that the field-strength sits inside a chiral superfield. Indeed, one can
easily check that the Yang-Mills term can be build from a F-term.:

1
d*0tr W W) = ——5 Tr (Fpu F™) + -+, (7.69)

2¢? 49

where the ellipsis denotes the supersymmetric completion. Here, we introduced
the real YM coupling constant, g2, as in (7.13]). However, recall that the coupling
constants appearing in F-terms are naturally seen as complex couplings, which
enter holomorphically. In super-Yang-Mills (SYM) theory, it is customary to define
the holomorphic gauge coupling:
0 4mi

=—+ —. 7.70
We will discuss the meaning of 6, the so-called #-angle, momentarily. Then, the full
Lagrangian of SYM can be written in superspace simply as:

7—.

/d29tr WW, + G ,/d29tr Wi . (7.71)

Lsym = —

1677 T
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This gives:

o (@B Fy) . (T72)

Lsym = 912tr <1FWFW —iAGH DA + ;D2> -
The term proportional to 1/¢? is the expected supersymmetric completion of the
YM kinetic, with a standard kinetic term for the gaugino A, a Weyl fermion (that
is, a Majorana fermion) in the adjoint representation, and a quadratic term for the
auxiliary field D.

Note that, in the above, we implicitly assumed that the gauge group G was
simple (or U(1)). In the case when G is the product of several simple factors and
U(1)’s—for instance, G = SU(3) x SU(2) x U(1) as in the Standard Model—, there
is an independent gauge coupling constant 7 for each gauge group.

Gaugino R-charge. As we can see from ((7.61)), the gaugino A has R-charge 1:
RN =1, RN =-1. (7.73)

Therefore, the chiral superfield W, also has R-charge 1, so that the SYM La-

grangian preserves U(1)g.

7.5 Charged matter fields and supersymmetric Lagrangians

Matter fields in 4d N = 1 supersymmetric gauge theories sit in chiral multiplets,
®. We take ® to transform in some (generally reducible) representation R of G.

Therefore, ® transforms in the conjugate representation $R.
A gauge transformation acts on the matter superfields as:

= P b — Pe i (7.74)

The minimal coupling to the vector multiplet takes the form:

g = / d?0d%0 ®e 2V | (7.75)

This Lagrangian is obviously gauge invariant under supersymmetric gauge transfor-
mations, (7.59)) together with (7.74). In the Wess-Zumino gauge, using the explicit
expression (7.61)) for V' and the fact that:

Vi=o0, (7.76)

it is easy to check that:

Lpp = —D,udD! ¢ — ih5"Dyap + FF — ¢DG — iv/2p\p + iv2hps .| (7.77)

Note the coupling to the D term, as well as the Yukawa coupling involving the
chiral fermion and the gaugino.
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8 Dynamics of 4d N = 1 gauge theories

In this section, we discuss some aspect of the classical and quantum dynamics of
supersymmetric gauge theories. In subsections [8.1] and below, we discuss some
general aspects of (gauge) anomalies in QFT, as well as the role of the 6 angle in
gauge theories. (These two subsections are by no means self-contained, but should
amply suffice for our purpose in these lectures.)

8.1 Anomalies for gauge and global symmetries

Let us first make some general comments about quantum anomalies in gauge and
global symmetries.

8.1.1 Global symmetry, background gauge fields and gauging

Consider some fermions ¥ and bosons ¢ that transform into some representation
Ry and Ry, respectively, of some global symmetry group G. Then, by Noether
theorem, we have some conserved currents ji, with the index a = 1,--- ,dimé
running over the generator of the Lie algebra g.
Whenever we have such conserved currents, we can introduce some sources for
them:
LA =L+ AL+ (8.1)

Here, % is the Lagrangian of the theory with a global symmetry, Aj is the
source for the current operator j4(z), and the ellipsis denotes higher-order terms
in the sources. The source is nothing but a background gauge field—that is, a
non-dynamical vector field A, which is introduced to keep track of the conserved
current. The path integral in terms of the sources takes the form:

Z[A] = / [D¢][ DY) exp (z / d4x.,sf[A]> : (8.2)
for any fixed background A,,.

Gauging a global symmetry. Given a global symmetry é, a natural operation
in QFT is to gauge it. In path-integral language, gauging a global symmetry means
that we first introduce background gauge fields as in , and then integrate over
all possible gauge fields:

z - / [DA] S¥ulASenl) 71 4]
(8.3)
= / [DA][D¢][D] exp <z / d'z (ZL[A] + LyulA] +.$top[A})> .

Here, we weighted each gauge-field configuration by the Yang-Mills action (the
standard kinetic) term, as well as by the topological term, which we will discuss
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Figure 2: The triangle one-loop diagram that determines the gauge anomaly in four
dimensions, with fermions running in the loop. The wiggly lines correspond to the
external gauge fields; equivalently, one inserts a current j4 at each vertex.

further in the next subsection:

1
Fold] = =t B B LioplA] = tr (PO F,, F,y) . (8.4)

" 64n2

8.1.2 Anomaly as an obstruction to gauging a global symmetry

The gauging of a global symmetry can only be done consistently if the functional
(8.2)) is itself gauge invariant—infinitesimally:

0o log Z[A] =0, (8.5)
for 6o A, = Dy The symmetry G has an anomaly if and only if:
0o log Z[A] #0 . (8.6)

This can be taken as our definition of a gauge anomaly. In the presence of an
anomaly for G in the original theory %, the global symmetry cannot be gauged,
and the corresponding gauge theory does not exist as a consistent QFT.

While the classical Lagrangian .Z[A] itself is gauge invariant by construction,
the path-integral measure in might not always be—this is precisely the ori-
gin of those “quantum anomalies.” In renormalisable gauge theories with scalar
and fermion matter fields only, anomalies arise exclusively from chiral fermions in
complex representations of the gauge group (i.e. R # R).

In some appropriate regularisation scheme, the anomaly takes the explicit form:

6472 pepa ’ (87)

do log Z[A] = _ Aabe /d4a: QOFb FC ehvpo

schematically, with a(z) = a“(a:)Tém”) the gauge-transformation functions acting
on the fermions; the sum over the g-indices a,b,c is understood. The anomaly
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coefficients Ay are given by:
Agpe = tr (TFW{T;%),TC(%)}) . (8.8)

as anticipated in (7.28). These are also called cubic anomalies, since they are cubic
in the “charges” under GG. Physically, they can be extracted from the three-point
function of the currents j4 in the original theory with Lagrangian .%:

()it (@) (=p — @) ~ Aqpe - (8.9)

The anomaly coefficient is entirely determined by the one-loop contribution
to these observables, which are triangle diagrams of the type depicted in Figure

We should also mention the existence of some more subtle quantum anomalies
in 4d, the linear anomalies:

Ag = tr(T) (8.10)

They are “mixed anomalies” between gauge invariance and diffeomorphism invari-
ance. They are often called “gravitational anomalies,” because they contribute to
the right-hand-side of in the presence of a non-trivial metric g,, (with non-
zero curvature)—they arise at one-loop from the same triangle diagram as in Fig
but with one gauge field and two gravitons for the external legs. We see from
that linear anomalies can only be non-zero for abelian symmetries, the U(1) factors
inside G.

8.1.3 Three types of anomalies

In general, the symmetry group G of the theory %y might be a product of many
simple groups and U(1) factors. Let us consider:

G=GpxG. (8.11)

Here, we would like to gauge the factor G C CN;, while G will remain as a global

symmetry (often called a “flavor symmetry”) of the gauge theory with gauge group
G. The cubic anomalies (8.8]) can then take the schematic form:

Tr(GGG) , Tr(GGGF) , Tr(GGrGF) , Tr(GrGrGF) , (8.12)

while we have Tr(G) and Tr(Gr) for the linear anomalies. There are thus, in fact,

three types of anomalies that concern us when G is gauged, from the lethal to the
innocuous:

(i) Gauge anomalies. A gauge anomaly is an anomaly of the form:

Tr(GGG) (8.13)
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for three currents of the gauge group G. If it were non-zero, the theory would be
inconsistent quantum-mechanically. Therefore, we have the anomaly-free condi-
tion:

-Aabc =0 s (814)

where a, b, c runs over the generators of G only. For a simple Lie algebra g, we

have:

Agpe = %A(m(%) dape = 0 , (8.15)

which is a non-trivial condition only for SU(N) with N > 2, as we discussed around
(7.28]). Note also that, if the gauge group is a product:

G=[[c x[Jun,
( J

with G; some simple factors (as in the Standard Model, for instance), we also have
non-trivial constraints:

tr(G;G;U(1)g) =0, tr(U(1)xU(1);U(1)m) =0, (8.16)
which translate to:

Yo alIT®R) =0, > alvlallgnv] =0, (8.17)
P P

where T (E)fiz/’) is the quadratic index of the representation 9%;” of G; under which
transforms, and gx[¢)] denotes the U(1); charges of the fermions.

(ii) Anomalous global symmetries. We could also have so-called “mixed anoma-
lies:”

T(GGGr),  Te(GGrGr) | (8.18)

between the gauge-symmetry and the global-symmetry currents. If G is semi-
simple, only Tr(GGGF) can be non-trivial. Let a,b,--- run over the generators Ty,
of the gauge group G, and let o, 3, -+ run over the generators T, of Gr. Then,
any anomaly:

Aba 20, or  Awp #0, (8.19)

signals that the currents jk, or j4 and j’g , part of the naive symmetry Gp, are
actually not conserved in the gauge theory. This is an anomalous global symmetry,
which is then not a symmetry of the quantum system.

We will mostly focus on G = SU(N) and Gp D U(1)a, with a particular
flavor symmetry U(1)4 that can be anomalous. This non-conservation of U(1)4 is
generally called a chiral anomaly.
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(iii) ’t Hooft anomalies. Finally, consider an anomaly-free theory with gauge
group G and a non-anomalous global symmetry group G (with generators Ty,).
In general, the anomalies involving only the global symmetry currents can be (and
generally are) non-zero:

Aapy # 0. (8.20)

These are called ¢ Hooft anomalies. They are an obstruction to gauging the sym-
metry Gp—per our general definition of anomalies—, but they are otherwise in-
nocuous. In the absence of G background gauge fields, the currents j4 are still
conserved. There is a mild modification of the Ward identities for G that follows
from the anomalous variations (8.7), but does not change their essential meaning—
the symmetry G still implies all the usual selection rules, in particular.

8.1.4 The ’t Hooft anomaly matching condition

While 't Hooft anomalies are innocuous, they carry some interesting information
about the QFT. The reason is that they are invariant under RG flow, in the fol-
lowing sense. Let us consider some UV theory with some global symmetry Gg
and a set of 't Hooft anomalies Ag, for that global symmetry. Then, consider an
RG flow starting from the UV theory, preserving the symmetry G g, that flows to
some effective field theory in the infrared. That IR effective theory could look very
different from the UV description, since the RG flow does not need to be perturba-
tive. Nonetheless, we claim that the 't Hooft anomalies in the UV and the IR must
match:

A (Tov) = Acp (Tir) - (8.21)

This is because we can always add some free fermions in the UV theory, Ty to
saturate the anomalies—that is, we can add some free fermions that transform in
some representation of Gr exactly so that the anomaly vanishes in the enlarged
theory Tuv ® Tree- We can then consistently gauge the enlarged theory Tyy ®
Tiree With some arbitrarily weakly coupled gauge field. Upon RG flow the free-
free fermion sectors then behaves as a spectator, and therefore we obtain another
consistent theory Trr ® Tgee very weakly coupled to Gp-gauge fields in the TR. It
must now be true that the Gr anomaly associated to T exactly cancels the one
associated to Tee. Therefore, must hold.

This 't Hooft anomaly matching condition provides a strong constraint on RG
flows, even at strong coupling, as we will see in some supersymmetric examples.

8.2 Instantons, ¢ angle and chiral anomalies
The term proportional to € in (7.72) gives the so-called topological term in the
SYM action:

Stop = /d4CC tr (G#VPUFMVFPO-) , (822)

6472

It is also known as the instanton density, or Pontryagin density.
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8.2.1 Instantons and 6 angle: executive summary

The meaning of this topological term is best described in Euclidean signature. Let
us also replace space-time by a general Riemannian four-manifold My:

0 . 4 vpo 0 .
Stop = _WZ/M4d $\/§tr (6‘u P FMVFPU) = _167_‘_27’//\4 tr FAF (823)

4

where we used the form notation, with F' = %F pwdx? A dx” in local coordinates. It
is clear from the right-hand-side of (8.23]) that Stop is independent of the metric on
My. In fact, the integrand is also a total derivative:

/ trF/\F—/ dtr(A/\A—mA/\A/\A), (8.24)
Ma My 3

and thus we naively expect the action to vanish.

However, the topological action can be non-trivial in the presence of a non-trivial
gauge-field configuration, which are called instantons. Indeed, consider M, = R*.
A physically sensible gauge field does not need to vanish at infinity; instead, it
should only be pure gauge:

lim A, =ig(z)d,g(x)"", (8.25)

|x|—o00

with g(z) an gauge transformation on the three-sphere, S2., at infinity:

g(x) o S? =G (8.26)
This map can have non-trivial winding number k € Z, corresponding to an element
of the homotopy group 73(G). One can show that the topological action precisely
computes the winding number:

/ trF/\F:/ tr<A/\A—2ZAAAAA>=167r2k. (8.27)
My 58, 3

Mathematically, the quantity [ M FENF s a so-called characteristic class, known
as the Pontraygin class, which captures some of the non-trivial topology of a non-
trivialisable G-bundle over a four-manifold M4—a non-trivial gauge-field configu-
ration on M. It is a non-trivial mathematical fact that this topological invariant

is always an integer:
1

—— | wFAF=keZ. (8.28)
1671'2 My

Let us insist on this amazing fact: while the action S[p] in general depends on the
detailed value of the fields ¢(z), the topological term gives an integer for any
gauge field A, (x). Thus, the quantity eStor = ¢k factors out of the path integral
for each “topological sector” at fixed k.
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Given a gauge field A,, with field-strength F),,, define the dual (or “magnetic”)
field-strength as:

F/uz = e;ujpanU . (829)

N

Definition: An (anti)-instanton is a gauge field configuration on My which is
(anti)-self dual:

Fup=+F,, , (8.30)

with the + and — signs for the instanton and anti-instanton, respectively. In QFT,
we consider, in particular, M* = R*, which can be compactified to a sphere S4.

