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1D Interpolation

Recall the canonical 1D interpolation problem: given a set of
nodes xi , 0 ≤ i ≤ n and data at those nodes f (xi ), construct a
function p(x) such that

p(xi ) = f (xi )

for 0 ≤ i ≤ n.

Last time we looked at the Lagrange interpolant which was global,
in the sense that it was defined by the same function on the whole
interval.

This time we look for piecewise polynomial interpolants —
functions which are polynomials on each subinterval [xi−1, xi ],
1 ≤ i ≤ n, and satisfy certain continuity conditions. These are
known as splines.



Splines

Again we are given a set of nodes xi , 0 ≤ i ≤ n and data at those
nodes f (xi ). When talking about splines, the xi are often known as
knots. The interpolating spline:

I is a polynomial of degree p in each subinterval [xi−1, xi ],
1 ≤ i ≤ n;

I is continuous and has continuous derivatives up to order p− 1;

I satisfies the interpolation conditions.



Linear Splines

The simplest splines are linear splines and the continuity and
interpolation conditions are enough to determine them uniquely
since

I the number of unknowns is 2n (there are n intervals and 2
unknowns required to determine a linear function in each
subinterval)

I the number of constraints is 2n made up of
I n + 1 interpolation conditions (at xi , 0 ≤ i ≤ n)
I n − 1 continuity conditions (at xi , 1 ≤ i ≤ n − 1)

We can write the linear spline, sL(x), as

sL(x) =
xi − x

xi − xi−1
f (xi−1) +

x − xi−1
xi − xi−1

f (xi )

for x ∈ [xi−1, xi ], 1 ≤ i ≤ n.



Example
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Convergence

Theorem 1
Suppose f ∈ C 2 [a, b] and let sL(x) be the linear spline that
interpolates f at the knots a = x0 < x1 < . . . < xn = b, then

‖f − sL‖∞ ≤ 1

8
h2‖f ′′‖∞ .

where h = maxi hi and hi = xi − xi−1.

This tells us that if we use a uniform grid, then every time we
double n (and thus we halve h) we expect the error to decrease by
a factor of 4.



Minimisation Property

The linear spline also has a nice minimisation property as follows:

Theorem 2
Let sL be the linear spline that interpolates a function f ∈ C [a, b]
at the knots a = x0 < x1 < . . . < xn = b. Then for any function v
in H1(a, b) that also interpolates f at the knots,

‖s ′L‖2 ≤ ‖v ′‖2 .

In other words, this theorem tells us that, among all functions in
H1(a, b) that interpolate f at the knots, the linear spline sL(x) is
the flattest, in the sense that its average slope is the smallest.



Global Form of Linear Splines
We may also write a global expression for the linear interpolating
spline as a sum of basis functions:

sL(x) =
n∑

i=0

φi (x)f (xi ) ,

where the basis functions φi (x) are defined as

φi (x) =


x−xi−1

xi−xi−1
if xi−1 ≤ x ≤ xi

xi+1−x
xi+1−xi if xi ≤ x ≤ xi+1

0 otherwise

for 1 ≤ i ≤ n and

φ0(x) =

{ x1−x
x1−x0 if x0 ≤ x ≤ x1
0 otherwise

φn(x) =

{
x−xn−1

xn−xn−1
if xn−1 ≤ x ≤ xn

0 otherwise



Basis Functions
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Cubic Splines

Cubic splines are also popular due to their increased regularity over
linear splines. This time

I the number of unknowns is 4n (there are n intervals and 4
unknowns required to determine a cubic function in each
subinterval)

I the number of constraints is 4n − 2 made up of
I n + 1 interpolation conditions (at xi , 0 ≤ i ≤ n)
I 3(n − 1) continuity conditions (s(x), s ′(x) and s ′′(x) must be

continuous at xi , 1 ≤ i ≤ n − 1)

Thus we need two more conditions to determine the cubic spline
uniquely.



Natural Cubic Splines

For natural cubic splines the two final conditions are

s ′′(x0) = s ′′(xn) = 0 .

