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Due by Thursday, week 5 (February 14th), 5pm.

1. Supersymmetry variations of a chiral multiplet.

Recall the supersymmetry variations for the chiral and anti-chiral multiplets:

5 =V 2et) 5 = V2
5o = iV 2(0"€)00ud + V26 F 5P = iV2(ate)* 0,0 + V2eF ,  (0.1)
OF = iv2e" 9, §F = iv2ea" 0,1

Let us also write down the Lagrangian:
Lin = —0,00" ¢ — inha" 9, + FF | (0.2)

and: .
Ly = Flo,W — 5W 0;0,W (0.3)

for W = W (¢) an arbitrary superpotential.

(1.a) By explicit computation using the SUSY variations (0.1]), show that the La-
grangian %, is supersymmetric:

5 Lin = Ol . (0.4)

(1.b) Similarly, show by explicit computation that the interaction Lagrangian £y
is supersymmetric.

2. Coset manifold: a classic example.
Consider the group G = SU(2), with group elements given by:

g=e<T" G, [T),T] =i, TF . (0.5)
(Of course ¢ = 1,2,3.) We consider the subgroup H = U(1) with a single generator:

h=eT" e H . (0.6)



Show explicitly that the coset manifold G/H is the two-sphere:
M=G/H=S*. (0.7)

Hint: One can consider an explicit realisation of SU(2) in terms of T% = 107, with
o' the Pauli matrices. Then, the general element g takes the form:

g:<“6 2) a,beC, such that a2 + b2 = 1. (0.8)

(Check this.) Show that, in this parameterisation, the action g — gh is given by:
a—ae's | b— be ' . (0.9)

Use this to argue that the coset manifold is indeed S?. Can you find a convenient
set of coordinates on the coset? How does G = SU(2) act on those coordinates?

3. Rotations in superspace.
Consider 4d N = 1 superspace:
R = 150(1,3]4)/50(1,3) , (0.10)

in the notation of the lecture notes. Recall that supersymmetry is given by an
explicit translation in superspace:

l(nR+1Q) . (z#, 0%, 0%) = (z" — ino"d + 07, 0% + 1%, 0% +7%) . (0.11)
while ordinary translations are simply:
P (2P, 0%, 0%) — (aM + at,0%,6%) . (0.12)

From these transformations, we can write down the generators of supersymmetry
and translation as differential operators on superfields.

(3.a) Recall that, on scalar fields in Minkowski space-time, the SO(1,3) generators
are given by M,,, = i(z,0, — z,0,). Give a physical explanation why this
expression cannot be the correct realisation of M, on scalar superfields.

(3.b) Compute the explicit action of:

g = 5 M

on the superspace coordinates y = (z, 6, ), using the definition:
9r x(y) = x(y")h(gr,y) -
In other words: find the analogue of (0.11]) and (0.12)) for SO(1, 3) rotations.

(3.c) Write down the superspace differential operator M, acting on scalar super-
fields. It should be of the form:

M, =i(x,0, — ,0,) + - -

where the extra terms in the ellipsis are to be determined.



4. Manipulating Grassmann coordinates.

Let n° denote a set of n Grassmann coordinates (i = 1,---,n), which satisfy the
Grassmann algebra: o
{n'.n}t=0. (0.13)
Let us define the integration over the n coordinates as:
/dnn = /dn”---dn2dn1 . (0.14)

(4.a) Prove that:
/d”n ez’ = Pf(A) ,

where A;; = Aj; is an antisymmetric matrix.

(4.b) For a single variable 7, let us define the Dirac delta function §(n — €) by:

/ ot —0)f(n) = £(0), VI (0.15)
Show that 6(n —0) =n — 6.

5. Chiral superfields.

Consider the explicit form:

O(x,0,0) = p(x) + V200(z) + 00F ()

) _ 7 _ 1 9 (016)
+100"00,¢(x) + —=0005" 0,1 (x) + —00000°¢(z) .
V2 4
for the chiral superfield, and the differential operators:
Qo = —i (00 — i(c"0)a0,) , Qi =i (0a —1(6%0")a0,) 0.17)
Dy = 0y +i(c"0)0, , Dy = 04 +i(00")40, . '

(5.a) By explicit computation, check that:
Dy®=0.

(5.b) Rederive the chiral multiplet supersymmetry transformation laws (0.1]) using
the superspace definition:

50 = i(eQ + eQ)D .

(5.c) Consider a (spinor-valued) superfield NV, defined out of a general superfield
S by: .
No =DDD,S = DD D, . (0.18)

Prove that N, is a chiral superfield.



6. Supersymmetric gauge transformations.

Given a real superfield S ((S)' = S), we may define the transformation:
S—>S8+2+9, (0.19)

where ® and ® are a chiral multiplet and its Hermitian conjugate.

(6.a) Write down this transformation in terms of the components fields of the real
superfields,
S= (C’,X X .M M JUu s A A ,D) ,
and of the component fields of ® and ®. (For instance, for the bottom com-
ponent, we obviously have: C — C 4 ¢ 4+ ¢.) Why is this called a “gauge
transformation”?

(6.b) Show that (0.19) leaves the D-term action:
S = / dtz / d’0d*6 S (0.20)

invariant.

7. Superspace R'I',

Consider minimally supersymmetric quantum mechanics (1d A/ = 1). The super-
symmetry algebra is simply:

{Q,Q}=2H, (0.21)
with H the Hamiltonian. This is a simple toy model for superspace techniques,
albeit slightly degenerate. There is no Lorentz group, so superspace R is simply
the set of coordinates (¢,6), with the time coordinate ¢ and a single Grassmannian
direction 6. The superfields have the form:

S = folt) + 0f1(t) . (0.22)

(7.a) Develop the theory of 1d N/ = 1 superspace following our discussion 4d ' = 1
supersymmetry. What is the action of supersymmetry on 1d superspace?
Check that the corresponding differential operators Q and H satisfy the su-
persymmetry algebra on 1d superfields.

(7.b) Develop the theory of 1d N = 1 superfields for 1d bosons and fermions. In
particular, write down the real multiplet (X, 1)) of the lecture notes (section
1.3) as a superfield. You should introduce the “scalar superfields” and “fermi
superfields:”
Pl = ol it A=\ 420G, (0.23)
where ¢’ are dynamical boson, ¥* and A% are dynamical fermions, and G® are
auxiliary fields.

(7.c) Show how to write down supersymmetric actions systematically. Can you
construct an example of an interacting 1d model with N' = 1 supersymmetry?