One physical significance of instantons is that they are the non-trivial classical
saddles of the Yang-Mills action. Indeed, we have:

1 ~
2/|F—|—F|2:/|F2j:/F/\F20, (8.31)

schematically, which implies that the YM action in always larger or equal to the
topological action, the sense that:

/yFy2 > ‘/F/\F) = 1672k , (8.32)

with the inequality saturated for the (anti)-instanton configuration. We have k > 0
for an instanton and k& < 0 for an anti-instanton. On any (anti)-instanton back-
ground, we have:

1 Y 1 oo 82
i d*z\/gF,, F" = ig? / d*z\/ge" P F Fpp = ?u{:y : (8.33)

Thus, a k-instanton gauge field, A,(Lk), is weighted by a numerical factor:

7r2
e*SYM[A(W] — 6_8 QQ‘M 7 (834)

in the path integral. Note the similarlity to . Each topological sector, for each
k € Z—that is, the set of all gauge fields with a non-zero instanton number (8.28)—
gives a non-perturbative contribution to the path integral. For g? very small and
k # 0, the instanton factor is extremely small, and can be neglected for most
purposes (hence the name, non-perturbative E[) However, as g? grows under RG
flow (in the IR, for an asymptotically-free gauge theory), the instantons will start
giving increasingly important contributions to the dynamics. At strong coupling,
we would even expect them to dominate.

31Note also that the function:

m""

flo)=e
is non-differentiable at ¢ = 0. The apparence of such a factor is always the hallmark of a non-
perturbative correction.
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While the trivial saddle A, = 0 (corresponding to k = 0) is the starting point
of ordinary perturbation theory, one can (and should) do a similar perturbative
expansion around all saddles. The computation of any given observable will a
priori receive contributions from all saddles (plus perturbative fluctuations). For a
simple, simply-connected gauge group, such as SU(N) (for simplicity), we have:

Stop = —i0k , (8.35)

in Euclidean signature, in the presence of a k-instanton. Then, the Yang-Mills path
integral takes the schematic form:

4 . o snllk|
Z = /[DAM] et M FiSiop — Zewke i Zy (8.36)
keZ

where Z; is the perturbative contribution of each topological sector. Note that,
since a shift § — 0 4+ 27 does not modify the exponentiated action, 6 is indeed an
angle, with period 2m. We can also write (8.36) as:

Z=Zo+)y d'Zu+)y T "%, q=TT, (8.37)
k>0 k<0

with the holomorphic gauge coupling 7 defined in (|7.70]).

8.2.2 #-term and chiral anomaly

Consider a chiral anomaly—namely, a simple gauge group G and an anomalous
flavor current U(1)4, the anomalous chiral symmetry. Denoting by g4 the U(1)4
charge, we have the anomaly coefficients:

Adap =2 Z qa[] To[RY)TH[RY] = Sap Z qaly (8.38)
P

where the sum is over all the chiral fermions ¢ with non-zero U(1)4 charges ¢[¢].
Each such ) sits in a representation 8% of the gauge group G, with quadratic index
T(RY). Let us define, then, the chiral anomaly coefficient:

Avy, = Y aalb] T(RY) . (8.39)
v

Under a chiral symmetry transformation (with symmetry parameter a € R, a
constant), we have:

16 AU(l)A

balog Z = — 42

/d4xtr (PP FFpe) (8.40)

as a special case of (8.7)). But this is equivalent to a shift of the 6 angle:

0= 0+aAyq, - (8.41)
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Thus, even though the axial symmetry U(1)4 does not exists in the quantum theory
if Ayay, # 0, one can keep track of it (and extract physical consequences) by
assigning the U(1)4 transformation (8.41)) to 0, viewing 6 itself as a background
field.

8.3 General aspects of supersymmetric gauge theories

In the following, we would like to study some aspects of renormalisable gauge
theories with N' = 1 supersymmetry in four dimensions.

Let us take the gauge group G to be a simple compact Lie group, and consider
some matter field in chiral multiplet, ®, in some (generally reducible) representa-
tion SR. The full Lagrangian for the vector and chiral multiplets can be written
compactly, in superspace, as:

— [ 202032V T /2 T 23 ¢ (VI
& /d 0420 Be —— [ 0uwW) + —— [ E0aWW)

(8.42)
+/d29W(<I>) +/d2§W(<1>) :

Here, W(®) is some gauge invariant holomorphic polynomial in ® (which we take
to be at most cubic in the renormalisable theory).

Note that the Lagrangian of any renormalisable 4d N' = 1 supersymmetric gauge
theory is fully determined by the data of:

e The gauge group G with gauge coupling(s) 7 = % + %.

e The representation R for the chiral multiplets.

e The superpotential W (®).
All the various interactions terms are then determined by the combination of gauge
invariance and supersymmetry, as well as by W.

8.3.1 Classical scalar potential and vacuum manifold

By looking at the classical Lagrangian in components, it is easy to study the classical
scalar potential of the gauge theory. The adjoint-valued auxiliary field D enters as:

1 2 -
Z5 2—92D — 6D¢ , (8.43)

in the WZ gauge. The equations of motions for the auxiliary fields D = D*T, give:
Do=g*¢TN¢,  a=1,---,dim(G) . (8.44)

Integrating out D, we then find the scalar potential:

ow
w35

9 gz dim(G) o 9
+Z Zl (1M9)" . (8.45)
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The first term is the contribution from the superpotential, which we discussed in
previous sections, while the second term can be viewed as a contribution from the
gauge interactions themselves. The real operators:

1a(9,9) = TN o (8.46)

are often called the “moment map operators.”
Since the scalar potential is again a sum of perfect squares, the classical vacuum
equations of a supersymmetric gauge theory are:

8¢W =0, Vo, M(l(d)v ¢) =0, Va. (847)

Any two solutions to (8.47) related by a (constant) gauge transformations are phys-
ically equivalent. So, we introduce the equivalence relation on the space of constant
field values:

#~¢ if 3 (o) e RIME) guch that ¢f = ¢Te g . (8.48)
The constant values of the scalar field ¢ € ® span the vector space:
Vp=C", n = dim(R) , (8.49)

on which the representation R acts. Then, the vacuum manifold of the gauge theory
takes the general form:

(M={p €V | W =0, u, =0}/G, (8.50)

where the quotient by the gauge group corresponds to the equivalence relation
. In our discussion of theories with only chiral multiplets, we saw that the
vacuum moduli space was a purely algebraic object—in particular, everything was
holomorphic in ¢. This is apparently not the case in a gauge theory, since the
formula, is non-holomorphic in two ways: the moment maps pu, are real, and
the gauge equivalence is in terms of real gauge parameters a®.

Nonetheless, there is a simple-looking (although by no mean obvious) way to
rewrite (8.50) more algebraically. It turns out that imposing the vanishing of the
moment maps, i, = 0, and then dividing by G, is equivalent to dividing by the
complezified gauge group:

M={p e Vyn| OpW = 0}/Ge . (8.51)

In this approach, we are considering the space of complexified gauge orbits (or,
more precisely, their closure), under the G¢ action:

. :ar(R)
o ~¢ if 3 (w?) € CH™E) guch that ¢ = e™ " o . (8.52)
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The fact that the two approaches (8.50) and (8.51) reproduce the same moduli
]

space was shown explicitly in [25].

Conceptually, this was to be expected: the fact that we only divide by real gauge
transformations in is an artefact of the WZ gauge. The supersymmetric gauge
transformations on chiral superfields,

So® = ' | (8.53)

are really Ge-valued gauge transformations. More generally, the F-term contribu-
tions to the Lagrangian of any supersymmetric gauge theory are invariant under
the complexified gauge group Gc, while the total Lagrangian (in particular, the
D-term kinetic term for matter fields) is only G-invariant.

Finally, it is non-obvious but nonetheless true that the vacuum moduli space
M of a gauge-theory is also a Kdhler manifold, just like in the case without gauge
fields.

8.3.2 [-function and chiral anomalies

The one-loop § function of the YM coupling, in our supersymmetric gauge theory,
is given by:
1 bo

3, .1
3 <92> =25 by = 5T (adj) — ST(R) . (8.54)

Here, we simply specialised ([7.21]) to the supersymmetric matter content, taking
into account that the gaugino transforms in the adjoint representation.

Anomalous symmetries (with W = 0). Consider the axial symmetry U(1) 4
that gives a charge 1 to all chiral multiplets. This is a symmetry of the theory
without superpotential (/W = 0), which is however anomalous, since:

Ayay, =THR) . (8.55)
More generally, we should decompose R into irreducible representations:
R = D;NR; (8.56)

and define the symmetry U(1);, which charge ¢;, that acts only on ®; (in the
representation 9R;) with charge 1:

qi[®;] = 045 - (8.57)
The symmetry is anomalous, with chiral anomaly A; = T'(R;), which acts as:

D — V0P 0—0+TR) o, (8.58)

32Mathematically, it is a non-trivial equivalence between Kahler quotients (corresponding to
(8-50)) and Geometric Invariant Theory (GIT) quotients (corresponding to (8.51)).
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including the anomalous shift of the  angle. Another symmetry which is anomalous
is the “reference” R-charge Ry with charges:

Ro[V]=0,  Ro[®)]=0 = Ro[A\J=1, Rolth]=-1. (8.59)

Any mixing of an R-symmetry with a non-R (flavor) symmetry gives another
R-symmetry. Let us introduce a generic R-symmetry:

R=Ro+ > riq reR, (8.60)

where the parameters r; are the R-charges of the chiral multiplets, R[®;] = r; (so
the corresponding chiral fermions have R[);] = r; —1). One can then often find a
non-anomalous R-symmetry, by choosing the R-charges r; such that:

Apy, = T(adj) + Z(n —1)T(%%) =0 . (8.61)

A digression: The reader might wonder about the fact that the same quadratic
indices of the gauge representations appear in the expression for the YM S function
(8.54) and for the chiral anomalies. In fact, one can easily define an R-symmetry:

2 2

which is such that the chiral anomaly is exactly proportional to the S function:

Av(yp, = gbo : (8.63)
The R-charge R, assigns r. = % to all chiral multiplets, which is compatible with
a classically-marginal superpotential, W = ®3 (schematically). In fact, in the far
UV, such a SYM theory is classically conformal (in particular, scale invariant), and
the R-charge combines with the supersymmetry current and the energy-momentum
tensor into a larger algebraic structure (known as N' = 1 superconformal multiplet).
Quantum corrections break both conformal invariance (giving the running of g2,
which is a “quantum anomaly” of scale invariance) and the R-symmetry (through
the chiral anomaly), but supersymmetry relates these two “quantum anomalies”

exactly as in (8.63)).

8.4 Renormalisation of the holomorphic gauge coupling

In a supersymmetric gauge theory, we now have a “generalised superpotential:”

W, (W, ®,7,\) = —71(6‘?2 tr WO Wa + W (D, \; 110) - (8.64)
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Here, A denote the ordinary superpotential coupling. This F-term must depend
holomorphically on both 7 and A, which restricts the possible quantum corrections
to W, at least in some appropriate “holomorphic scheme.” We also introduced the
UV scale g explicitly in .

Perturbatively in g2, the holomorphy in 7 gives some very severe restriction
when combined with the fact that 6 is an angle with period 27, which means that
the theory is invariant under:

T~T+1. (8.65)

This implies that 7 can only appear linearly in W, at any scale p, and only in the
precise form: )
o
W, 3—167”‘5 r WW,, (8.66)
Indeed, in that case # multiplies the topological term as in . Since it is a
topological invariant, it cannot depend on p at all. The one-loop running of the
holomorphic coupling T is given by:

(1) = 7o) = 5 log - (3.67)
It is ezact in perturbation theory. This is because any higher-order terms in S(7 )
would be given in terms of Im(7) = 2%, which is incompatible with holomorphy. [
One can also rule out other perturbatlve corrections to the superpotential, like in
the case without gauge interactions. This leaves the possibility of non-perturbative
corrections.
It is useful to introduce a complexified dynamically-generated scale, generalizing

(7.27)), defined as:

) 2mir ()
A=eto|Al=pge o (8.68)

Then, we have:
AP = pboe2min() (8.69)

which is a well-defined quantity, invariant under the shift 8 ~ 6 + 27. Any non-
perturbative effects would appear as:

WM:—lé)t WO W, + W (@, \; ) +ZA”°’“ A ) (8.70)

since the theory should be regular in the limit A — 0. Note the expression:

20 1og A (8.71)

() =5 - &,

One could still constraint more carefully the form of the possible quantum cor-
rections to W. This sort of analysis, however, is only reliable at weak coupling.

330ne could also expect perturbative corrections in the superpotential couplings A in B(7), but
that can be ruled out by considering the weak-coupling limit ¢g> — 0.
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As we RG flow from an asymptotically-free theory in the UV toward pu ~ |A], the
theory become strongly coupled and we need new methods to explore the infrared
physics. As we will see in a particular example (SQCD), supersymmetry and gen-
eral symmetry arguments sometimes are exceptionally powerful in order to “guess”
what the infrared physics is.