Such splines have a minimisation property analagous to linear
splines and are characterised as follows:

Theorem 3
Let s be the natural cubic spline that interpolates a function
f ∈ C [a, b] at the knots a = x0 < x1 < . . . < xn = b. Then for any
function v in H2(a, b) that also interpolates f at the knots,

‖s ′′‖2 ≤ ‖v ′′‖2 .

This theorem essentially means that the natural cubic spline
minimises the ‘average curvature’ over functions in H2(a, b) that
interpolate f at the knots.



Construction of Natural Cubic Splines

Let σi = s ′′(xi ) for 0 ≤ i ≤ n (note these are unknown). Then we
can write

s ′′(x) =
xi − x

hi
σi−1 +

x − xi−1
hi

σi , for x ∈ [xi−1, xi ] .

Integrate twice to get

s(x) =
(xi − x)3

6hi
σi−1 +

(x − xi−1)3

6hi
σi + αi (x − xi−1) + βi (xi − x) ,

for x ∈ [xi−1, xi ]. Here the αi and βi are constants of integration
to be determined. The interpolation conditions become

s(xi−1) =
1

6
σi−1h

2
i + hiβi = f (xi−1) ,

s(xi ) =
1

6
σih

2
i + hiαi = f (xi ) .



Construction of Natural Cubic Splines

Using the interpolation conditions, the definition of s(x) and the
continuity of s ′ at the knots gives, after some algebra,

hiσi−1 + 2(hi+1 + hi )σi + hi+1σi+1 =

6

(
f (xi+1)− f (xi )

hi+1
− f (xi )− f (xi−1)

hi

)
along with

σ0 = σn = 0

which is a nonsingular tridiagonal system for the σi . Once we know
the σi we can also compute the αi and the βi coefficients and
hence the natural cubic spline in each subinterval.



Example
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Higher Dimensions

Lots of different options:

I Tensor product grids (see the Chebfun project)

I Piecewise polynomials on polygons (often triangles or
rectangles in 2D) — extension to differential equations yields
finite element method

I Radial basis functions

We’ll take a look at radial basis functions.



Radial Basis Function Interpolation

Again we wish to solve the canonical interpolation problem: given
a set of nodes xi , 0 ≤ i ≤ n and data at those nodes f (xi ),
construct a function p(x) such that

p(xi ) = f (xi )

for 0 ≤ i ≤ n.

We write

p(x) =
n∑

j=0

αjφ

(
‖x− xj‖2

δ

)
.

In other words, we write p(x) as a sum of basis functions as we did
in the 1D polynomial interpolation case but this time the basis
functions depend on the distance to each node and a parameter δ.
We also need to define the function φ : [0,∞)→ R.



Example Basis Functions

Generally the functions φ are chosen to have a maximum or
minimum at r = 0 and to be of one sign.

Common basis functions include:

I Gaussians: φ(r) = e−r
2

I Multiquadrics: φ(r) =
√

1 + r2

I Inverse multiquadrics: φ(r) = 1/
√

1 + r2

I Compactly supported functions (Wendland functions)



Example Basis Functions
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Role of δ

The role of δ is essentially to adjust how far the basis function
spreads — larger δ means the function spreads out more.
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Compactly Supported RBFs

The compactly supported functions were constructed to be
polynomials on the interval [0, 1] and zero outside that interval.
The polynomial part has minimal degree so that the global
function has a given smoothness (i.e. so that the derivatives are
continuous at r = 1). In two space dimensions we have

Function Smoothness

φ2,1 = (1− r)4+(4r + 1) C 2

φ2,2 = (1− r)6+(35r2 + 18r + 3) C 4

φ2,3 = (1− r)8+(32r3 + 25r2 + 8r + 1) C 6

Here we define the notation x+ by x+ = max(x , 0).



Interpolation

The interpolation problem now works as in 1D. We have

p(xi ) =
n∑

j=0

αkφ

(
‖xi − xj‖2

δ

)
= f (xi ) ,

for 0 ≤ i ≤ n. Thus we solve Aα = f where the entries of the
(symmetric) matrix A are given by

Ai ,j = φ

(
‖xi − xj‖2

δ

)
,

for 0 ≤ i , j ≤ n.



Example

We interpolate the function

f (x , y) = e−10((x−0.25)
2+(y−0.25)2) + e−20((x−0.75)

2+(y−0.75)2) .



Example


