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Note to students: this is a long problem sheet, and I don’t expect that most people will finish
it. However, many of these are classic problems, so I am still including them all! You should feel
free to make liberal use of references where these calculations are at least sketched and pick your
battles when it comes to carrying things out to the bitter end.

1. Low energy effective theory in spacetime

The conditions for Weyl invariance of the bosonic string sigma model at leading order in the α′

expansion take the form βG
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In this problem you will check a number of good features of these equations, which we interpret as
equations of motion for the spacetime fields G, B, and Φ.

1. Show that these Weyl invariance conditions are equivalent to the Euler-Lagrange equations
for the spacetime effective action

S26 =
1

2κ2
0

∫

dDx
√
−Ge−2Φ

[

−
2(D − 26)

3α′
+R−

1

12
HµνρH

µνρ + 4∂µΦ∂
µΦ+O(α′)

]

.

[It will be helpful for you to change the action from string frame to Einstein frame. You will

need to use a formula for the transformation of the Ricci curvature under a Weyl rescaling

to go back to string frame when all is said and done. You should feel free to look up this

formula on Wikipedia or in your favorite differential geometry text.]

2. The conditions, βG
µν = βB

µν = 0 imply (one-loop) conformal invariance of the sigma model on

a flat worldsheet. Show that for a solution of these equations, one has automatically that βΦ

is constant.

[You will need to massage these equations a bit to get what you need. You should use that

βG
µν = 0 ⇒ DµβG

µν = 0, as well as the Bianchi identities for the Ricci curvature and H-field,
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This result is an important consistency check since in this case βΦ should be identified with

the central charge of the conformal field theory.]

3. Consider the simple “linear dilaton” background,

Gµν(X) = ηµν , Bµν(X) = 0 , Φ(X) = VµX
µ .

This background can solve the Weyl invariance conditions with D < 26, even though on a
flat worldsheet it is identical to the usual free string action.
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Derive this as an exact statement (as opposed to at leading order in α′) by computing the
stress tensor and Virasoro central charge for the (free!) linear dilaton theory.

[You will need to incorporate the dilaton coupling in the computation of the flat-space stress

tensor, since the stress tensor is obtained by taking a variation with respect to the worldsheet

metric.]

4. What is the on-shell three-point dilaton vertex implied by the spacetime action S26? Verify
that the result agrees with the worldsheet worldsheet computation.

[This is a rather tedious world-sheet computation but the result should be very simple in the

end.]

2. Circle compactification of the bosonic string

In lecture we (will have) considered compactification of the 26-dimensional closed bosonic string
on a spacetime circle of radius R: X25 ∼ X25 + 2πR. In this problem you will work out some
details and extensions of that story.

1. At generic compactification radius, the massless spectrum of physical string states matches
our expectation from dimensional reduction of the particle spectrum of the low energy effec-
tive theory.

Following the discussion in Polchinski Volume 1 Section 8.1, perform the dimensional reduc-
tion of the action S26 to 25 dimensions (i.e., take all 26-dimensional fields to be independent
of the X25 coordinate and rewrite the action in terms of 25-dimensional fields).

[If you endeavour to do this calculation honestly, you will have to find the dimensional re-

duction of the Ricci scalar. This is not easy to derive, it is probably best done in a vielbein

formalism. The final result, however, takes the form

R26 = R25 − 2e−σD2eσ −
1

4
e2σF 2

where G25,25 = e2σ and F is the graviphoton field strength.]

2. Show that for the special choice R2 = 1/2 in string units (i.e., R =
√
α′) there are additional

massless states in the physical string spectrum. What are their space-time quantum numbers?
How can we interpretation these additional massless states?

3. The Weinberg soft photon theorem guarantees that in the limit of zero photon momentum,
the three-point vertex between a photon and any particle is proportional to the charge of
that particle. Using vertex operators, show that the charge of a state as measured by the
graviphoton and the B-field photon is, respectively, the Kaluza-Klein momentum and the
winding number.

Please send comments and corrections to christopher.beem@maths.ox.ac.uk.
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