8.5 The “exact” [-function

We saw that, at the level of the F-terms, the holomorphic gauge coupling 7 is
exact at one-loop (up to, possibly, non-perturbative corrections), and is given by
(8.71). This is true in the holomorphic scheme—that is, when we choose to preserve
the holomorphy of the F-terms. On the other hand, the D-terms in are

renormalised non-trivially, with:
SD—term,u = /d29d2§ (Zéi)e_m/q) + - ) s (872)

where the ellipsis denotes contributions from higher-dimensional operators, and the
wave function renormalisation factor depends on all the coupling constants:

and can be computed, in principle, at any order in perturbation theory. Moreover,
as we mentioned after eq.(7.20)), the physical gauge coupling, that appears in gauge-
interaction vertices, is the one obtained by rescaling:

Ay = geAu (8.74)

Here, for the moment, we write g. to distinguish it from ¢ that appears holomor-
phically in 7. In the holomorphic scheme, we have:

L, = /d29d29Zq>(u)<f>eQV<I>+/d20 w o1

g 3272 4g%(p)

schematically. Here, we set W = 0 for simplicity of notation. Note also that there

is really one distinct wavefunction renormalisation factor Zg: for each irreducible
gauge representation ;. We would like to define the “physical” fields:

> W2 +he, (875)

) ) 1

As we did for theories of chiral multiplets. It turns out, however, that these field
redefinitions are anomalous in the presence of the gauge interactions—that is, the
change of variable in the path integral gives a non-trivial Jacobian [26]. Heuristi-
cally, this can be understood as follows. The symmetry group of the F-terms is
complexified—we mentioned this fact before for the gauge group G, but that is true
of any global symmetries as well. The rescaling , in particular, can be under-
stood as a complexified “chiral rotation.” Since that chiral symmetry is anomalous,
the rotation shifts the # angle by an imaginary amount. This, effectively, shift g%
by a real quantity.
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8.5.1 Rescaling of the chiral superfields

It is useful to break down the field redefinition (8.76)) in two steps. First, consider:
Zgi® (8.77)

without touching V. This change of variable can be achieved by some complexified
chiral rotations,

B, = P a; = —% log Zgi | (8.78)

acting on each ®° independently. Then, according to (8.58)), this gives a shift to
the 6 angle by:

00 =0+> aT(H _9——ZT V1og Zgi (8.79)

We then find the F-term Lagrangian:

0 1
420 [~ — WeW, | 8.80
/ <3271'2 49R> W ( )
with: ) )
A E 167r2 ZT )log Zg: . (8.81)

This effective coupling g% has a S-function:

3 <1> _ bt LS TRy

g% 82

(8.82)
== (3T (adj) ZT )1 —W))

where we made use of the definition (6.10)) for the anomalous dimensions 7 of ®.
This receives contributions from every loop order in perturbation theory, but only
through ~g, similarly to our discussion of the physical superpotential couplings in

section [6.9]

8.5.2 Rescaling of the vector superfield
Now, start from (8.80) and introduce the canonically-normalised vector multiplet:
V=gV, (8.83)

to obtain the canonically normalised gauge field. This change of variables also has
a non-trivial Jacobian, which gives [26]:

Lo (i 1 T(adj) .
/d 0 <327r2 — @ + 39,2 log(ge) | WW, . (8.84)
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Then, equating the real coefficient inside the parenthesis with the canonically-

normalised coupling —ﬁ, we get:
1 1 T'(adj) 1
— = 1 — 8.85
9e 9% T em 8 92) "’ (8.85)

which gives g. in terms of gr, which is itself defined in (8.81) in terms of the
“holomorphic coupling” g. In particular, we find the S-function:

P <1> b+ 520 T(Ri) vy
92 82 — 3T (adj)g?

(8.86)

Note that the denominator is the same as in . This is the famous NSVZ
p-function, which was first derived by completely different methods [27]. It is
sometimes called “the exact S-function,” in the sense that it depends only on the
anomalous dimensions of the fields. Note that the anomalous dimensions themselves
depend on g2 (and on any other superpotential couplings)

8.5.3 Looking for non-trivial fixed points

The physical significance of the denominator in is not entirely clear, because
perturbation theory becomes unreliable before the denominator can have any im-
portant effect on the RG running. At the level of the present discussion, we should
simply view the NSVZ § function as a beautiful example of supersymmetry leading
to huge simplifications in the analysis of perturbative RG flows.

One classic use that has been made of these “exact” results is to look for
perturbatively-exact fixed points of the RG flow. Combining the results for the

gauge-coupling and superpotential coupling constants, (8.86|) and (6.53)), we can
ask whether it is possible to find an solution to the equations:

8 (ﬂ) ~0, BGr) = 0. (8.87)
9r

Here we used gg, since its S-function has the same zeros as g.. The existence of such

fixed points should be completely scheme-independent. The equations give

strong constraints on the anomalous dimensions v, that can arise at any candidate

fixed point, even at strong coupling.

8.6 SQCD: Lagrangian and symmetries

Let us now focus on some particularly nice 4d A/ = 1 gauge theory, supersymmet-
ric QCD (a.k.a. SQCD). This is an SU(N.) N = 1 supersymmetric gauge theory
with Ny flavors. This means that we have Ny chiral multiplets in the fundamen-
tal representation of SU(N.), and Ny chiral multiplets in the anti-fundamental
representation. We denote them by:

Qia izla"'aNfa @'7) jzla"'aNfa (888)
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| SU(N,) | SUN;) SU(N;) UM)a UL)p |UL)R|
Neo) | N (m 11 ‘ " ‘
(Ne) (1) (N¢) 1 -1

(@)
(@)

r

Table 3: Gauge and global symmetry representations of the chiral multiplets @ and
Q@ of SQCD.

respectively. For obvious reasons, the numbers N. and Ny are called the number of
colors and flavors, respectively, and the scalar fields @, @ are called the squarks.
The supersymmetric Lagrangian takes the form:

Ny Ny
¢ = /d2ed2é D QeVQi+ Y QY
= = (8.89)

_ 2 T 27 ¢ (VOVA
T / POEOVW) + - / PG (W) .

More precisely, this is massless SQCD, with vanishing superpotential. We could
also consider adding Dirac masses for the quarks, through a superpotential:

W= QQ; , (8.90)

with p! ; the mass matrix. Note that all gauge indices are implicit. We denote by
a=1,---, N, the gauge indices in the fundamental representation. Then,

QQi=Q Qs

which is obviously gauge invariant, and similarly for the contraction of the gauge

indices in (8.89).

The symmetries of the classical Lagrangian of massless SQCD are:
Gp = SU(Ns) x SU(Ns) x U)a x U(1)p , (8.91)

times an R-symmetry U(1)g. The U(1)4 and U(1)p factors are called the axial
symmetry and the baryonic symmetry, respectively. The charges of the chiral su-
perfields under the gauge and global symmetries are summarised in Table |3l The
R-charge shown if for an R-charge:

R=Ry+rA, (8.92)

with A the generator of U(1)4 and Ry the “reference” R-charge under which the
chiral multiplets are neutral.
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8.6.1 Anomalies and anomaly-free R-symmetry

One can easily check that the gauge group SU(N,) of SQCD is anomaly free—that
is the reason we needed as many fundamental as antifundamental chiral multiplets.

As a special case of the discussion in section we see that U(1)4 suffers
from a chiral anomaly:

Ay, = T(Ri) = 2Ny, (8.93)

and so does U(1)g, for a general mixing parameter r € R:
AU(I)A =2N.+ 2Nf(7“ —-1). (8.94)

However, there is a unique choice of r such that the U (1) g-SU(N.)? anomaly -
vanishes, namely:

N,
1_ DNe 8.95
TN (8.95)

The other symmetries are non-anomalous. Thus, the global symmetry of SQCD,
at the quantum level, is:

GFXU(l)R, GFESU(Nf)XSU(Nf)XU(l)B, (896)

with this particular choice of R-charge.

8.7 The classical vacuum moduli space of SQCD and gauge-invariant
operators

In the absence of superpotential, SQCD can have a large vacuum moduli space.
Let us denote by Q¢ and @, the scalars in the corresponding superfields, and also
their VEVs. We then have:

= {(@, Q1) e N7 | =0} /SUN,) - (8.97)

Here, the “D-term constraints” can be written as the vanishing of the traceless
N. x N. matrices: @

Ny Ny

pE =y (QTan -2 (Q“Qz)) > (QT“QJ %, tr(Q QJ)) =0. (8.98)

i=1 j=1

Note that the matrix pjf is obviously SU(N.) x SU(N,) x U(1)g-invariant.

31 Here we take: 1

— 804
Nc b9 >
for the fundamental of SU(N,), and then (T?)§ = —(T®)¢ for the anti-fundamental.

(T*)y = (T3)s = 6404 —
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For any fixed number of “colors” N, the structure of the SU(N.) SQCD moduli
space changes as we vary the number of flavors, Ny. The basic physical reason is
the Higgs mechanism. A non-zero VEV for a single fundamental scalar Q = (Q%)
of SU(N,) breaks the gauge group as:

Q) #£0 =  SU(N.) — SU(N.—1). (8.99)

By a gauge transformation, we can take the vector (Q%) to be (¢1,0,0, - - ,0), which
is obviously preserved by the SU(N, — 1) subgroup of SU(N,). More generally, a
generic VEV for the Ny squarks breaks the gauge group according to:

QH#0, i=1,---,Ny = SU(N,) — SU(N.— Ny) . (8.100)

For Ny > N, the SU(N,) gauge group is entirely broken at a generic point on the
vacuum moduli space. The VEVs also have to satisfy the D-term conditions
in order to preserve supersymmetry.

Another approach to analysing the moduli space is to use the description .
In the absence of superpotential, this tells us that:

M= {(Qg, Q) e c?NcNf} /SL(N,,C) . (8.101)

This space can be constructed algebraically by building all the possible gauge in-
variant chiral operators, X, and then imposing relations between the fields X that
follow from their definition—these are known as syzygies. This is a classic problem
in invariant theory. We will present explicit examples below.

8.7.1 The case Ny < N,

If Ny < N, we can pick the VEVs of the fundamental squarks to be:

g 0 -+ 0
0 ¢ --- 0
Q=10 0 - aqn, | - (8.102)

Plugging this into (8.98)), we see that this solves the D-term condition if and only:

G 0 - 0
0 ¢ - 0

Q) = . with g =3, Vi. (8.103)

oo O O
oo O O

0 0 - qy
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This is not the most general solution to (8.98]), but any other allowed VEV can be
reached by considering the SU(Ny) x SU(Ny) orbit of (8.102))-(8.103)). It turns out
that:

dimg(M) = N7 , (8.104)

as a complex space. This can be understood easily in terms of the Higgs mechanism.
At a generic point on M, the gauge symmetry is broken as in (8.99) and so:

Ny = (NZ = 1) = (Ne — Ny)* = 1) = 2NyN, — N} , (8.105)

gauge bosons get a mass, by each “eating” a complex scaler ¢. Thus, out of the
2Ny N, complex scalars in the UV, 2N;N, — Ny = NJ? scalars survive on the IR
moduli space, matching the counting .

We can also see this in the purely algebraic description . In this language,
we should construct all the gauge invariant scalars build out of the fundamental
squarks ) and @ There are only NJ% of them, which we denote by:

M, =0iQe . (8.106)

They are usually called the SQCD mesons, since they are made of two fundamental
squarks, in analogy with the mesons of real-world QCD which are made of two
quarks. They are the natural coordinates on the moduli space for Ny < N, with:

M=CNF . (8.107)

Note also that the case Ny = N, — 1 is special, since the gauge group is com-
pletely broken. (The “SU(1)” group is trivial.)

8.7.2 The case Ny > N,

For Ny > N, the gauge group is completely Higgsed at a generic point on the
moduli space. By the same Higgs-mechanism argument as above, we should have:

dimc(M) = 2N;N, — N2 +1 . (8.108)

Let us see how this comes about in the language of gauge-invariant chiral fields.
Now, in addition to the mesons , we can build other gauge-invariants, by
making use of the fully-antisymmetric invariant tensor of SU(N.). These are the
so-called “baryons:”

a
Bi1i2---iNc = 6&1&2--'GNCQ?11Q?22 tee Q”]:CC 5 (8.109)

and the “anti-baryons:”

RiljeiNe — a1a2-an, O)J1 )2 ... ()INe
B c=¢€ Qi QY Qay - (8.110)
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SU(Ny) SU(Ny) U()s UL)r U()a
M (Nf) (Nf) 0 27’ 2
B | (®X°Ny) (1) N, rN, N,
B (1) (@NeN¢)  —N, rN, N.
Abo (1) (1) 0 |[2N.+2Ns(r—1)| 2Ny

Table 4: Global symmetry representations the gauge-invariant chiral operators of
SQCD. Here, U(1) 4 is anomalous, and so is U(1) g unless we choose the R-charge as
in (8.95). This induces A and R charges for the SQCD scale A%, with by = 3N.—Ny.

Again, the name comes from QCD, where a baryon is a gauge-invariant combination
of 3 fermions in the fundamental of the gauge group SU(3).

For future reference, we collect the symmetry charges of the mesons and baryons
in Table[d In total, there are:

Ny =N?+2 (%Jj : (8.111)

gauge-invariant operators, since the baryons B transform in N.-index antisymmet-
ric representations of SU(Ny), and similarly for the anti-baryons B. This is larger
than the expected dimension of the moduli space, .
The reason is that they are relations amongst the so-called generators of M
seen as an algebraic variety: N
X =(M,B,B), (8.112)

which follow directly from their definition in terms of fundamental fields. One can
easily check that:
le"'ch (X) = Ehj?x"chB

i1,

_ Mi[fl CLMPN

N¢ ?

(8.113)

1192 N,

where the square bracket denotes anti-symmetrization of the indices. Moreover,
since the anti-symmetrisation of n > N, squarks must vanish, we have:

QiNc+2"'iij(X) = 1INy M =0, (8.114)

1IN, INet1
it Ny > N., and similarly:

QjNCJrQ...iji(X) = ejl...ijBh ]NCMZ-N T — 0 . (8115)
The moduli space is then given explicitly in terms of generators and relations, as:

M = {XECNX ‘P(X):O L Q(X) =0, Q(X) :o}. (8.116)

Mathematically, this is known as a affine variety (the zero set of a some polynomials
in C™).
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8.7.3 The case Ny = N,
Consider the case Ny = N, in more detail. According to the description (8.116)),

we have:

Nx = N?+42 (8.117)

generators, while the moduli space is of dimension N2 + 1. Indeed, the generators
are:

M B, B, (8.118)

where we defined:

B= EilmiNCBil...Z‘Nc 5 B= Ejl...jNCEjlijC s (8.119)

using the SU(Ny) x SU(Ny)-invariant e-symbols (with Ny = N.). There is a single
relation, of the form (8.113)), amongst the generators, which can be written as:

det(M) —BB=0. (8.120)

The resulting affine variety M is an example of a hypersurface in algebraic geometry.

