
Practical Numerical Analysis: Sheet 2

1. In this problem we will approximate the values of four integrals

(a)

∫

1

0

4πx sin(20πx) cos(2πx)dx = −20/99 ,

(b)

∫

1

0

sin(2πx) cos(4πx)dx = 0 ,

(c)

∫

5

0

G(x)dx = 7.5 , where G(x) =







x+ 1 x < 1,
3− x 1 ≤ x ≤ 3,
2 x > 3.

(d)

∫

1

0

x3/2dx = 0.4 .

Note that in Matlab you can implement G(x) as:
G=@(x) (x+1).*(x<1)+(3-x).*(1<=x).*(x<=3)+2*(x>3);

Compute each integral using the composite trapezium rule, the Clenshaw-Curtis rule
and a Gauss-Legendre rule with n=10:10:100.

Note that the Legendre polynomials are the orthogonal polynomials on [−1, 1] with the
unit weight function. The orthonormal Legendre polynomials are defined by P0(x) =
1/
√
2, P1(x) =

√

3/2x and

xPn(x) =
1

2

1
√

1− 1/(2(n+ 1))2
Pn+1(x) +

1

2

1
√

1− 1/(2n)2
Pn−1(x) ,

for n = 1, 2, . . ..

For each integral produce a plot showing the convergence of the error with n for each
of the three different methods.

2. Use Romberg integration to compute the integral in 1(a) accurately.
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