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Finite Differences

Last week we looked at finite difference schemes derived via Taylor
series expansions. An alternative derivation is via differentiating
interpolants.

For example, the interpolant of u(x) through x;_1 and x; is

Xj — X X — Xj_1

p(x) = u(xi-1)

:
Xj — Xj—1 Xj — Xj—1
with derivative

u(x;) — u(x;—
o) M) o)
Xi — Xi—1

which gives a backward difference.

Similarly, differentiating the interpolant of u(x) through x; and
xj+1 and evaluating at x; gives a forward difference.



Finite Differences

To get higher order approximations we use higher order
interpolants.

For example, the interpolant of u(x) through x;_1, x; and xj11 on
a uniform grid is

B . u(xit1) — u(xi—1) .
pl) = () + = ST (x - x)
u(x; — 2u(x; u(xj—
n (xi+1) 2572 ) + u( 1)(x —xi)?

with derivatives
u(xit1) — u(xi-1)
2h ’
(the standard second order central difference approximation to the
first derivative), and

p”(x,-) _

as we saw last week.

P/(Xi) =

U(X,'+1) — 2U(X,‘) + U(X,',l)
h? ’




Finite Differences

In the same way as for interpolation and quadrature, extending this
to higher order interpolants on a uniform mesh can be disastrous.

In general using 4, 6, 8 degree polynomials is practical for finite
differences on uniform meshes.

Question is how to easily work out the finite difference stencils
using higher degree polynomials on non-uniform grids.



Differentiation Matrices
Recall the Lagrange form of the interpolant

polx) = 3 Lok()u(xe)
k=0

with derivatives

n

Pr(x) = D Lnalxi)u(x) -

k=0

We seek the matrix D with entries d; x = L/ ,(x;) so that we may
write

pn(xi) = [dio,dix,...din
U(Xn)

Then D is the differentiation matrix for the points {x;}.



Differentiation Matrices

Recall the second barycentric interpolation formula from lecture 1:

! 27:0 X‘i/X/ ’

where the w, are given by

_
Hj;él(xl - X))

w) =

This allows us to write

Loy~ Shoslub
n, = n - n w
E/:O XZIX/ Z/:O XJX/




Differentiation Matrices
From this we get

n

Wi wgk
L"’k(X)Zx—x/ X=Xk
1=0

Let

n

B wi(x —x;) wi(x — x;)
AP P e D

1=0 I£i

Then
" wi(x — xi) wi(x — x7)

Finally

mk(X)si(x) + Lok(x)si(x) = wk (X = Xi> B wkﬁ '



Differentiation Matrices

For x = x; where i # k

Xi — Xk

Wk

Lo k(xi)si(xi) + Lni(xi)si(xi) = kg x0)

Since sj(x;) = wj and L, k(xi) = 0 we have

Wk
mk(Xi)wi = —,
and so
Wi /wj
d, = L o=
ik n,k(Xl) Xi — Xi

for i # k.

5 =

Xi — Xie



Differentiation Matrices

For i = k we use the fact that we know p, interpolates constants
exactly and that the derivative of a constant is zero so

n
Sd = 0
k=0
which means that
n
dii = - dix.
k=0
ki
This means that if we know the barycentric weights we can

compute the differentiation stencil. Note these formulae work for
any set of points.



Differentiation Matrix: Example
Let xo = —2h, x1 = —h, X0 =0, x3 = h and x4 = 2h.

Then with

we = [0a—x)
J#k
we have

wo = [(—=2h—(=h))(=2h)(=2h — h)(—2h —2h)]"! =

w1 = [(=h) = (=2h))(=h)(=h— h)(=h=2R)]"' = —— =

1
w2 = T
Hence
dbo = . —day
’ 12h ’
d2,1 - —% = —d2,3

o = 0.



Differentiation Matrix: Example

Thus

1711 2 2 1

/ f— J— —_— — — —_— ———
Pa(0) = 31357303 P

Let u(x) = sin(x) then

sin(—2h)

sin(—h)

p(x) = | sin(0)
sin(h)

sin(2h)

and with h = 0.1 we get 7 [15,—3,0, 3, —35] pa(x) = 0.99999667.



Differentiation Matrices on Uniform Grids
On uniform grids, the stencils have generally already been worked
out. See, for example
https://en.wikipedia.org/wiki/Finite_difference_coefficient

Central finite difference [ edit]

This table contains the coefficients of the central differences, for several orders of accuracy:!1!