8.7.4 The case Ny = N.+1

In this case, we have:
Nx = N7 + 2Ny (8.121)

generators, the mesons and baryons:

J i0 01 iN. B ... . pitin
M, BY =¢ CBZI...lNC , Bj, _€J0J1“']NCB c (8.122)

On the other hand, the expected dimension of the moduli space is:
dim(M) = 2N§(Ny — 1) = (Ny —1)> + 1= N7} . (8.123)
The relations amongst the generators take the form:

B'B; — Minor(M); =0, M/B'=0, B;M/=0. (8.124)
Note that there are Np = N? + 2Ny relations amongst the Nx = NJ% + 2Ny
generators, but:

Np > Nx — dlm(./\/l) . (8.125)

Thus, the relations cannot be all independent, but nonetheless there does not exist
a smaller set of relations. This is a common feature of algebraic varieties. (Variety
whose dimensions is given by the number of generators minus the number of rela-
tions are called complete intersections. The SQCD moduli space for Ny > N, is
not a complete intersection.)
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8.8 Infrared phases of gauge theories

Asymptotically-free gauge theories run to strong coupling at low energy, and per-
turbation theory breaks down. Therefore, exploring the infrared physics of gauge
theories is a very challenging problem, theoretically.

Given an RG flow from any weakly coupled UV theory (in particular, a gauge
theory), there are roughly three possibilities for what may happen in the infrared:

e Mass gap. The theory might be gapped. That is, there are no excitations
below a finite energy FEjy, and therefore the far-infrared physics is trivial.

For instance, pure Yang-Mills theory in 4d is expected to have a mass gap.
(Proving that conjecture is a Millennium Prize Problem, literally and figura-
tively worth $1,000,000.)

e IR free. The infrared theory consists of free massless particles.

This happens, for instance, in QED below the electron mass, where we only
have a free photon. This also happens in theories with spontaneous symmetry
breaking, where the Goldstone bosons are the massless particles.

e Non-trivial fixed point (CFT). The infrared theory may be at a non-
trivial fixed point of the renormalisation group flow. In that case, the IR
theory is a non-trivial conformal field theory (CFT). "]

While there are no obvious examples of this kind of RG flow in real-world
particle physics, there are plenty of examples in condensed-matter physics.

Note that the vacuum at a generic point of the classical SQCD moduli space is
an IR-free theory, consisting of n free chiral multiplets, with n = dim(M). On the
other hand, it is much more challenging to understand what happens at the origin
of the moduli space, where the gauge group SU(N,) is unbroken and we expect the
strongly-coupled gauge dynamics at scales ;4 < A to be dominant.

8.9 Aspects of the quantum vacuum of SQCD

In the rest of this section, we briefly discuss how the classical picture of the vacuum
is modified quantum mechanically. We will only be able to touch upon the subject,
for lack of space and time, but hopefully it will be enough to give you some the
desire to go and learn more about this beautiful chapter of mathematical physics.

8.9.1 N;=0: SYM theory

In the case of super-Yang-Mills theory (Ny = 0), we have a ordinary pure YM
theory SU(N,) coupled to a fermion A in the adjoint representation. In the UV,
the theory has a U(1)g symmetry classically. Due to the chiral anomaly:

Apay, = 2Ne (8.126)

35Free massless particles are CFTs too, but trivial ones.



8.9 Aspects of the quantum vacuum of SQCD 113

from the gaugino, the R-symmetry is broken to a discrete subgroup:
U(l)R — ZQNC . (8.127)

It is expected that the theory confines and develops a mass gap in the IR, just
like pure YM theory. Moreover, the theory has N, distinct vacua, in which the R-
symmetry Zsy, is spontaneously broken to Zy, due to the appearance of a gaugino
condensate in the supersymmetry-preserving vacuum:

2min

(AN\g) =A%e™Ne | n=1,---,N,. (8.128)

The fact that the theory has (at least) V. distinct vacua can also be inferred from
the Witten index of the theory, which is equal to N, [19].

8.9.2 0 < Ny < N.: runaway supersymmetry breaking

In the case 0 < Ny < IV, the classical moduli space is spanned by the Nf2 mesons

MZJ . This vacuum structure is preserved in perturbation theory, but might be
modified by non-perturbative effects.
Any such non-perturbative correction should appear as new operators in the
superpotential:
Weg = W(M,A) . (8.129)

Here, Weg can only be an holomorphic function of the complex scale A and of MJZ

(instead of @ and @ individually, by gauge invariance). In order to preserve the
symmetries, with charges given in the Table [d] we must have:

Weg = ao(det M)t Aboc2 | (8.130)

with the dependence on det M only, to preserve SU(Ny) x SU(Ny), and the coef-
ficients:

c12Ny + 22Ny =0, 2rci Ny + c2(2Ne + 2Ny(r — 1)) =2, (8.131)

for consistency with U(1)4 x U(1)g. This gives:

1
A3Nc—Nf Ne—N
) " (8.132)

W =a
f a( det M

up to some undetermined dimensionless coupling constant. In fact, it is a famous
result by Affleck, Dine and Seiberg (ADS) [28] that this superpotential is generated
by a one-instanton effect (that is, at first order in Ab) when Ny = N, — 1, giving:

AB3Ne—Ny

_. 1
det M (8.133)

WADS,Nyj=N.—1 =
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By consistency with various decoupling limits, this fixes:

(8.134)

1
A3Ne—Nj \ No=N7
det M ’

Waps = (Ne — Ny) <

for any 0 < Ny < N..

The effect of the ADS superpotential is quite dramatic. While there is a large
moduli space of vacua classically, and at all orders in perturbation theory, a non-
perturbative correction—a “tiny” correction of order e~87°/9°__destabilises the vac-
uum. Indeed, the vacuum equations that follow from this superpotential are:

0oWaps =0 8@WADS =0. (8.135)
These equations have no solution except in the limit:
(M) — o0 . (8.136)

Thus, supersymmetry is spontaneously broken—since the breaking is due to dy-
namical effect, this is an example of what is known as dynamical supersymmetry
breaking. In fact, there is still a supersymmetry vacuum asymptotically, “at infin-
ity” in field space.

FEzercice: Consider the case of massive SQCD, with the tree-level Dirac mass term
(8.90). We still have an ADS superpotential generated at one-loop, so that:

West = p' M + Waps - (8.137)

Show that, in that case, we have a finite number (equal to N.) of supersymmetric
vacua. In the massless limit y — 0, these vacuum are pushed to infinity in field
space. This is known as runaway supersymmetry breaking.

8.9.3 Are there low-energy o-models for Ny > N_.?

Consider now the case Ny > N.. Far away on the moduli space, as field distances
(@) > A, the physics is the one of the weakly-coupled Higgs mechanism, which gave
us a simple way to compute dim(M) in . The low energy excitations are
given in terms of mesons and baryons—even though there are constraints relating
those gauge-invariant fields, we can always solve those constraint locally at a generic
point on M, to keep n = dim(G) coordinates.

The hard question is to understand what happens quantum-mechanically near
the origin of the moduli space, at field distances:

() <A (8.138)

At ¢ = 0, classically, we have the massless bosons of the SU(N,) vector multiplet,
but their dynamics is strongly coupled in the infrared. Assuming that supersym-
metry is not broken, one hypothesis is that the low-energy effective theory can be
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written entirely in terms of gauge-invariant massless states, the mesons and baryons
X, sitting in chiral multiplets, and interacting through a superpotential.

The simplest form of this hypothesis is that there the low energy theory is just
a supersymmetric o-model of chiral multiplets:

Ly model = / d?0d’0 K(X,X) + / d?OW (X) + / d2ow (X) , (8.139)

for the “meson” and “baryon” fields X in , which we now view as the “fun-
damental fields” in the low-energy description. The effective Lagrangian at scale
@ < A is then given in terms of some unknown (and presumably complicated)
Kahler potential K, and some holomorphic superpotential W (X).

We can test this hypothesis using the 't Hooft anomaly matching condition.
There are many non-trivial 't Hooft anomalies for global symmetry group Gp X
U(1)g of the UV theory, massless SQCD. For instance:

tr(SU(Ns)3) = —N. , (8.140)
for the SU(Ny) factor under which @Q; transforms. We also have:
tr(SU(N;)?U(1)g) = N. , (8.141)
and: N
tr(U(1)g) = —N2 -1,  tr(U(1)%) = N? - 21\7;2 -1, (8.142)

where we used the non-anomalous R-charge (8.95)). There are still more 't Hooft
anomaly coefficients, whose computation is left as an exercice.

On the other hand, the naive theory (8.139)) would have:

tr(SU(Np)3) = =Ny + 4 (2}eNy ) (8.143)
where the first term is the contribution from the mesons M, and the second term is
the contribution from the baryons B to the cubic anomaly. In particular, we have:

N)3 - _N N3‘ — _N;+1 144
tr(SU(Ny)z) N sy tr(SU(Ny)) S—— Ft1, (8.144)

for Ny = N, or Ny = N, = 1. From this and other 't Hooft anomalies, we see that
the naive o-model does not reproduce the 't Hooft anomalies of SQCD for generic
Ny.

In fact, one can easily show that all anomalies match if and only if Ny = N.+1. In
that case, the anomalies match almost miraculously. For instance, the cubic U(1)g
't Hooft anomaly in the o-model is given by:

(N; —2N,)? Lo (NeNy = Ny — N2)3 (Nf>

Ny N} Ne)
This does match the corresponding SQCD anomaly in (8.142)) for Ny = N, + 1,
namely:

tr(U(1)%) = (8.145)

2N

tI'(U(l)S) Np=No+1 - (Nc + 1)2

+N?—1. (8.146)
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8.9.4 N;= N.: deformed moduli space

For Ny = N, we just argued that the low energy theory at the origin of the moduli
space cannot be simply a theory of massless mesons and baryons. To make a long
story short, what happens in this case is that the origin of the moduli space does
not exist quantum mechanically.

Recall that the classical moduli space is described as an hypersurface:

det(M) — BB =0 . (8.147)

Quantum mechanically, this relation is deformed to [29]:

det(M) — BB = A% | by = 2N, . (8.148)

This is again a non-perturbative (one-instanton) effect. Note that the deformation
is fully compatible with the (anomalous) symmetries from Table 4 with Ny = N..
Algebraically, this is an example of a deformation of a singularity—while the

hypersurface (8.147) had a singularity at the origin, the deformed space ([8.148]) is
smooth.

8.9.5 N;=N.+1: A o-model

For Ny = N.+1, we saw above that we could saturate the 't Hooft anomalies with
our naive g-model of mesons and baryons. This cannot be the full description,
however, since the moduli space has a lower dimension than the number of fields,
Nx = N?—{—QNf. Instead, we should have a superpotential to impose some relations
amongst the fields X. By symmetry, we can only have:

det M BIM!B;

W=« + (8.149)
Ag Ag
By various decoupling limits, one can fix &« = —8 = —1. We thus claim that the
correct superpotential is:
B'M]B; — det M
W= it e (8.150)

AS

This is a rather strange result, since it does not seem to behave well in the classical
limit, A — 0. However, the numerator would also vanish in this limit, due to the
classical constraints —in particular, det M = 0 classically since it is a matrix
of rank N. < Ny.

36Here, deformation is also a technical term; more precisely, we have a “complex structure
deformation” of an algebraic variety.
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In the low-energy description, the F-term equations that follow from ({8.150),
when treating M and B, B as fundamental fields, give us:

;\V;j =B'B; — (M~ ") det M =0,
ow .

= M/B' = 8.151
aBz ZB 0 9 ( )
oW _ B;M! =0.
OB,

These are precisely the constraints (8.124]) that define the classical moduli space.
Thus, for Ny = N.+1, the low-energy description seems to be in terms of a o-model
whose vacuum moduli space is exactly the same as in the UV description.

8.9.6 Ny > N.+1: SCFTs, free theories, and duality

For Ny > N, + 1, the low-energy physics is more interesting. It was elucidated
in 1994 by Seiberg [30]. Here, we only give some brief summary of that beautiful
subject, and we refer to the classic lecture notes by Intriligator and Seiberg [3] for
further reading; see also Argyres’ lecture notes (link in introduction) for a detailed
and pedagogical account.

In order to describe what happens in SQCD with:
N.+1< N; <3N, , (8.152)

It is perhaps easiest to first discuss what happens near the upper bound Ny = 3N..
At precisely Ny = 3N,, the Yang-Mills S-function vanishes at one-loop. We thus
have have a fixed-point of the RG flow, at first order—a four-dimensional CFT.
Consider the “exact” g function , which reads:

1 3N. — Np(1 — )
B <gz> =g NgZ (8.153)

for SQCD; here, we used the global symmetries to equate all the anomalous dimen-
sions,
Qi =V5: = Vo - (8.154)
For Ny = 3N,, there is a fixed point, at all order in perturbation theory, if 74 = 0.
That is, if the squarks retain their classical dimensions, A = % Therefore, it seems
that massless SQCD at Ny = 3N, is an “almost free” conformal field theory.
Now, for Ny < 3N, we could try to obtain a zero of the 3 function:

1 Ny — 3N,
= o = <~ 1

where we used the global symmetries to equate all the anomalous dimensions. Con-
sider, in particular, the case of large number of colors, N. > 1 and 2N, — Ny very



118 8 Dynamics of 4d N = 1 gauge theories

small; then, the anomalous dimensions are arbitrarily small and one can understand
the fixed point perturbatively. Such a fixed point is called a Banks-Zaks fixed point;
it also occurs in QCD-like theories without supersymmetry [3I]. All we need is a
B-function of the form:

— | = =— —cgNrg“ + 1
B <92> ]2 CoiVfg O(g ) ) (8 56)

at two-loop order, with cg > 0 a positive numerical constant. Then, we have a
perturbative fixed point with a coupling constant:

, 1 b

=0 «1 8.157
9s 87r200]\,f<< , (8.157)

if by is smaller than coNy.

