
Elliptic Boundary Value Problems

M.Sc. in Mathematical Modelling & Scientific Computing,
Practical Numerical Analysis

Michaelmas Term 2018, Lecture 6



Elliptic Boundary Value Problems
Let Ω be a bounded open set in Rn. We consider the linear
second-order partial differential equation

−
n∑

i ,j=1

∂

∂xj

(
ai ,j(x)

∂u

∂xi

)
+

n∑
i=1

bi (x)
∂u

∂xi
+ c(x)u = f (x), (1)

for x ∈ Ω, where the coefficients ai ,j , bi , c and f satisfy the
following conditions:

ai ,j ∈ C 1(Ω̄), i , j = 1, . . . , n;

bi ∈ C (Ω̄), i = 1, . . . , n;

c ∈ C (Ω̄), f ∈ C (Ω̄),

and

n∑
i ,j=1

ai ,j(x)ξiξj ≥ c̃
n∑

i=1

ξ2i , ∀ξ = (ξ1, . . . , ξn) ∈ Rn, x ∈ Ω̄ (2)

where c̃ is a positive constant independent of x and ξ.



Elliptic Boundary Value Problems

If all these conditions are satisfied Equation (2) is known as the
uniform ellipticity condition and Equation (1) as an elliptic partial
differential equation.

In order to solve elliptic PDEs we must also supply boundary
conditions on the boundary of Ω (usually denoted by ∂Ω).
Boundary conditions typically take one of the following forms:

I u = g on ∂Ω (Dirichlet boundary condition);

I ∇u · n = g on ∂Ω (Neumann boundary condition);

I ∇u · n + σu = g on ∂Ω, where σ(x) ≥ 0 on ∂Ω (Robin
boundary condition).

Here, g is a given function on ∂Ω and n is the outward unit normal
to ∂Ω.



Elliptic Boundary Value Problems

A final form of boundary condition is a combination of the
Neumann and Robin boundary conditions and is given by

n∑
i ,j=1

ai ,j
∂u

∂xi
cosαj + σ(x)u = g

on ∂Ω, where αj is the angle between the unit outward normal
vector n to ∂Ω and the xj axis. Such a boundary condition is
known as an oblique derivative boundary condition.



Examples of Elliptic PDEs

Common examples of elliptic PDEs are:

I Laplace’s equation: −∇2u = 0;

I Poisson’s equation: −∇2u = f ;

I Advection diffusion equation: −∇ · (A∇u) + b · ∇u = f ;

I Steady state reaction convection diffusion equation:
−∇ · (A∇u) + b · ∇u + cu = f .



Example for this Lecture

We will consider Poisson’s equation with homogeneous Dirichlet
boundary conditions in the domain Ω = (0, 1)2 ⊂ R2. Thus we
solve

−∇2u = f (x , y) in Ω

u = 0 on ∂Ω.

(Note also that dealing with advection and reaction terms as well
as more general boundary conditions will be discussed in NSDEI for
parabolic PDEs. We will also come back to this later in term.)



Analytical Solution

One way to solve such problems analytically is via separation of
variables. This leads to a solution which is an infinite series (sum
of eigenfunctions of the Laplacian). This still raises a question of
how to evaluate the solution. At what point can we truncate the
infinite series?



Numerical Solution via Finite Differences

Let u(x) ∈ C 4(R) then, using Taylor series expansions, we may
write

u(x + h) = u(x) + hu′(x) +
h2

2
u′′(x) +

h3

6
u′′′(x) +

h4

24
u′′′′(ξ+)

u(x − h) = u(x)− hu′(x) +
h2

2
u′′(x)− h3

6
u′′′(x) +

h4

24
u′′′′(ξ−)

for some ξ+ ∈ (x , x + h) and ξi ∈ (x − h, x).

Thus we can combine these to see

u(x + h)− 2u(x) + u(x − h)

h2
= u′′(x) +

h2

12
u′′′′(ξ) (3)

for some ξ ∈ (x − h, x + h).



