
1D Parabolic PDEs: Finite Difference Methods

M.Sc. in Mathematical Modelling & Scientific Computing,
Practical Numerical Analysis

Michaelmas Term 2018, Lecture 8

1D Heat Equation

First we consider the simplest parabolic PDE in the form of the
heat equation:

∂u

∂t
=

∂2u

∂x2
,

for t > 0 and x ∈ [a, b] with an initial condition

u(x , 0) = u0(x) ,

for x ∈ [a, b]. We begin by considering Dirichlet boundary
conditions

u(a, t) = ua(t) ,

u(b, t) = ub(t) ,

for t > 0.

The Mesh

We define a sequence of uniform timesteps by

tm = m∆t

for m = 0, 1, 2, . . . where ∆t > 0 is the constant timestep size. We
also define a set of uniform mesh points by

xj = a + j∆x ,

for j = 0, 1, . . . ,N and with the meshsize ∆x = (b − a)/N.

We write u(xj , tm) = umj and seek to approximate umj by Um
j for

j = 0, 1, . . . ,N and m = 0, 1, 2,

Finite Difference Schemes

As was the case for elliptic PDEs we may write a central difference

∂2u

∂x2
(xj , t) =

u(xj+1, t)− 2u(xj , t) + u(xj−1, t)

∆x2
+O(∆x2) .

Similarly, as was the case for ODEs we may write a forward
difference

∂u

∂t
(x , tm) =

u(x , tm+1)− u(x , tm)

∆t
+O(∆t) ,

or a backward difference

∂u

∂t
(x , tm+1) =

u(x , tm+1)− u(x , tm)

∆t
+O(∆t) .

Finite Difference Schemes

Alternatively we may combine these to get a θ-method of the form

(1− θ)
∂u

∂t
(x , tm) + θ

∂u

∂t
(x , tm+1) =

u(x , tm+1)− u(x , tm)

∆t
+O(∆t)

for θ 6= 1/2 or, when θ = 1/2,

1

2

∂u

∂t
(x , tm) +

1

2

∂u

∂t
(x , tm+1) =

u(x , tm+1)− u(x , tm)

∆t
+O(∆t2) .

Finite Difference Schemes

Such equalities lead to finite difference schemes of the form

I Forward Euler (or Explicit Euler)

Um+1
j − Um

j

∆t
=

Um
j+1 − 2Um

j + Um
j−1

∆x2

I Backward Euler (or Implicit Euler)

Um+1
j − Um

j

∆t
=

Um+1
j+1 − 2Um+1

j + Um+1
j−1

∆x2

I θ-Method (Crank Nicolson when θ = 1/2)

Um+1
j − Um

j

∆t
= θ

Um+1
j+1 − 2Um+1

j + Um+1
j−1

∆x2

+(1− θ)
Um
j+1 − 2Um

j + Um
j−1

∆x2

Finite Difference Schemes

All these finite difference schemes hold for j = 1, . . . ,N − 1 and
m = 0, 1,

We must also discretise the initial and boundary conditions as

U0
j = u0(xj) , j = 0, 1, . . . ,N

Um
0 = ua(tm) , m = 1, 2, . . .

Um
N = ub(tm) , m = 1, 2, . . .

Finite Differences — Implementation

We saw for ODEs that the forward Euler scheme was very simple
to implement, whereas the θ-method for θ > 0 required a nonlinear
solve. Similar ideas hold for the heat equation but the nonlinear
solve is replaced by the solution of a linear system.

Forward Euler Scheme

Recall the forward Euler scheme is

Um+1
j − Um

j

∆t
=

Um
j+1 − 2Um

j + Um
j−1

∆x2

for j = 1, . . . ,N − 1 and m = 0, 1, Writing µ = ∆t/∆x2, we
may re-arrange the scheme to get

Um+1
j = Um

j + µ(Um
j+1 − 2Um

j + Um
j−1) (1)

for j = 1, . . . ,N − 1 and m = 0, 1,

Thus, once we have used the initial and boundary conditions to
assign values to U0

j for j = 0, 1, . . . ,N and Um
0 and Um

N for
m = 1, 2, . . ., it is simple to set m = 0 in Equation (1) and
compute all the U1

j etc.

