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1. Supersymmetric vacua: WZ models.

Analyse the vacuum structure of the following 4d N = 1 supersymmetric theories
of chiral multiplets. You can assume a canonical Kähler potential. What is the
energy of the vacuum, in each case?

(1.a) A theory of two chiral multiplets X and Y , with superpotential:

W = λX2Y + µX2 , (0.1)

with λ, µ some non-zero coupling constants.

(1.b) A theory of three chiral multiplet X, Y and Z, with superpotential:

W = αY + βY X2 + γXZ , (0.2)

with α, β, γ 6= 0. What happens when α = 0?

(1.c) A theory of a single chiral multiplet X, with superpotential:

W = αX +
β

X
, (0.3)

with α, β 6= 0.

2. Vector multiplets.

In the WZ gauge, the U(1) vector multiplet reads:

V = −θσµθ̄Aµ + iθθθ̄λ̄− iθ̄θ̄θλ+
1

2
θθθ̄θ̄ D . (0.4)

The field-strength chiral multiplet is defined as:

Wα = − i
4

D̄D̄DαV . (0.5)
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(2.a) By explicit computation, show that the superfield W defined as in eq.(0.5) is
given by:

Wβ = λβ(z)− θα
(

(σµν)αβFµν(z) + iεαβD(z)
)

+ iθθ(σµ∂µλ̄(z))β , (0.6)

in terms of the chiral coordinate zµ = xµ + iθσµθ̄.

(2.c) Compute the F-term Lagrangian:

LW2 = −1

2

∫
d2θWαWα , (0.7)

in field components.

(2.b) Compute the D-term Lagrangian:

LΦ̄Φ =

∫
d2θd2θ̄ Φ̄e−2V Φ , (0.8)

with Φ a chiral multiplet and V the vector multiplet in WZ gauge, in field
components. You should find:

LΦ̄Φ = L0 +Aµj
µ +AµA

µX + Y (D,λ, λ̄) , (0.9)

for L0 the kinetic term without gauge field, some jµ and X given in terms of
the chiral superfield components, and a term Y that depends on D and the
gaugino. Write the answer in terms of the gauge-covariant derivative.

(2.d) Generalise all the above superfield computations to the non-abelian case.

3. SQCD with Nf = Nc + 1.

Consider SQCD with gauge group SU(Nc) and Nf = Nc + 1 flavors, Q̃i, Qj , the
“squark” fields, and zero superpotential.

(3.a) Write down all the gauge-invariant chiral superfields that one can construct
from the flavors (matter fields in chiral superfields, in the fundamental and
anti-fundamental of SU(Nc)), the “mesons and baryons,” denoted by:

X = (M, B, B̃) , (0.10)

schematically. Check that there are N2
c + 4Nc + 3 such fields X.

(3.b) In which representations of the flavor group:

GF = SU(Nf )+ × SU(Nf )− × U(1)B ,

with Nf = Nc + 1, do the fields (0.10) transform? What is the symmetry
group of this theory in the special case Nc = 2?
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(3.c) As explained in the lectures, the non-anomalous R-symmetry of SQCD (with
Nf = Nc + 1, here) is given by:

R[Q̃i] = R[Qj ] = r = 1− Nc

Nf
=

1

Nc + 1
. (0.11)

Write down a table giving the representations (or charges) under GF ×U(1)R,
in Nf = Nc + 1 SQCD, for all the fermions in the theory.

(3.d) Write down a similar table for the fermions in a theory of chiral multiplets
consisting only of the gauge-invariant chiral superfields X that you built in
(0.10). We call this theory (with only the “mesons and baryons” as funda-
mental fields, and no gauge fields) the “candidate IR theory.”

(3.e) Using the result of question (3.c), compute the following ’t Hooft anomalies
for the UV theory, Nf = Nc + 1 SQCD:

Tr(SU(Nf )3
±) ,

Tr(SU(Nf )2
± U(1)B) ,

Tr(SU(Nf )2
± U(1)R) ,

Tr(U(1)2
BU(1)R) ,

Tr(U(1)3
R) ,

Tr(U(1)R) .

(0.12)

E.g.: for the first one, we get: Tr(SU(Nf )3
+) = −Nc from the chiral multiplets

Qj , which are in the anti-fundamental of SU(Nf )+.

(3.f) Using the result of question (3.d), compute the same ’t Hooft anomalies for
the candidate IR theory, and compare it to the ones obtained in (3.e). What
does your result suggest?

(3.g) Argue that, for the candidate IR theory, the only superpotential compatible
with the GF × U(1)R global symmetry is of the form:

W = αf(X) , (0.13)

with some function f(X) and some overall dimensionfull coupling α. Find
f(X), and give α as a power of the dynamical QCD scale, α ∼ Λn for some
n ∈ Z.

(3.h) [This question is optional.] Write down the vacuum equations for this W and
analyse them. How does the vacuum moduli space compare to the one of
classical SQCD with Nf = Nc + 1? Assuming that the two should coincide,
can you fix any remaining undetermined constant in f(X)?
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4. Supersymmetry breaking and goldstino.

In this problem, we explore F-term spontaneous supersymmetry breaking. Con-
sider a general theory of n chiral multiplets Φi, with canonical Kähler potential
and arbitrary superpotential W (Φ). Assume that supersymmetry is spontaneously
broken, so that there exists a (classical) vacuum with a non-zero n-vector:

f̄i ≡
∂W

∂φi
6= 0 , (0.14)

where f i is the VEV of the auxiliary field F i on-shell.

(4.a) The classical vacuum is defined as:

∂V0

∂φi
= 0 ,

∂V0

∂φ̄i
= 0 . (0.15)

Using the classical Lagrangian for this theory, show that eq.(0.14) implies
the existence of a massless fermion in the vacuum. This is the goldstino, the
analogue of a goldstone boson for spontaneously broken supersymmetry.

(4.b) Compute the masses of the fermionic and bosonic excitations just above the
vacuum, and show that:

STr(M2) = 0 . (0.16)

In other words, in terms of mass eigenstates, the sum of the boson masses
squared minus the sum of the fermion masses squared vanishes.

(4.c) Illustrate these general results explicitly in the model of problem (1.b) with
superpotential (0.2).