Numerical Solution via Finite Differences
This motivates our numerical scheme. Consider the mesh on [0, 1]2

defined by nodes xi = ih, yj = jh, i , j = 0, . . . ,N and h = 1/N.
We use the abbreviation ui ,j = u(xi , yj) and define our numerical
approximation by Ui ,j ≈ ui ,j .

0 0.2 0.4 0.6 0.8 1

x
i

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
y

j

Mesh with h=1/10



Numerical Solution via Finite Differences

On the grid we may then use Equation (3) to see

∂2u

∂x2
(xi , y) =

u(xi+1, y)− 2u(xi , y) + u(xi−1, y)

h2
− h2

12

∂4u

∂x4
u(ξi , y)

for some ξi ∈ (xi−1, xi+1). Thus we can write the numerical
scheme as

−
Ui+1,j − 2Ui ,j + Ui−1,j

h2
−

Ui ,j+1 − 2Ui ,j + Ui ,j−1
h2

= f (xi , yj)

for i , j = 1, . . . ,N − 1. The boundary conditions are applied as

Ui ,0 = Ui ,N = U0,j = UN,j = 0

for i , j = 0, . . . ,N.



Numerical Solution via Finite Differences

We may rewrite this system of equations as

4Ui ,j − Ui+1,j − Ui−1,j − Ui ,j+1 − Ui ,j−1 = h2fi ,j

for i , j = 1, . . . ,N − 1 and where fi ,j = f (xi , yj). The values Ui ,0,
Ui ,N , U0,j and UN,j are all zero.

You have seen such a system before!! (See NLA lecture 6)



Linear System

The system of equations can be thought of as a linear system of
size (N − 1)2 × (N − 1)2 (assuming we do not count the solution
on the boundary as unknown we can just eliminate these terms
from the equations).

Let U = (U1,1,U1,2, . . .U1,N−1,U2,1 . . .UN−1,N−1)T . If we order f
in the same way we may write a linear system

AU = f ,

where the form of the matrix A ∈ R(N−1)2×(N−1)2 is

A =


B C
C B C

. . .
. . .

. . .

C B C
C B





Linear System

In this expression, B ∈ R(N−1)×(N−1) is a tridiagonal matrix of the
form

B =


4 −1
−1 4 −1

. . .
. . .

. . .

−1 4 −1
−1 4


and C = −IN−1 (where IN−1 denotes the identity matrix of size
N − 1).



Solution Methods: Splitting Methods

Recall from the Numerical Linear Algebra course we may solve a
linear system AU = f using a splitting method by writing
A = M − N. Then the system becomes

MU = NU + f

and iterative methods based on this are:

1. Make an initial guess U(0) of solution

2. Solve the linear system

MU(k+1) = NU(k) + f

Repeat until convergence achieved.



Success of Splitting Methods

Splitting methods are likely to be successful if it is easy to solve
systems with the matrix M.

I Jacobi — M = D where D is the diagonal of the matrix A
(requires diagonal solve)

I Gauss-Seidel — M = L + D where D is the diagonal and L is
the strict lower triangle of the matrix A (requires solution with
lower triangular matrix — forwards substitution)

Of course we also require convergence. It can be shown that

U−U(k) = (M−1N)k(U−U(0))

Thus if M−1N is diagonalisable, ‖U−U(k)‖ → 0 as k →∞, for
any initial guess U(0), iff ρ(M−1N) < 1.