SCFTs. The claim is that there is a non-trivial fized point in the IR of SQCD in

the full range:
3N,

< N;<N,. (8.158)

This is called the SQCD conformal window. The gauge coupling g2 at the fixed
point is small near the upper limit (for V. and Ny sufficiently large, giving a Banks-
Zaks fixed point), but becomes strong (with g2 of order one) as we lower N , at fixed
N.. The lower bound on the conformal window comes about as follows. Any fixed
point preserving supersymmetry necessarily enjoys a larger space-time symmetry
algebra, called the N’ = 1 superconformal algebra. Tt has generators:

pP,,
Qo , Qa
A M,, , R, (8.159)
Sa Sa
K, ,

generalising the super-Poincaré algebra. Here, A is the dilation operator, whose
eigenvalues are the quantum dimensions (or just “conformal dimensions”) of the
operators, by definition, and R is the U(1)r charge. The R-charge is now a non-
trivial part of the algebra. In 4d N' = 1 superconformal field theories (SCFTs), the
scalar chiral operators ® satisfy a BPS-type relation tying up their R-charges and
dimensions:

R[®] = %A[CD] . (8.160)

Note that this relation is compatible with a classically-marginal (that is, conformally-
invariant) superpotential. Another general fact about 4d CFTs (with or without

3THere the generators are organised according to their conformal dimensions, from A[P,] = 1
to A[K,] = —1. The Poincaré supercharges Qa, Qs have dimension %, and the special conformal
supercharges Sa, S¢ have dimension —3.
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supersymmetry) is that the dimension of any well-defined (gauge-invariant) opera-
tor must satisfy:

A(O) =1, (8.161)

and the operator is free if and only if this so-called unitary bound is satisfied.
Consider the quantum dimension (8.155)) for the squarks chiral superfields. Us-

ing (8.160f), that implies:

R[Q] = R[Q] = % <1 + ;%) =1- J]\\;; =r, (8.162)

precisely the anomaly-free R-charge of SQCD. Then, for the gauge-invariant meson
operators M = QQ to satisfy the unitarity bound, we must have:

~ N,
AGQ) =3-32>1 o N;2ON,. (8.163)
N; 2

That explains the lower-bound on the conformal window.

IR-free phase. Finally, we should discuss what happens in the window:
3
Ne+1< Ny < §NC . (8.164)

We saw that the naive mesons and baryons cannot give a good description of the
origin of the moduli space. One heuristic reason is that the only superpotential
term allowed for the mesons is of the form:

1
W ~ (det M) | (8.165)

which is singular at the origin. Such singularities in the effective action typically
hint at the presence of light particles, which we forgot to take into account in the
Wilsonian action. The extraordinary claim, due to Seiberg, is that one should
describe the low energy physics in terms of some IR-free gauge theory with gauge
group:

SU(Ny — N.) (8.166)
and Ny flavors in chiral multiplets ¢* and g;, coupled to some additional NJ% gauge-

singlets caled Mf , with a cubic superpotential:
W =tr g;M/q" . (8.167)

This SQCD-like theory, which we call the “Seiberg-dual theory” of SQCD, has a
B-function coefficient:

by =3(Ny — N.) — Ny = 2N; — 3N, (8.168)

which is negative in the window (8.164]). Thus, indeed, it becomes a free theory in
the infrared (and needs to be defined with a UV cut-off, at the scale A).
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Let us repeat the claim: the low-energy theory for asymptotically-free SQCD
in the window is given in terms of an IR-free gauge theory, with gauge
group SU(Ny— N,). The gauge bosons and matter fields of this “dual theory” have
nothing to do with the original fundamental fields of SQCD in the UV. Nonetheless,
one can check that all ’t Hooft anomalies match between SQCD and the proposed
IR description! The proposal, in fact, passes many other consistency checks, which
we will not discuss here.

Seiberg duality. Even more amazingly, this relation between two different gauge
theories, known as “Seiberg duality,” extends all the way into the conformal window,
where both the SU(N,) and the “dual” SU(N;—N.) gauge group are asymptotically
free. In that case, we have two well-defined asymptotically free gauge theories in
the UV, written schematically as:

SU(N,), Ny, W=0 < SUN;—N.), Nj, W=qgMq.| (8169

They are certainly two different theories, with different numbers of degrees of free-
dom in the UV. The claim is that, in the conformal window, they both flow to the
same SCFT in the infrared. Moreover, when one description is strongly coupled,
the other is weakly coupled—that fact, as you can imagine, can be very useful.

We should point out that the above intricate picture of the quantum vacuum struc-
ture of SQCD has no definite proof for Ny > N, to this day, but it passes so many
highly non-trivial consistency checks that its correctness is beyond any reasonable
doubt.

9 Spontaneous supersymmetry breaking

The “real world” is not supersymmetric—we clearly do not observe a massless
“photino,” the fermionic superpartner of a photon, nor an electrically charged
scalar, the “selectron” at 0.5 MeV, which would be the scalar superpartner of the
electron.

Thus, if supersymmetry is part of a more fundamental theory of Particle Physics,
it should be spontaneously broken. There should be a supersymmetry-breaking mass
scale, Mgusy, which is likely larger than the TeV scale. In any such theory, this
scale gives the approximate mass-splitting between supersymmetric partners:

|mboson - mfermion| = MSUSY . (91)

At very high energy, 1 > Mgsusy, the mass splitting can be neglected and the theory
looks supersymmetric, while the vacuum of the theory (our world, presumably) is
not supersymmetric.

In this section, we give a brief theoretical discussion of supersymmetry breaking
in general. In the next section, we will discuss attempts to apply supersymmetry
to Particle Physics.
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9.1 The supercurrent multiplet

In any local 4d AN/ = 1 supersymmetric QFT, the supercharges are the integral of
conserved supersymmetry currents over a space-like slice:

Qun = /2 3z S0, Qu = /2 Bz SY . (9.2)

The supersymmetric current—or supercurrent—is of a Majorana-spinor worth of
conserved currents:

Sﬂ(x) ’ Sg(iﬂ) ’ aﬂsg =0 ’ aﬂ‘s# =0 ’ (93)

o «

for a total of 12 independent real fermionic local operators. In any given theory,
defined by a Lagrangian, the supercurrent can computed explicitly by the usual
Noether procedure. For instance, consider the theory of a free massless chiral
multiplet:

&L = —0,00"¢p — iya" b + FF . (9.4)

One easily finds:
St =V20,6(c"5")), , St =V2(Ps"0"), 0o, (9.5)

which is conserved upon using the equations of motion, 9,,0"¢ = 0 and #9,1) = 0.
Note that the supercurrent is not fully determined by the Noether procedure—it
can be “improved” by adding a term which is automatically conserved:

S = S+ (6")a Dy (9.6)

for some spinor 7.

Like any local operator in a supersymmetry theory, S5 must be part of a su-
persymmetric multiplet, which is called the supercurrent multiplet. From the su-
persymmetry algebra, it is clear that the supercurrent is in the same multiplet as
the energy-momentum tensor, T;,. Indeed, T}, is itself the local current for the
conserved momentum:

p, = /Z Bz T, , 9,T" =0 . (9.7)

and we must therefore have:
{Qa, 8,5} =207 ;T (9.8)

in order to reproduce the 4d N' = 1 supersymmetry algebra. (The relation
holds modulo terms that do not contribute upon integration over space.) The
energy-momentum tensor itself contains only 6 independent real bosonic operator.
Thus, we need at least 6 more real bosonic operators to match the fermionic degrees
of freedom of the supercurrent off-shell.
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The most general supercurrent multiplet actually contains 16+16 real operators,
and is called the S-multiplet [32, B33]. Here, we will focus on a special case, that
contains 12 + 12 operators and was first derived by Ferrara and Zumino (FZ) [34].

In superspace, the FZ supercurrent multiplet is a superfield J,, that satisfies:

DYTna = Do X DX =0. (9.9)

In components, we have [33]:

1 _ (= 1 _ ; _

T = Ju— b <Su + 30;#71/5”) + 10 <Su + 36M0y5"> + %HQG#X

4 . , (9.10)
- _

— 5908NX + 290'V9 (TI/,U, — g’r]u,,Tpp + 4€/Ll/po'apja> -+ .. ,

where the ellipsis denotes higher-order terms in , 8. Here, the operators j*, X, X
provides 6 real operators (here j* is not a conserved current, in general, despite the
notation).

9.2 Spontaneous supersymmetry breaking and goldstino

Classical argument. Consider now the situation when the vacuum is not invari-
ant under supersymmetry. The scalar potential of a supersymmetric gauge theory
reads:

<55 (o) (9.11)

Supersymmetry is spontaneously broken, at the classical level, if the vacuum has
non-zero energy. Let us define by:

:aiw
= 55

the values of the “F-terms” and “D-terms” in the vacuum, with VEVs ¢ = (¢) for
the fundamental scalars. Here, the index a runs over the generators of G, and 7 is
an index for the (generally reducible) representation SR. Supersymmetry is broken
is some f; or d, are non-vanishing. Consider, then, any (classical) vacuum:

fi da = ¢V (9.12)

oV oV
i — pu— 0 _1
which gives:
ow . _ .
i+ 2 (T .42 = ;
agbiagbjf +9°¢j(Ta);d* =0, Vi . (9.14)

and its Hermitian conjugate. Moreover, the gauge-invariance of the superpotential
gives:

= FAT) .of =
591/1/ 0 = Jj] (T?) ‘1¢‘ 0 ) (915)
QW =0 = 6i(Ta)i fi=0.
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We can write the conditions (9.14]) and (9.15)) as:

£\ | iBm V2T
My (da> - M= (i\/id_)k(%b)ki o ) (919

where we also defined:

: 2
?=-—La 9.17
NG (6-17)

for convenience of notation. By inspection of the fermion mass terms:

_ } ow i s /9% \a ki
L= 355050 V200 (T)* 0" + hec. (9.18)

we see that M1 is just the fermion mass matriz:
2

1 (G
L=t )M, (A> fhe. . (9.19)
Incidentally, note that the gaugino mass terms are consistent with the Higgs mechanism—
they vanish for (¢) = 0, and otherwise are equal to the mass of the massive W-
bosons.

Any non-supersymmetric vacuum satisfy:

My <§a> =0, (J:> 0. (9.20)

Thus, the fermion mass matrix has at least one vanishing eigenvalue. In other
words, there is necessarily a massless fermion in the spectrum of low-energy ex-
citations around the vacuum. This is the analogue of the Goldstone theorem for
bosonic symmetries, here in the case of supersymmetry, and the massless fermion
is called the goldstino.

Non-perturbative argument. While we the above argument for the existence
of a Goldstino was only in the tree-level approximation, the existence of a massless
Golstino is actually true in the full QFT, similarly to the case of a Goldstone boson.
It follows from the supersymmetric Ward identity:

<3“Sua(x)5’l,5(0)> - —54(:U)<i{Qa, syé}> : (9.21)
Using , we have:
pN <Sua(p)gy5(_p)> = _2UZB<TV/L> = _205577;w Ey (9-22)

in momentum space. In the last line, we used that:

(Tuw) = nuwEo , (9.23)
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in a Poincarfe-invariant vacuum (with Ey > 0, with Ey = 0 if the vacuum is
supersymmetric). @ This implies that: m

(Sua®)S,5(-)) > (auaﬂau)aﬁ-% . (9.24)

We therefore see the necessary appearance of a pole in the two-point function of
the supercurrent, whenever the vacuum energy Ej is non-zero. This corresponds to
the presence of a massless fermion wgf, which is created out of the vacuum by Q.

At this point, we might worry that the existence of a Goldstino precludes any re-
alistic model of supersymmetry in the real world, since we do not observe such a
massless particle. The way out is that supersymmetry, ultimately, must be also
coupled to gravity; this makes supersymmetry “gauged” (with space-time depen-
dent supersymmetry parameters e, €), in which case the Goldstino is “eaten” by the
gravitino, in a supersymmetric version of the Higgs mechanism, and is then safely
of the order of the supersymmetry-breaking scale Msysy.

9.3 Supersymmetric mass sum rule

In the tree-level approximation—that is, by looking at the classical Lagrangian—,
one can derive additional constraints on the spectrum in a vacuum of a supersym-
metric theory with spontaneously broken supersymmetry. Let ms denote the mass
of (mass eigenstates) particles of spin s. We must always have that the supertrace
over the full mass matrix vanishes:

STr(M?) = Y (mo)* =2 ) (m1)*+3 Y (m)*=0. (9.25)

scalars Weyl fermions vectors

The factors 2 and 3 accounts for the helicities of the fermions and vectors, respec-
tively.

(The case with only chiral multiplet was discussed on a problem sheet. The
general case with gauge field included is similar; see chapter 27 of [2] for details.)

In a supersymmetric vacuum, the spectrum is perfectly degenerate between bosons
and fermions. The supersymmetric mass sum rule implies that, when supersym-
metry is spontaneously broken, the fermion and bosons masses can differ but still
organise themselves around some “average,”

Z m? = Z m? . (9.26)
bosons fermions

Furthermore, by symmmetry or gauge invariance, this same sum rule holds in-
dependently in each sector with a given set of charges under global and gauge
symmetries.

38We assumed that T}, is symmetric, which can always be achieved by an improvement trans-
formation.
1ndeed, we have: p"(0,5°0,)p, = —p°0., as one can easily check using (A-T)).
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9.4 Mechanisms of supersymmetry breaking

Writing down a theory that breaks supersymmetry spontaneously is somewhat of
an art, although there are many examples on the market.

Supersymmetry-breaking models are usually separated into “F-term or D-term
SUSY-breaking,” depending on whether f; or d, in is non-zero. (Of course,
both could also be non-zero.) Let us briefly discuss some examples.

9.5 F-term supersymmetry breaking

For some superpotential W (®), whether in a theory of chiral multiplet or in a larger
gauge theory, it might happen that the F-terms are non-zero at the minimim of Vj,
namely:

ow
o’
as we discussed earlier. Then, the vacuum is non-supersymmetric with energy
Vo = |f]*.

fi= £0, (9.27)

O’Raifeartaigh model. One of the first such models, historically speaking, was
the O’Raifeartaigh model, which has a three chiral fields and a superpotential:

Wor=aY +YX?+~1XZ , (9.28)

which has no supersymmetric vacua. At the minimum of the superpotential, we
have:

fx=0, fr=a, fz=0. (9.29)

We studied this one on a problem sheet. Classically, any VEV for Y is allowed in
this vacuum, while X = Z = 0. Quantum mechanically, that “pseudo-modulus”
Y is lifted at one-loop. (In the absence of supersymmetry, the moduli space is
no longer protected; the one-loop corrected potential is known as the Coleman-
Weinberg effective potential.)

One can cook up many models of F-term supersymmetry breaking, although it is
a surprisingly hard thing to do. The essential mechanism is always similar.