Derivative Accuracy -4 -3 -2 -1 o 1 2 3 4
2 -1/2 0 12
4 112 -2/3 0 2/3 -1/12
! 6 -1/60 3/20 -3/4 0 3/4 —3/20 1/60
8 1/280 | —4/105 1/5 —4/5 0 4/5 -1/5 4/105 | -1/280
2 1 =2 1
4 -1/12 4/3 =5/2 4/3 -1/12
2 6 1/90 —-3/20 3/2 —49/18 3/2 —-3/20  1/90
8 —1/560 | 8/315 -1/5 8/5 —205/72 8/5 -1/5 8/315 | -1/560
2 =12 1 0 =il 12
8 4 1/8 =il 13/8 0 -13/8 1 -1/8
6 —7/240 | 3/10 |-169/120 61/30 0 —61/30 169/120 -3/10 | 7/240
2 1 -4 6 -4 1
4 4 -1/6 2 —13/2 28/3 —13/2 2 -1/6
6 7/240 =2/5 169/60 —-122/15 91/8 —122/15 169/60 —2/5 | 7/240
5 2 =12 2 -5/2 0 5/2 -2 12
6 2 1 -6 15 -20 15 -6 1


https://en.wikipedia.org/wiki/Finite_difference_coefficient

Higher Derivatives

To get second derivatives we could

> Compute
v gy =l = | 2T ~1/05—x0), # k
nk(XJ)_ ki
~ 2z 9 j,/ J=

» Use v =~ D(Dpy)

In general the two approaches are not equivalent.



Spectral Collocation

» Here the idea is to use the above methods to contrstruct
global differentiation matrices for high degree global
interpolants.

» On equispaced points this will be bad, but for Chebyshev or
Legendre grids it will work well!

» Global interpolants lead to geometric convergence but dense
matrices.

» Here D2 = D121



Boundary Value Problems

Suppose we want to solve an ODE of the form
V'+u = 0
then we can write
Du+u = (D>+Nu = 0

where D is the differentiation matrix. This leads to (using a
Chebyshev grid with five points)

18.000 —28.485 18.000 —11.515  5.0000 uo
9.2426 —13.000  6.0000 —2.0000 0.7574 uy
—1.0000  4.0000 —5.0000  4.0000 —1.0000 Uup
0.7574 —2.0000  6.0000 —13.000 9.2426 u3
5.0000 —11.515 18.000 —28.485 18.000 Uy

O OO oo



Boundary Value Problems

Of course since we are looking at a second order ODE, we need
two boundary conditions. If we use u(—1) = u(1) =1 then we can
rewrite the first and last rows as

1 0 0 0 0 7y

9.2426 —13.000 6.0000 —2.0000 0.7574 uy
—1.0000  4.0000 —5.0000  4.0000 —1.0000 u | =

0.7574 —2.0000  6.0000 —13.000 9.2426 u3

0 0 0 0 1 Ug

The exact solution to this BVP is

cos(x)

ulx) = cos(1)

= O O oK



Boundary Value Problems

Exact solution
Spectral Collocation
Finite Difference

-0.5

05

error

10710

107

10714

difference

140



Boundary Value Problems

Alternatively we could use u(—1) =1 and u’(lg = 0. We then use
the final row of D to replace the last row of D + | so we have

1 0 0 0 0 Uo
9.2426 —13.000  6.0000 —2.0000  0.7574 uy
—1.0000  4.0000 —5.0000  4.0000 —1.0000 u | =
0.7574 —2.0000  6.0000 —13.000  9.2426 u3
0.5000 —1.1716  2.0000 —6.8284  5.5000 Ug

O OO o

The exact solution to this BVP is

cos(x — 1) .

ulx) = cos(2)



Boundary Value Problems

Exact solution

X Spectral Collocation
X Difference

error

1010

1012

1014
0

Spectral collocation
Finite difference

140



More Boundary Value Problems

Now consider the problem
' +sin(x)u = 0

u(—1
u(1

~— ~—
|
o

We can write this as
(D? + diag(sin(x)))u = 0

with the boundary conditions enforced as before.



What Else?

This methodology:

>
>
| 4
| 2

>

can easily be adapted to other intervals than [—1,1];
extends easily to higher order differential equations;
extends easily to systems of equations;

can be extended with Newton’'s method to solve nonlinear
problems;

is the basis for some of the ODE methods within the Chebfun
system — see http://www.chebfun.org/.


http://www.chebfun.org/