θ-Method
The θ-method is

Um+1
j − Um

j

∆t
= θ

Um+1
j+1 − 2Um+1

j + Um+1
j−1

∆x2

+(1− θ)
Um
j+1 − 2Um

j + Um
j−1

∆x2
.

(Recall this includes the backward Euler scheme if we take θ = 1.)

Again we may write µ = ∆t/∆x2 and re-arrange the scheme to get

−µθUm+1
j+1 + (1 + 2µθ)Um+1

j − µθUm+1
j−1 (2)

= Um
j + µ(1− θ)(Um

j+1 − 2Um
j + Um

j−1)

for j = 1, . . . ,N − 1 and m = 0, 1,

This time, once we have used the initial and boundary conditions
to assign values to U0

j for j = 0, 1, . . . ,N and Um
0 and Um

N for
m = 1, 2, . . ., if we set m = 0 in Equation (3) then we have a linear
system to solve in order to compute all the U1

j .

θ-Method — Linear System

Let A ∈ R(N+1)×(N+1) be the tridiagonal matrix given by

A =



0 0 0
1 −2 1

1 −2 1
. . .

. . .
. . .

1 −2 1
0 0 0


.

Then we may write

(I − µθA)Um+1 = (I ′ + µ(1− θ)A)Um + gm+1 .

Here, Um = (Um
0 ,U

m
1 , . . . ,U

m
N)T , I is the (N + 1)× (N + 1)

identity matrix, I ′ is the (N + 1)× (N + 1) identity matrix but
with the (1, 1) and (N + 1,N + 1) entries being zero, and
gm+1 = (ua(tm+1), 0, . . . , 0, ub(tm+1))T .

θ-Method — Linear System

Since the linear system is tridiagonal it can be solved easily in
Matlab using backslash, or it can be solved using the Thomas
Algorithm. Either method is fast, but not as fast as using Equation
(1) for the forward Euler scheme.

Truncation Error
The truncation error for the θ-method is given by

Tm
j =

um+1
j − umj

∆t
− θ

um+1
j+1 − 2um+1

j + um+1
j−1

∆x2

−(1− θ)
umj+1 − 2umj + umj−1

∆x2
.

It is standard to perform Taylor series approximations about the
point (xj , tm+1/2). This gives

Tm
j =

(
1

2
− θ
)

∆tuxxt −
1

12
∆t2uttt −

1

12
∆x2uxxxx .

Thus for θ independent of ∆t and ∆x :

I in general, the θ-method is first order in ∆t and second order
in ∆x ;

I for the particular case θ = 1/2, the Crank Nicolson method is
second order in both ∆t and ∆x .

Stability

Stability can be assessed by inserting the Fourier mode
Um
j = [λ(k)]m eikxj into the numerical scheme. The scheme is then

practically stable if |λ(k)| ≤ 1. Substituting such a Fourier mode
into the θ-method (3) and simplifying gives

λ(k) =
1− 4µ(1− θ) sin2(k∆x/2)

1 + 4µθ sin2(k∆x/2)

for k ∈ [−π/∆x , π/∆x].

Clearly this satisfies λ(k) ≤ 1 for all k ∈ [−π/∆x , π/∆x]. For
λ(k) ≥ −1 we require

2µ sin2(k∆x/2)(1− 2θ) ≤ 1 .

This is clearly true for all θ ≥ 1/2, but for θ < 1/2 this requires
µ ≤ 1/(2(1− 2θ)).

Stability

Thus for the θ-method we have

I If θ ≥ 1/2 the method is unconditionally stable. In particular
this means that the backward Euler and Crank-Nicolson
schemes are unconditionally stable.