One general comment one can make about these models is that they often
look fined-tuned. For instance, in the O’Raifeartaigh model, there are many small
deformations of the superpotential that would lead to supersymmetry restoration.
In particular, adding a mass term for Z:

W = Womr +mZ? | (9.30)

we can now find supersymmetric vacua (two of them). However, this particu-
lar deformation breaks the R-symmetry of the model (which was r = 0,2,2 for
X,Y,Z). Tt is a folk-theorem that you need an R-symmetry in order to have F-
term supersymmetry-breaking.
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9.6 D-term supersymmetry breaking and Fayet-Iliopoulos model

In general, the F-terms are the only genuine source of supersymmetry breaking.
By gauge invariance, setting f; = 0 implies that one can always set:

do = ¢Tap =0, (9-31)

too. Therefore it seems that we cannot have “genuine” D-term breaking with f; = 0

and d, # 0.

9.6.1 The Fayet-Iliopoulos term

There is an interesting exception, however, when (part of) the gauge group is
abelian. For each U(1l) C G, we can add another supersymmetric term in the
Lagrangian, which is simply:

Lr =2 / d*0d*0 & Viyry = €D (9.32)

with £ € R a real coupling of mass dimension 2, called an Fayet-Iliopoulos (FI)
parameters. This FI term is obviously gauge and supersymmetry invariant, and
can only be written for an abelian vector multiplet.

The FI term corrects the D-term of an abelian theory is an important way.
Consider a G = U(1) theory with n chiral multiplets of charges g;, such that:

qu’:o, Zqi:o’ (9.33)

to cancel the gauge anomaly. The D-term equations are now:
1
?Da:ZQi‘qSiF_g:O : (9.34)
i

(In term of the “moment map” operator defined in (8.46|), we have u = &, and the
FI parameter ¢ is known mathematically as the “level” of the moment map.)

9.6.2 FI-term-induced supersymmetry breaking

The simplest “D-term supersymmetry breaking model” is a U(1) theory with a
non-zero FI term and two chiral multiplets ®1 of charge +1 and a Dirac mass
term:

W =md, d_ . (9.35)

In other words, this is a supersymmetric version of QED with a massive electron.
We have the F-term and D-term conditions:

moy =mé_ =0,  |ppP—|o-P—£=0. (9.36)

Obviously this system has not solution. The scalar potential has a minimum at
¢+ = 0, with:

Vo) =g¢%?>0. (9.37)
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10 Supersymmetry and the Standard Model

Supersymmetry has long been the leading contender for Beyond the Standard Model
(BSM) physics, although so far there has been no hint of it from the LHC.

In some narrow sense, BSM supersymmetry refers to any theory of Particle
Physics generalising the standard model at high-enough energy, whose particle spec-
trum would include the superpartners of the known fundamental particles:

quarks sqarks (scalars)

leptons (e, u~, 7, V) sleptons  (scalars)
SU(3) gauge bosons (gluons) gluinos  (fermions)
SU(2) x U(1) gauge bosons W3,Wi,BM

Higgs boson(s)

winos and bino (fermions)

Ll Ll

Higgsinos (fermions)

If the superpartners are heavy enough, they might have avoided detection to this
day. On the other hand, the general expectation from “naturalness” was that the
superpartners should appear at the electroweak (EW) scale, to stabilise the Higgs
mass.

In the following, we discuss some elementary aspects of the supersymmetric “com-
pletion” of the Standard Model. One important point is that the corresponding
“minimally supersymmetric Standard Model” (MSSM) is not a supersymmetric
theory with spontaneous supersymmetry breaking. Indeed, that possibility is ruled
out by the mass sum rule , which would imply that at least some of the
superpartners are rather light, and should have been detected.

Instead, the MSSM is a supersymmetric Lagrangian complemented by terms
that break supersymmetry explicitly. These terms, called “soft terms,” are chosen
so that the theory still protects the mass of the scalars from quadratic divergences.
(We say that the UV behaviour remains “soft.”)

10.1 The Standard Model (lightning review)

Let us first review the Standard Model itself. It is a gauge theory based on the
gauge group:
G=SU@B)xSU2)xU(1)y . (10.1)

The SU(3) gives the “colored” interactions of the strong force (mediated by 8 gauge
bosons, the gluons). The SU(2) x U(1)y gauge group governs the electroweak force
(mediated by 3+1 gauge bosons, W:ﬁ, W3 for SU(2) and B, for U(l)y). The
charge Y of the abelian factor U(1)y is called the weak hypercharge. @ The U(1)
of electromagnetism is obtained after electroweak symmetry breaking:

SU(Q) X U(l)y — U(l)EM s (10.2)

1

L, namely we have Y[)] € +Z for every fermion.

40Conventionally, it is given in units of
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SU@E) SUE2) Uy |UMem | UM)L U)p
q; = (u;,d;) 3 2 & (3,-3) 0 3
ul 3 1 ~2 ~2 0 -1
d' 3 1 1 1 0 -1
b = (vi, ;) 1 2 -1 1 (0,-1) 1 0
Z 1 1 0 0 ~1 0
Iz 1 1 1 1 -1 0
o= (d,0% | 1 2 3 (1,0) 0 0

Table 5: The matter content of the SM, including the hypothetical gauge-singlet
“right-handed” neutrinos 7%, and the Higgs scalar ®. Here, all the fermions are
given as left-chiral Weyl spinors 1,,; their anti-particles are the right-chiral spinors
1hs of opposite charges. The “flavor” index i runs over the SM “generations,”
1 =1,2,3. The last two columns give the lepton and baryon numbers, respectively.

with the electric charge given by:
Qem = Ty +Y - (10.3)

The matter content of the standard model is summarised in Table [5} in two-
component Weyl spinor notation. Note that we give the fermionic content in Weyl
notation. The corresponding Dirac fermions, in the more usual four-component
spinor notation, are:

U, = (%) : D; = (5) , Li = (%) , (10.4)

for the up and down quarks (that is the name for the first generation, i = 1; for
1 = 2,3, they are called the charm and strange quarks, and top and bottom quarks,
respectively), and for the charged leptons (electron, muon and tau). Note that the
Dirac fermions transform covariantly under SU(3) x U(1)gy but not under
the full SM gauge group—in other words, the SM is a chiral theory.

In Table [5, we also indicated the lepton and baryon numbers, which are U(1)
symmetries of the SM Lagrangian.
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Anomaly cancellation. It is easy to check that all the gauge anomalies cancel,
as needed for consistency. For each generation, we have:

tr(SUB3)})=2-2=0,

(SUBPU(1)y) =25 — =+ =0.
tr(SU(2)%U(1)y) = 3% - % -0, (10.5)
H(U)) = 65 +3(—2) +3(5) +2(~ 1)+ 19 =0

and similarly tr(U(1)y) = 0 for the mixed U(1)y-gravitational anomaly.

Chiral anomalies. The baryons and lepton number symmetries are separately
anomalous, with the chiral anomalies:

tr(SU(2)°U(1)1) = tr(SU(2)*U(1)p) = 1,
1 (10.6)

(U UM)L) = UMy U(1)p) = =3 ,

but the difference:
L-B (10.7)

is non-anomalous, and therefore an exact symmetry of the Standard Model.

The Higgs sector. The Higgs field ® is a scalar doublet of the SU(2) gauge

group:
+
P = (20) , (10.8)

(@) = <O) . veER, (10.9)

breaking the electroweak gauge group as in ((10.2)). The SM vacuum therefore sees
one real scalar excitation, the Higgs boson hgy, which appears as:

which acquires a VEV:

\}i(hsM +iGY) . (10.10)
The other three real scalars G°, G*, corresponding to the three broken SU(2)x U (1)
generators, become part of the massive vector bosons W+ and Z°.

Most of the Standard Model Lagrangian is fully determined by gauge invariance.
The crucial exception is the Higgs sector. Firstly, we do not know for sure what is
the self-coupling of the Higgs; one usually assume a simple potential that leads to

the Higgs VEV (10.9).

ot =Gt , ot =G, o0 =y +
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More importantly for our purpose, the coupling of the Higgs field to fermions
arise from Yukawa interactions, which are not fully determined by gauge invariance:

Lrurawa = (V) 16rs@" W — (Vo) ;pq]d? — (Yy)', @070 + hec. . (10.11)

Here, the indices r = 1,2 and s = 1,2 are SU(2) gauge indices, and Y,,, Yy, Y, are
the Yukawa coupling constants, which must be determined experimentally. After
electroweak symmetry breaking, these terms provide the Dirac masses M = vY to

the quarks and leptons ((10.4]).

10.2 The supersymmetric SM

Let us now consider the supersymmetric version of the Standard Model. None of the
fermions (quarks and leptons) and bosons (gauge fields and Higgs) of the SM can
be paired by supersymmetry, due to the gauge representations. Instead, we need
to introduce superpartners for every known particles—whose conventional names
were given at the beginning of this section.

The supersymmetric SM consists of SU(3) x SU(2) x U (1) multiplets multiplets,
which contains fermions (the gauginos) in the corresponding adjoint representations.
All the left-chiral fermions of Table [5| also become part of chiral multiplets, denoted
by: N N N

Qi = (Qzaqz) ; U' = (Uz’,l’zz) ) U' = (Ulval) )

Li=(Li,l;), Nt = (N7, L= (L0,
with the curly letter denoting the chiral multiplets (or superfields), the capital let-
ters denoting the complex scalar superpartners, and the lowercase letters denoting
the left-chiral fermions.

Finally, any supersymmetric version of the SM must have two Higgs fields dis-
tinct Higgs fields. This is apparent, firstly, from the SM Yukawa Lagrangian ,
which cannot arise from a superpotential term, since it contains both the scalar ¢
and its complex conjugate ¢ coupling to bilinears in the left-chiral fermions. In-
stead, in a supersymmetric version of , we need at least two Higgs doublets
to give their masses to the up and down quarks separately.

Another reason we need at least two Higgs doublets (and, in fact, an even
number of doublets) is because of anomaly cancellations. The superpartner of the
Higgs field ® is a fermion in the 2% of SU(2) x U(1)y, which has a gauge anomaly.

(10.12)

We need a second Higgs doublet with charges 2_ 1 in order to have an anomaly-

free supersymmetric version of the SM. (The gauginos do not introduce additional
gauge anomalies because they are in adjoint representations—in particular, they
have zero weak hypercharge.)

The chiral multiplet content of the supersymmetric SM is summarised in Ta-
ble 6l The Higgs sector interactions follow from the following gauge-invariant su-
perpotential:

W= —(yu)' ;229U + (ya)' ;21 QD7 + (yo)' ;@1 L:L7 (10.13)




10.2 The supersymmetric SM 131

SU@B) SU@2) Uy |[UMem |UM)r U()s |k

Qi=U;D;) | 3 2 § G -51] o0 3 | -1
U 3 1 2 2 0 -1 -1

D 3 1 1 : 0 -1 -1
Li=(N;, L) 1 2 -1 lo-n| 1 0 | -1
N 1 1 0 0 ~1 0 | -1

L 1 1 1 1 -1 0 | -1
o= (0, 97)| 1 2 -3 | (0,-1)| o0 0 1
dy = (®5,99) | 1 2 i (1,0) 0 0 1

Table 6: Chiral superfields in the supersymmetric SM. We denote by ® both the
Higgs superfields and the Higgs scalar components. The last column denotes the
R-parity of the chiral multiplet.

with the Yukawa coupling constants y corresponding to Y in (10.11)). Here, we used
the shorthand notation:

DX =£,,0"X° = &2X! — pl X% (10.14)

for the contraction of two SU(2) doublets. (The contraction of color indices is left
implicit.) We thus have:

W= —(yu)';(P5U — I DU — (ya)'; (@YU — &, U;)D?
— (yo)' (@VL; — BTNG) LT

(10.15)

We can obtain Dirac masses for the quarks and leptons from the VEVs of <IJ(1) and

@Y, namely:
(®1) = (%) . (@) = (i) : (10.16)

In phenomenological studies of the MSSM, one often encounters the ratio:

v
tan B = — . (10.17)
U1
Another F-term that one can write down, which preserves both baryons and fermion
number, is a mass term for the Higgs field:

W, = pd1®y = p(®; o — &YPY) (10.18)

which is known as the “u-term.” By itself, this term would forbid the VEV ;
however, it turns out to be necessary for phenomenological reason. In the actual
MSSM, including supersymmetry-breaking soft-terms, the electroweak symmetry is
broken well below Mgyusy, and the SUSY-breaking terms are essential in obtaining
the EW-breaking vacuum observed in the real world. (We refer to chapter 28 of
Weinberg [2] for the gory details.)
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R-parity. One can also write various renormalisable superpotential terms that
break the lepton and baryon numbers (and, in particular, the anomaly-free L — B):

Wapgny = Oéijk Qlﬁjﬁk + B”kﬁlﬁjf’“ + %Jkﬁzﬁkzzjk‘ . (10.19)

The last term is an “anti-baryon” in the language of SQCD, with the gauge indices
contracted as in (with N, = 3). These terms cannot appear in any realistic
theory, since they would lead to experimentally excluded processes, such as proton
decay (p — 7° +eT through exchange of squarks and sleptons), at a dramatic rate.
Of course, these terms are in fact excluded if L — B is an exact U(1) symmetry of
physics beyond the SM—the superpotential has charge L — B = 1.

There are strong theoretical reasons to believe, however, that the “ultimate
theory,” including quantum gravity, does not have any exact continuous symmetry.
In the study of supersymmetric BSM physics, a weaker assumption is usual made,
that we need to preserve a Zs discrete symmetry, called R-parity defined as:

g = (-1)F(=1)3E=B) (10.20)

with (—1)F the fermion number. This is a Zy C U(1)r discrete R symmetry in
the supersymmetric SM. The R-parity of the chiral multiplets is shown in Table [6]
Note that if a scalar has R-parity +1, then its fermion partner has parity F. Thus,
R-parity assign even parity (+1) to the non-supersymmetric SM fields (including
the two Higgs scalars ®; and ®3), and odd parity (—1) to the superpartners. The
superpotential terms (10.13)) and ((10.18)) are consistent with R-parity, while
is not.

An interesting consequence of R-parity, if it is indeed a good symmetry of
supersymmetric BSM physics, is that the lightest supersymmetric particle (often
called the “LLSP”) has to be stable (since it could only decay into another R-parity-
odd particle). This provides a natural candidate for dark matter.