Summary of Common Splitting Methods

Write A = D + L + U where D is the diagonal, L is the strict lower
triangle and U is the strict upper triangle of A. Then common
splitting methods are:

I Jacobi: DU(k+1) = −(L + U)U(k) + f

I Relaxed Jacobi: DU(k+1) = [(1− ω)D − ω(L + U)]U(k) + ωf

I Gauss-Seidel: (D + L)U(k+1) = −UU(k) + f

I SOR: (D + ωL)U(k+1) = [(1− ω)D − ωU]U(k) + ωf
(ω < 1 corresponds to under-relaxation, ω = 1 corresponds to
Gauss-Seidel and ω > 1 corresponds to over-relaxation)

I SSOR: (D + ωL)U(k+1/2) = [(1− ω)D − ωU]U(k) + ωf
(D + ωU)U(k+1) = [(1− ω)D − ωL]U(k+1/2) + ωf



Splitting Methods: Component Form

For our elliptic problems, the matrix A is very sparse and we can
take advantage of this. Thus in component form we can write the
Jacobi method as

U
(k+1)
i ,j =

1

4

(
U

(k)
i−1,j + U

(k)
i+1,j + U

(k)
i ,j−1 + U

(k)
i ,j+1 + fi ,j

)
for i , j = 1, . . . ,N − 1 (and where boundary values are 0).

Similar expressions are possible for other splitting methods.



Convergence

It can be shown that the eigenvalues for the Jacobi iteration
matrix (M−1N) are given by

λr ,s =
1

2
(cos(rπh) + cos(sπh))

and so for Jacobi’s method

ρ(M−1N) = cos(πh) ≈ 1− π2h2

2
+O(h4)

so that convergence gets worse as h gets smaller (and making h
smaller improves the numerical solution to the underlying PDE).



Convergence

If we use the relaxed Jacobi method then the eigenvalues of the
iteration matrix are given by

λr ,s = (1− ω) +
ω

2
(cos(rπh) + cos(sπh)) .

In particular, if we choose ω = 0.5 we have

λr ,s =
1

2
+

1

4
(cos(rπh) + cos(sπh)) ,

and so all eigenvalues lie in the interval (0, 1). The corresponding
eigenfunctions for M−1N have entries

V r ,s
i ,j = sin(riπh) sin(sjπh) .

Thus high frequency eigenvectors (r , s large) correspond to small
eigenvalues.



Convergence

We can expand the error in the initial guess in terms of these
eigenfunctions so that

U−U(0) =
N−1∑
r ,s=1

αr ,sV
r ,s

and then the error at later iterations is given by

U−U(k) =
N−1∑
r ,s=1

αr ,s(λr ,s)kVr ,s .

This means that the high frequency parts of the error are quickly
damped out.



Smoothing

The left hand figure below shows the initial (high frequency) error
in a PDE solution while the right hand figure shows the solution
after a few steps of relaxed Jacobi. The high frequency
components have been damped out. This error could then be
approximated on a coarser grid. This is the idea behind multigrid.

-4

1

-2

1

0

0.8

2

0.5
0.6

4

0.4

0.2
0 0

-0.6

1

-0.4

-0.2

1

0

0.2

0.8
0.5

0.4

0.6

0.6

0.4

0.2
0 0



Further Remarks

I The derivation of the method we used shows that the
truncation error for the finite difference scheme is of size
O(h2).

I There is no need to use the same mesh size in both the x and
y directions. In fact there may be cases where this is not
sensible.

I There are other numerical methods for solving elliptic PDEs
which are more flexible in terms of geometry and are easily
extended to higher order convergence. One example is the
Finite Element Method (see next term’s special topic).

I In the computations we make there are two sources of error
and it is important to distinguish them. The first is the error
committed by solving the PDE (which is of size O(h2)), the
second is the error committed by not solving the linear system
perfectly. The size of this depends on the tolerance used in
the linear solver. With a direct solver (e.g. Matlab’s backslash
command), it is assumed that this second error is negligible.



Further Remarks

I There are many more methods which can be used to solve
linear systems (arising from PDEs) including
I Conjugate gradient method — for symmetric positive definite

systems
I MINRES — minimum residual method for symmetric indefinite

systems
I GMRES — for non-symmetric systems
I . . .

I Many of these iterative methods can be sped up by the use of
preconditioning. (For more details see later Numerical Linear
Algebra lectures and the related Scientific Computing Case
Study next term.)


