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1. Supersymmetry variations of a chiral multiplet.

Recall the supersymmetry variations for the chiral and anti-chiral multiplets:

δφ =
√

2εψ , δφ̄ =
√

2ε̄ψ̄ ,

δψα = i
√

2(σµε̄)α∂µφ+
√

2εαF , δψ̄α̇ = i
√

2(σ̄µε)α̇∂µφ̄+
√

2ε̄α̇F̄ ,

δF = i
√

2ε̄σ̄µ∂µψ , δF̄ = i
√

2εσµ∂µψ̄ .

(0.1)

Let us also write down the Lagrangian:

Lkin = −∂µφ̄∂µφ− iψ̄σ̄µ∂µψ + F̄F , (0.2)

and:

LW = F i∂iW −
1

2
ψiψj ∂i∂jW , (0.3)

for W = W (φ) an arbitrary superpotential.

(1.a) By explicit computation using the SUSY variations (0.1), show that the La-
grangian Lkin is supersymmetric:

δLkin = ∂µ(· · · ) . (0.4)

(1.b) Similarly, show by explicit computation that the interaction Lagrangian LW

is supersymmetric.

2. Coset manifold: a classic example.

Consider the group G = SU(2), with group elements given by:

g = eiεiT
i ∈ G , [T i, T j ] = iεijkT

k . (0.5)

(Of course i = 1, 2, 3.) We consider the subgroup H = U(1) with a single generator:

h = eiεT
3 ∈ H . (0.6)
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Show explicitly that the coset manifold G/H is the two-sphere:

M = G/H ∼= S2 . (0.7)

Hint: One can consider an explicit realisation of SU(2) in terms of T i = 1
2σ

i, with
σi the Pauli matrices. Then, the general element g takes the form:

g =

(
a b
−b̄ ā

)
, a, b ∈ C , such that |a|2 + |b|2 = 1 . (0.8)

(Check this.) Show that, in this parameterisation, the action g → gh is given by:

a→ aei
ε
2 , b→ be−i

ε
2 . (0.9)

Use this to argue that the coset manifold is indeed S2. Can you find a convenient
set of coordinates on the coset? How does G = SU(2) act on those coordinates?

3. Rotations in superspace.

Consider 4d N = 1 superspace:

R3,1|4 = ISO(1, 3|4)/SO(1, 3) , (0.10)

in the notation of the lecture notes. Recall that supersymmetry is given by an
explicit translation in superspace:

ei(ηQ+η̄Q̄) : (xµ, θα, θ̄α̇)→ (xµ − iησµθ̄ + iθσµη̄, θα + ηα̇, θ̄α̇ + η̄α̇) . (0.11)

while ordinary translations are simply:

eia
µPµ : (xµ, θα, θ̄α̇)→ (xµ + aµ, θα, θ̄α̇) . (0.12)

From these transformations, we can write down the generators of supersymmetry
and translation as differential operators on superfields.

(3.a) Recall that, on scalar fields in Minkowski space-time, the SO(1, 3) generators
are given by Mµν = i(xµ∂ν − xν∂ν). Give a physical explanation why this
expression cannot be the correct realisation of Mµν on scalar superfields.

(3.b) Compute the explicit action of:

gR = e
i
2
ωµνMµν

on the superspace coordinates y = (x, θ, θ̄), using the definition:

g−1
R x(y) = x(y′)h(gR, y) .

In other words: find the analogue of (0.11) and (0.12) for SO(1, 3) rotations.

(3.c) Write down the superspace differential operator Mµν acting on scalar super-
fields. It should be of the form:

Mµν = i(xµ∂ν − xν∂ν) + · · ·

where the extra terms in the ellipsis are to be determined.
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4. Manipulating Grassmann coordinates.

Let ηi denote a set of n Grassmann coordinates (i = 1, · · · , n), which satisfy the
Grassmann algebra:

{ηi, ηj} = 0 . (0.13)

Let us define the integration over the η coordinates as:∫
dnη =

∫
dηn · · · dη2dη1 . (0.14)

(4.a) Prove that: ∫
dnη e

1
2
Aijη

iηj = Pf(A) ,

where Aij = Aji is an antisymmetric matrix.

(4.b) For a single variable η, let us define the Dirac delta function δ(η − θ) by:∫
dη δ(η − θ)f(η) = f(θ) , ∀f . (0.15)

Show that δ(η − θ) = η − θ.

5. Chiral superfields.

Consider the explicit form:

Φ(x, θ, θ̄) = φ(x) +
√

2θψ(x) + θθF (x)

+ iθσµθ̄∂µφ(x) +
i√
2
θθθ̄σ̄µ∂µψ(x) +

1

4
θθθ̄θ̄∂2φ(x) .

(0.16)

for the chiral superfield, and the differential operators:

Qα = −i
(
∂α − i(σµθ̄)α∂µ

)
, Q̄α̇ = i

(
∂̄α̇ − i(θασµ)α̇∂µ

)
,

Dα = ∂α + i(σµθ̄)∂µ , D̄α̇ = ∂̄α̇ + i(θσµ)α̇∂µ .
(0.17)

(5.a) By explicit computation, check that:

D̄α̇Φ = 0 .

(5.b) Rederive the chiral multiplet supersymmetry transformation laws (0.1) using
the superspace definition:

δΦ = i(εQ + ε̄Q)Φ .

(5.c) Consider a (spinor-valued) superfield Nα defined out of a general superfield
S by:

Nα ≡ D̄D̄DαS = D̄β̇D̄β̇DαS . (0.18)

Prove that Nα is a chiral superfield.
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6. Supersymmetric gauge transformations.

Given a real superfield S ((S)† = S), we may define the transformation:

S → S + Φ + Φ̄ , (0.19)

where Φ and Φ̄ are a chiral multiplet and its Hermitian conjugate.

(6.a) Write down this transformation in terms of the components fields of the real
superfields,

S =
(
C,χ , χ̄ ,M , M̄ , vµ , λ , λ̄ ,D

)
,

and of the component fields of Φ and Φ̄. (For instance, for the bottom com-
ponent, we obviously have: C → C + φ + φ̄.) Why is this called a “gauge
transformation”?

(6.b) Show that (0.19) leaves the D-term action:

S =

∫
d4x

∫
d2θd2θ̄ S (0.20)

invariant.

7. Superspace R1|1.

Consider minimally supersymmetric quantum mechanics (1d N = 1). The super-
symmetry algebra is simply:

{Q,Q} = 2H , (0.21)

with H the Hamiltonian. This is a simple toy model for superspace techniques,
albeit slightly degenerate. There is no Lorentz group, so superspace R1|1 is simply
the set of coordinates (t, θ), with the time coordinate t and a single Grassmannian
direction θ. The superfields have the form:

S = f0(t) + θf1(t) . (0.22)

(7.a) Develop the theory of 1d N = 1 superspace following our discussion 4d N = 1
supersymmetry. What is the action of supersymmetry on 1d superspace?
Check that the corresponding differential operators Q and H satisfy the su-
persymmetry algebra (0.21) on 1d superfields.

(7.b) Develop the theory of 1d N = 1 superfields for 1d bosons and fermions. In
particular, write down the real multiplet (X,ψ) of the lecture notes (section
1.3) as a superfield. You should introduce the “scalar superfields” and “fermi
superfields:”

Φi = φi + iθψi , Λa = λa + 2θGa , (0.23)

where φi are dynamical boson, ψi and λa are dynamical fermions, and Ga are
auxiliary fields.

(7.c) Show how to write down supersymmetric actions systematically. Can you
construct an example of an interacting 1d model with N = 1 supersymmetry?