10.3 The MSSM: supersymmetry-breaking soft terms

What is called the minimal supersymmetric Standard Model (MSSM) is not actually
a supersymmetric theory. It is the supersymmetric SM (SSM) corrected with “soft
terms” that break supersymmetry explicitly:

Lissm = Lssm + Lioft - (10.21)

The soft terms denote all the possible R-parity invariant terms that are super-
normalisable and break supersymmetry explicitly—that is, of engineering dimension

41 As we understand it today, quantum gravity would probably not allow even exact discrete
symmetry such as R-parity. In any case, it is enough that R-parity is conserved in the “low-
energy” theory well below the quantum-gravity scale.
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< 4. They are given by:
-i/ﬂsoft = ) j

( i — (M2)Y U;U" — (MY D;D’ — (Ml%)ijﬁjf,i
— (M3 L E' (AMMgaugino) + h.c.
(

— MCQQ
2\j

L’ 4

- Au) (I)QQzUJ (Ad)ijq)lQiﬁj+(Ag)ij(1)1ﬁiij (10'22)

— (C);21Qi07 + (Cy)' j22Qi D7 + (Cy)' ;@2 Li L7

— Bu®,95 + h.c.

The first two lines are explicit mass terms for the scalar superpartners and for the
SU(3) x SU(2) x U(1)y gauginos. The A-terms, C-terms and Bu-terms introduce
further interactions amongst scalars. In phenomenological studies of the MSSM,
the C-terms are usually set to zero, although not for especially good reasons [2].

The MSSM soft terms introduce over 100 new parameters, which is not
a particularly economical extension of the Standard Model. It should be thought
as the minimal low energy effective field theory below the supersymmetry-breaking
scale. The fundamental theory would hopefully look elegant; the detailed mech-
anism of supersymmetry breaking then determines the MSSM parameters at low
energy.

In any case, the MSSM is usually the starting point for phenomenological
studies—that is, to extract concrete predictions for collider experiments. Due to the
large number of free parameters, one often focusses on special parameter subspace
(for instance setting all the scalar masses M? in equal and diagonal), for
simplicity. We will not discuss the MSSM phenomenology further in these lectures.

10.4 Hidden sector and supersymmetry-breaking mediation

To conclude this brief introduction to “supersymmetry and the real world,” we
should give a rough idea of how the MSSM can be embedded in a more fundamental
theory.

Since supersymmetry cannot be broken spontaneously in the SM itself, we need
some “auxiliary” mechanism. The idea is that there exists an “hidden sector” which
breaks supersymmetry spontaneously. A popular assumption is that supersym-
metry is broken dynamically by strong-coupling effects, in some strongly-coupled
supersymmetric gauge theory. The point is that this supersymmetry-breaking dy-
namics, whatever it is, must happen amongst quantum fields that are completely
decoupled from the ordinary matter of the Standard Model. (This is not completely
crazy. We know from astronomical observation that we do not understand most of
the matter content of the Universe, anyway.)

At first approximation, we would have a “tensor product” fundamental theory
at high energy: _

T = (SUSY SM) ® Eidden ) (1023)

with ﬁidden the hidden-sector QFT, which is supersymmetric but breaks supersym-
metry spontaneously at a scale Mgygy.
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Then, one assumes a mediation mechanism that “transmits” the supersymmetry-
breaking effects from ﬁidden to the supersymmetric SM, thereby generating soft
terms as in (as well as many other non-renormalisable terms supressed by
1/MSUSY to some power).

There are two well-studied mediation mechanisms:

10.4.1 Gauge mediation

One possibility is that there exists (very massive) messenger superfields X which
are charged under the SM gauge group and also couple to the hidden sector:

(SUSY SM) 25 Thidden - (10.24)

The messenger fields must be in a pseudo-real representation of the SM gauge
group, so that they can obtain a very large mass M. (This also ensures that they
do not introduce any gauge anomalies). Then, perturbative processes involving the
messenger fields induces the MSSM soft terms. For instance, the gaugino masses
are proportional to the SM gauge couplings, g% = ¢2, ggU@),g%,:

Mgaugino X gQMX , (1025)
while the squarks and slepton masses are proportional to:
M? x g*M% | (10.26)

very schematically. This is an attractive scenario since it is very predictive, giving
us many precise relations amongst the soft terms of the MSSM, which must all be
proportional the SM gauge couplings.

10.4.2 Supergravity mediation

Another popular mediation mechanism is supergravity mediation, in which the only
“messenger particles” are the gravitational interactions:

gravity

(SUSY SM) 5 Thidden - (10.27)

More precisely, the dominant supersymmetry-breaking “messengers” would be su-
persymmetric partners of the graviton, in a supergravity theory. Since gravity cou-
ples universally to every type of energy-momentum, supergravity mediation is al-
ways present. “Supergravity mediation” denotes the situation where this is the
dominant contribution, in the absence of any gauge-mediation mechanim.
Suppose, for instance, that supersymmetry is broken by a non-zero F-term,
(Fx) # 0, in the hidden sector, so that the SUSY-breaking scale is Msusy =
V/ (Fx)—that is, we have some hidden-sector field X such that X =0 and Fx # 0
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in the supersymmetry-breaking vacuum.. Then, all the soft masses of the MSSM
are proportional to:

(Fx) _ M3ysy
Mp Mp

Mgaugino ™~ M ~ (10.28)
with Mp the Planck mass. These soft terms simply arise from power-supressed
higer-dimensional operators such as:

_ 1 - _
/dQHdQHMQXXQQ+--~ : (10.29)
P

which would arise at scales u < Mp, in an effective field theory approach, from
“integrating out” the gravitational interactions.

11 A very brief introduction to supergravity

Supergravity refers to any classical theory that combines General Relativity (GR)
and supersymmetry. We insist on the fact that supergravity theories are classical.
The difficulties in “quantising” supergravity theories are as severe as in GR.

Nonetheless, if supersymmetry is part of the physical world, it has to be com-
bined with gravity, and supergravity then provides something like the “tree level”
approximation for the coupling of supersymmetric QFTs to gravity.

The other main motivation to study supergravity is that it appears as the low-
energy approximation of String Theory, which is believed to be a consistent theory
of Quantum Gravity.

11.1 Gauging the supercurrent: 4d A = 1 linearised supergravity

It is sometimes useful to think of GR as a “gauge theory” for Poincaré invariance.
In this approach, we start with a Poincaré-invariant field theory on R14~! which
then admits an energy-momentum tensor, which we can choose to be symmetric:

T/J,I/ = Loy - (111)

This T},, encodes all the conserved currents for Poincaré invariance, ISO(1,d — 1),
in flat space. Then, naively, we could attempt to “gauge” ISO(1,d—1) by allowing
the Poincaré transformations to depend on the space-time point. This correspond
to adding a “gauge field” for ISO(1,d — 1), denoted by Ag,,, which couples to the
energy-momentum tensor as:

L = Ng, T (11.2)

at first order in Ag,,. This is really equivalent to considering a non-trivial metric
on space-time:
Guv = Nuv + Ag,uy . (11.3)
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Of course, in GR, the energy-momentum tensor can be defined as the reaction of the
system to a variation of the metric. The “gauge group” of GR correspond to the dif-
feomorphisms of the space-time manifold. At the linearised level, differomorphisms
act on the metric as:

5£guy - 8[L§V + aufp, y (114)

for some arbitrary covector &,,.

Then, as in the notion of “gauging” in QFT, we should also introduce a kinetic
term for the metric. @ This is provided by the Einstein-Hilbert action, which is
essentially fixed by the requirement of diff invariance.

11.1.1 Linearised old minimal supergravity

Consider now 4d A = 1 supersymmetry. We have seen that 7),, sits together with
the supercurrent in a supermultiplet (known as the FZ multiplet):

Tu= (.S, S T, X, X) . (11.5)

Then, as in GR, we would like to understand supergravity as a gauging of super-
Poincaré invariance. The fields that couple to the supercurrent operators
are:

Hy = (by, O UL g, M, M) . (11.6)

This is known as the “old minimal supergravity multiplet” [35] [36] [37], for historical
reasons. (There exists another N' = 1 supregravity theory called “new minimal,”
which couples to a slightly different current multiplet.)

At first order in the supergravity fields, we can understand the supersymmetric
coupling between (11.5) and ((11.6)) in ordinary superspace. Consider the supercur-
rent superfield J,4 = ok J,. The first-order coupling to “sources” must be of the
form:

Ly = /d29d207{mjad : (11.7)

Due to the superspace definition of the FZ multiplet, we have a gauge invari-
ance:

Hoo — Haa + DaLa + DaLa - (11.8)
with the superfield L, satisfying the constraint:
DDD%L, — DDD4L% =0 . (11.9)

Using the gauge freedom , one can fix a WZ-type gauge for the (linearised)
supergravity multiplet H,, so that only the components survive. After fix-
ing the WZ gauge, there are still residual gauge transformations, which include
linearized diffeomorphism and local supersymmetry transformations:

g = 0u& +0,€, 0LV a = Ou€a -+ (11.10)

42 As in (8.3)) with A, replaced by g,.., although we don’t really know what the path integral over
metrics means. We just look at the classical action, which would be the “tree-level approximation”
of quantum gravity.
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The gravitino variation is in term of the local supersymmetry parameters, e(x). In
the WZ gauge, the Lagrangian ((11.8)) is simply:

Dug = Agu T + U, 5" + 0,8 + b, + MX + MX . (11.11)

We see that the gravitino ¥, couples to the supercurrent, as expected. Note that
the gravitino variation in (|11.10)) is dual to the conservation of the supercurrent:

o (/ d*z \IJMS”> = /d4x Oye SH = —/d%; €9,5" =0 . (11.12)

11.2 Full N =1 supergravity: general strategy

The supergravity fields b, and X in turn out to be auziliary in old-minimal
supergravity (similarly to the auxiliary field D in the vector multiplet of an NV =1
supersymmetric gauge theory). Their presence allows us to write down off-shell
supergravity transformations. This is very useful, since it allows to consider N =1
supergravity theories in two-steps, similarly to what we did for rigid supersymme-
try:

1. Write down off-shell supergravity transformations, which generalise the su-
persymmetry transformation to include diff invariance and local supersymme-
try transformations, wherein the supersymmetry-transformation parameters
€ become functions of space-time, €(x). In particular, we have the gravitino
variation:

0V, = Dye (11.13)
with Z,, a supersymmetry-covariant derivative, which itself depends on W. |§|

2. Write down supergravity-invariant actions. In particular, we want to gener-
alise the Einstein-Hilbert action to include a kinetic term for the gravitino.
For old-minimal supergravity, this takes the form:

1 1 - _
SSUGRA = /d4ﬂ?\/§ <4/{/2R — iﬁuypo\yua'pr\IJo— + bub'u + XX> y (1114)
very schematically.

There are no real conceptual problems in carrying out these two steps in detail
for old-minimal 4d A/ = 1 supergravity (or any other supergravity theory with an
off-shell formulation). It just gets rather technical rather fast.

There are also superspace approaches to N/ = 1 supergravity, to which the Wess
and Bagger book provides a good introduction [IJ.

“3This is completely similar to the gauge transformation 6o A, = D, for a non-abelian gauge
field.
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A Useful identities

In this appendix, we collect some useful identities. The proofs are left as an exercise
for the reader.

A.1 Useful identities

Recall:
(O"U'5'V + O'V&'u)aﬁ = _QUHV(SO/B » (A 1)
(6"0" + 0 0")” = —2m5% ;. '
We also have: . '
TasThf = ~2005 , (A.2)
Tr(cta") = =20 |
oto'ol + ofa" ot =2(nPo” — n"Pot — ol (A.3)
Ghov5P + 5P ot = 2(nPeY — nPat — nVeP) | '
Involving 6,6 (or any two spinors):
1 I NPT
0°07 = —=Pog , 0°0° = _=9%gp (A4)
N&no 1 npn =6
0e0% = 500 bo," . (A.5)
o 1
0ot 005”6 = —599 00 nHv . (A.6)

The matrices (0),” defined in (2.37) are also (imaginary)-self-dual (SD) two-

forms:

%e’“’poam =o', (A7)
while 6#” is (imaginary)-anti-self-dual (ADS):
%e’“’p"ﬁpg =gt . (A.8)

Here, we have €123 = +1. Note also that those matrices are traceless with the
natural position of indices, and therefore they are symmetric in the spinor indices
when bringing both indices down: (0#)s5 = (0#)gq, and similarly, (5W)a,6 =
(aw)ga-

We also have the useful identity:

ag 1 g ag 2 g
Te(o#0%) = — (171" — ) — S (4.9)
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A.2 Fierz identities for 4d Weyl spinors

A basic identity involving three left-chiral Weyl spinors is:

OX tha = =0t Xa — X ba (A.10)

and similarly for right-chiral Weyl spinors:

IX Yo = —0¢ Xa — XV 04 - (A.11)

From these follow various other useful identities, such as, for instance:

(0"€)q €t = —eot' € + €T €q (A.12)

We also have:

_ 1 _
00 Xa = — 390" (09,)a

) ; ' (A.13)
X0 Yo = —§¢U“5{ (Uu9>a .

References

1]

2]

3]

[4]

[5]

J. Wess and J. Bagger, Supersymmetry and supergravity. Princeton
University Press, Princeton, NJ, USA, 1992.

S. Weinberg, The quantum theory of fields. Vol. 3: Supersymmetry.
Cambridge University Press, 2013.

K. A. Intriligator and N. Seiberg, “Lectures on supersymmetric gauge
theories and electric-magnetic duality,” Nucl. Phys. Proc. Suppl. 45BC
(1996) 1-28, arXiv:hep-th/9509066 [hep-th]. [,157(1995)].

A. Bilal, “Introduction to supersymmetry,” arXiv:hep-th/0101055
[hep-th].

Y. Tachikawa, “Lectures on 4d N=1 dynamics and related topics,” 2018.
arXiv:1812.08946 [hep-th].

S. R. Coleman and J. Mandula, “All Possible Symmetries of the S Matrix,”
Phys. Rev. 159 (1967) 1251-1256.

R. Haag, J. T. Lopuszanski, and M. Sohnius, “All Possible Generators of
Supersymmetries of the s Matrix,” |[Nucl. Phys. B88 (1975) 257.

A. Neveu and J. H. Schwarz, “Factorizable dual model of pions,” |Nucl. Phys.
B31 (1971) 86-112!

J. H. Schwarz, “The Early History of String Theory and Supersymmetry,”
arXiv:1201.0981 [physics.hist-ph].


http://dx.doi.org/10.1016/0920-5632(95)00626-5
http://dx.doi.org/10.1016/0920-5632(95)00626-5
http://arxiv.org/abs/hep-th/9509066
http://arxiv.org/abs/hep-th/0101055
http://arxiv.org/abs/hep-th/0101055
http://arxiv.org/abs/1812.08946
http://dx.doi.org/10.1103/PhysRev.159.1251
http://dx.doi.org/10.1016/0550-3213(75)90279-5
http://dx.doi.org/10.1016/0550-3213(71)90448-2
http://dx.doi.org/10.1016/0550-3213(71)90448-2
http://arxiv.org/abs/1201.0981

140

References

[10] Yu. A. Golfand and E. P. Likhtman, “Extension of the Algebra of Poincare

[11]

[12]

[13]

[14]

Group Generators and Violation of p Invariance,” JETP Lett. 13 (1971)
323-326. [Pisma Zh. Eksp. Teor. Fiz.13,452(1971)].

J. Wess and B. Zumino, “Supergauge Transformations in Four-Dimensions,”
Nucl. Phys. B70 (1974) 39-50. [,24(1974)].

J. Wess and B. Zumino, “A Lagrangian Model Invariant Under Supergauge
Transformations,” Phys. Lett. 49B (1974) 52.

J. M. Maldacena, “The Large N limit of superconformal field theories and
supergravity,” [Int. J. Theor. Phys. 38 (1999) 11131133,
arXiv:hep-th/9711200 [hep-th]. [Adv. Theor. Math. Phys.2,231(1998)].

N. Seiberg and E. Witten, “Electric - magnetic duality, monopole
condensation, and confinement in N=2 supersymmetric Yang-Mills theory,”
Nucl. Phys. B426 (1994) 19-52, arXiv:hep-th/9407087 [hep-th].
[Erratum: Nucl. Phys.B430,485(1994)].

A. Kapustin and E. Witten, “Electric-Magnetic Duality And The Geometric
Langlands Program,” Commun. Num. Theor. Phys. 1 (2007) 1-236),
arXiv:hep-th/0604151 [hep-th]l

L. Brink, P. Di Vecchia, and P. S. Howe, “A Lagrangian Formulation of the
Classical and Quantum Dynamics of Spinning Particles,” |Nucl. Phys. B118
(1977) 76-94.

S. Weinberg, The Quantum theory of fields. Vol. 1: Foundations. Cambridge
University Press, 2005.

M. Henneaux and C. Teitelboim, Quantization of gauge systems. 1992.

E. Witten, “Dynamical Breaking of Supersymmetry,” |Nucl. Phys. B188
(1981) 513.

W. Siegel and M. Rocek, “ON OFF-SHELL SUPERMULTIPLETS,” Phys.
Lett. 105B (1981) 275-277.

H. K. Dreiner, H. E. Haber, and S. P. Martin, “T'wo-component spinor
techniques and Feynman rules for quantum field theory and supersymmetry,”
Phys. Rept. 494 (2010) 1-196, arXiv:0812.1594 [hep-ph].

M. T. Grisaru, W. Siegel, and M. Rocek, “Improved Methods for
Supergraphs,” Nucl. Phys. B159 (1979) 429.

N. Seiberg, “The Power of holomorphy: Exact results in 4-D SUSY field

theories,” in PASCOS ’94: Proceedings, 4th International Symposium on
Particles, Strings and Cosmology, Syracuse, New York, USA, May 19-24,
1994, pp. 0357-369. 1994. arXiv:hep-th/9408013 [hep-th]l


http://dx.doi.org/10.1016/0550-3213(74)90355-1
http://dx.doi.org/10.1016/0370-2693(74)90578-4
http://dx.doi.org/10.1023/A:1026654312961, 10.4310/ATMP.1998.v2.n2.a1
http://arxiv.org/abs/hep-th/9711200
http://dx.doi.org/10.1016/0550-3213(94)90124-4, 10.1016/0550-3213(94)00449-8
http://arxiv.org/abs/hep-th/9407087
http://dx.doi.org/10.4310/CNTP.2007.v1.n1.a1
http://arxiv.org/abs/hep-th/0604151
http://dx.doi.org/10.1016/0550-3213(77)90364-9
http://dx.doi.org/10.1016/0550-3213(77)90364-9
http://dx.doi.org/10.1016/0550-3213(81)90006-7
http://dx.doi.org/10.1016/0550-3213(81)90006-7
http://dx.doi.org/10.1016/0370-2693(81)90887-X
http://dx.doi.org/10.1016/0370-2693(81)90887-X
http://dx.doi.org/10.1016/j.physrep.2010.05.002
http://arxiv.org/abs/0812.1594
http://dx.doi.org/10.1016/0550-3213(79)90344-4
http://arxiv.org/abs/hep-th/9408013

References 141

[24]

28]

[29]

[30]

[31]

[32]

M. E. Peskin and D. V. Schroeder, An Introduction to quantum field theory.
Addison-Wesley, Reading, USA, 1995.
http://www.slac.stanford.edu/~mpeskin/QFT.html.

M. A. Luty and W. Taylor, “Varieties of vacua in classical supersymmetric
gauge theories,” Phys. Rev. D53 (1996) 3399-3405, arXiv:hep-th/9506098
[hep-th].

N. Arkani-Hamed and H. Murayama, “Holomorphy, rescaling anomalies and
exact beta functions in supersymmetric gauge theories,” JHEP 06 (2000)
030, larXiv:hep-th/9707133 [hep-th].

V. A. Novikov, M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, “Beta
Function in Supersymmetric Gauge Theories: Instantons Versus Traditional
Approach,” Phys. Lett. 166B (1986) 329-333. [Yad. Fiz.43,459(1986)].

I. Affleck, M. Dine, and N. Seiberg, “Dynamical Supersymmetry Breaking in
Supersymmetric QCD,” Nucl. Phys. B241 (1984) 493-534.

N. Seiberg, “Exact results on the space of vacua of four-dimensional SUSY
gauge theories,” Phys. Rev. D49 (1994) 68576863, arXiv:hep-th/9402044
(hep-th].

N. Seiberg, “Electric - magnetic duality in supersymmetric nonAbelian gauge
theories,” |Nucl. Phys. B435 (1995) 129-146, arXiv:hep-th/9411149
[hep-th].

T. Banks and A. Zaks, “On the Phase Structure of Vector-Like Gauge
Theories with Massless Fermions,” |Nucl. Phys. B196 (1982) 189-204.

7. Komargodski and N. Seiberg, “Comments on Supercurrent Multiplets,
Supersymmetric Field Theories and Supergravity,” JHEP 07 (2010) 017,
arXiv:1002.2228 [hep-th].

T. T. Dumitrescu and N. Seiberg, “Supercurrents and Brane Currents in
Diverse Dimensions,” |JHEP 07 (2011) 095, arXiv:1106.0031 [hep-th].

S. Ferrara and B. Zumino, “Transformation Properties of the Supercurrent,”
Nucl. Phys. B87 (1975) 207.

D. Z. Freedman, P. van Nieuwenhuizen, and S. Ferrara, “Progress Toward a
Theory of Supergravity,” Phys. Rev. D13 (1976) 3214-3218.

K. S. Stelle and P. C. West, “Minimal Auxiliary Fields for Supergravity,”
Phys. Lett. 74B (1978) 330-332.

S. Ferrara and P. van Nieuwenhuizen, “The Auxiliary Fields of
Supergravity,” Phys. Lett. 74B (1978) 333.


http://www.slac.stanford.edu/~mpeskin/QFT.html
http://dx.doi.org/10.1103/PhysRevD.53.3399
http://arxiv.org/abs/hep-th/9506098
http://arxiv.org/abs/hep-th/9506098
http://dx.doi.org/10.1088/1126-6708/2000/06/030
http://dx.doi.org/10.1088/1126-6708/2000/06/030
http://arxiv.org/abs/hep-th/9707133
http://dx.doi.org/10.1016/0370-2693(86)90810-5
http://dx.doi.org/10.1016/0550-3213(84)90058-0
http://dx.doi.org/10.1103/PhysRevD.49.6857
http://arxiv.org/abs/hep-th/9402044
http://arxiv.org/abs/hep-th/9402044
http://dx.doi.org/10.1016/0550-3213(94)00023-8
http://arxiv.org/abs/hep-th/9411149
http://arxiv.org/abs/hep-th/9411149
http://dx.doi.org/10.1016/0550-3213(82)90035-9
http://dx.doi.org/10.1007/JHEP07(2010)017
http://arxiv.org/abs/1002.2228
http://dx.doi.org/10.1007/JHEP07(2011)095
http://arxiv.org/abs/1106.0031
http://dx.doi.org/10.1016/0550-3213(75)90063-2
http://dx.doi.org/10.1103/PhysRevD.13.3214
http://dx.doi.org/10.1016/0370-2693(78)90669-X
http://dx.doi.org/10.1016/0370-2693(78)90670-6

	Supersymmetry: why and what?
	Motivations for supersymmetry
	A very brief history of supersymmetry
	Motivations for the particle physicist
	Motivations for quantum field theorist and/or string theorist
	Motivations for the mathematician

	Supersymmetry: a first definition
	Mathematical definition
	Schematic form of the supersymmetry algebra

	Supersymmetric quantum mechanics (a first look)
	Supermultiplets (a first look)
	General properties
	1d N=1 supermultiplet
	1d N=2n supermultiplets

	The Witten index

	Spinors: a review
	Spinors in various dimensions
	Lorentzian signature
	Euclidean signature

	Spinors in 4d
	Weyl spinors
	Lorentz symmetry generators.
	Fierz identities
	Majorana spinors

	Spinors in 2d

	Supersymmetry in various dimensions (but mostly d=4)
	R-symmetry
	Minimal supersymmetry in 4d
	R-symmetry U(1)R
	Supermultiplets: Massive representations
	Supermultiplets: Massless representations

	Non-minimal supersymmetry in 4d
	Massless multiplets
	Massive multiplets and BPS condition for N=2
	R-symmetry

	Supersymmetry in 3d
	Supersymmetry in 2d
	Supersymmetry in higher dimensions

	Supermultiplets, superfields, and superspace
	Representing supersymmetry on fields
	The chiral multiplet, off-shell

	Superspace (4d N=1)
	Coset manifolds
	Minkowski space as a coset manifold
	4d N=1 superspace as a coset super-manifold
	On manipulating the superspace coordinates

	Superfields
	Superspace for other dimensions and/or N's?

	4d N=1 supersymmetry, part I: chiral multiplets
	The SUSY-covariant derivatives
	General multiplet and real multiplet
	Chiral multiplet
	Supersymmetric Lagrangians—D-terms and F-terms
	D-terms
	F-terms

	Lagrangians of chiral multiplets
	R-symmetry and the superpotential
	General superpotential

	The Wess-Zumino model
	Interaction terms: superpotential and scalar potential
	Majorana and Dirac mass terms

	Supersymmetric vacuum equations
	The supersymmetric vacuum.
	The vacuum equations in a theory of chiral multiplets
	Vacuum moduli spaces

	General Kähler potential & Kähler geometry

	Renormalisation of supersymmetric theories
	The Wess-Zumino model at one loop
	Feynman rules for the WZ model
	Some one-loop corrections
	A simpler perturbation theory

	Wilsonian effective action and the power of holomorphy
	Wilsonian effective action, in one word
	Holomorphy and non-renormalisation of the superpotential

	``Exact'' -functions for the physical couplings
	General comment on non-renormalisation theorems

	4d N=1 supersymmetry, part II: gauge theories
	Classical and quantum gauge theory: executive summary
	Classical gauge theory
	Quantum gauge theory: running of the gauge coupling

	Abelian vector multiplet
	Supersymmetry in the Wess-Zumino gauge
	The abelian field-strength multiplet

	Non-abelian vector multiplet
	Supersymmetry in the Wess-Zumino gauge
	Non-abelian field-strength superfield

	The super-Yang-Mills Lagrangian
	Charged matter fields and supersymmetric Lagrangians

	Dynamics of 4d N=1 gauge theories
	Anomalies for gauge and global symmetries
	Global symmetry, background gauge fields and gauging
	Anomaly as an obstruction to gauging a global symmetry
	Three types of anomalies
	The 't Hooft anomaly matching condition

	Instantons,  angle and chiral anomalies
	Instantons and  angle: executive summary
	-term and chiral anomaly

	General aspects of supersymmetric gauge theories
	Classical scalar potential and vacuum manifold
	-function and chiral anomalies

	Renormalisation of the holomorphic gauge coupling
	The ``exact'' -function
	Rescaling of the chiral superfields
	Rescaling of the vector superfield
	Looking for non-trivial fixed points

	SQCD: Lagrangian and symmetries
	Anomalies and anomaly-free R-symmetry

	The classical vacuum moduli space of SQCD and gauge-invariant operators
	The case Nf <Nc
	The case Nf Nc
	The case Nf = Nc
	The case Nf = Nc+1

	Infrared phases of gauge theories
	Aspects of the quantum vacuum of SQCD
	Nf=0: SYM theory
	0<Nf < Nc: runaway supersymmetry breaking
	Are there low-energy -models for Nf Nc?
	Nf=Nc: deformed moduli space
	Nf=Nc+1: A -model
	Nf>Nc+1: SCFTs, free theories, and duality


	Spontaneous supersymmetry breaking
	The supercurrent multiplet
	Spontaneous supersymmetry breaking and goldstino
	Supersymmetric mass sum rule
	Mechanisms of supersymmetry breaking
	F-term supersymmetry breaking
	D-term supersymmetry breaking and Fayet-Iliopoulos model
	The Fayet-Iliopoulos term
	FI-term-induced supersymmetry breaking


	Supersymmetry and the Standard Model
	The Standard Model (lightning review)
	The supersymmetric SM
	The MSSM: supersymmetry-breaking soft terms
	Hidden sector and supersymmetry-breaking mediation
	Gauge mediation
	Supergravity mediation


	A very brief introduction to supergravity
	Gauging the supercurrent: 4d N=1 linearised supergravity
	Linearised old minimal supergravity

	Full N=1 supergravity: general strategy

	Useful identities
	Useful identities
	Fierz identities for 4d Weyl spinors