I If θ < 1/2 the method is only conditionally stable. The values
of ∆t and ∆x must be chosen so that µ ≤ 1/(2(1− 2θ)), i.e.
so that

∆t ≤ ∆x2

2(1− 2θ)
.

In particular this means that the forward Euler method is only
conditionally stable and the condition for stability is that
∆t ≤ ∆x2/2.

Example of Instability

Suppose we try to solve the heat equation with Dirichlet boundary
conditions with the forward Euler scheme with ∆t = ∆x2 (recall
we need ∆t ≤ ∆x2/2 for stability). The solution is disastrous!

0 0.2 0.4 0.6 0.8 1

x

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

u

Exact solution at t=0.25

0 0.2 0.4 0.6 0.8 1

x

-2

-1

0

1

2

U

10
115 Numerical solution at t=0.25

Maximum Principle

It can be shown that for the heat equation on [a, b] and t > 0 with
an initial condition u(x , 0) = u0(x) and boundary conditions at
x = a, b, it holds that

umin ≤ u(x , t) ≤ umax

for all x ∈ [a, b] and t ≥ 0. Here we define

umin = min

(
min

x∈[a,b]
u0(x),min

t>0
u(a, t),min

t>0
u(b, t)

)
,

umax = max

(
max
x∈[a,b]

u0(x),max
t>0

u(a, t),max
t>0

u(b, t)

)
.

Maximum Principle

It can be shown that, under certain conditions, the numerical
solutions produced by the θ-method satisfy similar bounds. Define

Umin = min

(
min

0≤j≤N
u0(xj),min

m>0
Um
0 ,min

m>0
Um
N

)
,

Umax = max

(
max

0≤j≤N
u0(xj),max

m>0
Um
0 ,max

m>0
Um
N

)
.

Then we have the discrete maximum principle

Umin ≤ Um
j ≤ Umax

for 0 ≤ j ≤ N and m ≥ 0, provided

µ(1− θ) ≤ 1

2
.

Maximum Principle

Note that, for θ ∈ (0, 1), this is a more restrictive condition than
that for stability.

I For the implicit Euler scheme, with θ = 1, the discrete
maximum principle is automatically satisfied.

I For the θ-method with θ 6= 1, the discrete maximum principle
is satisfied whenever µ(1− θ) ≤ 1/2, i.e. whenever

∆t ≤ ∆x2

2(1− θ)
.

Maximum Principle: Example

0 0.2 0.4 0.6 0.8 1

x

0

0.2

0.4

0.6

0.8

1
U

initial data

solution with =5

solution with =1

More General Boundary Conditions

Instead of applying Dirichlet boundary conditions, we may wish to
apply Neumann boundary conditions or mixed boundary
conditions. Let us consider a mixed boundary condition

αu(a, t) + β
∂u

∂x
(a, t) = γ

for α, β and γ non-zero constants. (What follows is easily
extended to the case when α, β and γ are functions of time.)

More General Boundary Conditions
Since x0 = a, we may write a forward difference

∂u

∂x
(a, t) =

∂u

∂x
(x0, t) =

u(x1, t)− u(x0, t)

∆x
+O(∆x) .

This means we may approximate the mixed boundary condition
using

αUm+1
0 + β

Um+1
1 − Um+1

0

∆x
= γ , (3)

for m = 0, 1,

If we use this with the explicit Euler scheme then we have
Equation (1) with j = 1,

Um+1
1 = Um

1 + µ(Um
2 − 2Um

1 + Um
0)

which couples with Equation (3) to give a 2× 2 system for the
unknowns Um+1

0 and Um+1
1 .

More General Boundary Conditions

If we use Equation (3) to approximate the mixed boundary
condition with the θ-method then we need to adapt the system we
had earlier, namely

BUm+1 := (I − µθA)Um+1 = (I ′ + µ(1− θ)A)Um + gm+1 .

We now replace the first entry of gm+1 with γ∆x and the first row
of the matrix B is now (α∆x − β, β, 0, . . . , 0).

This method applies the boundary condition using an O(∆x)
approximation.

More General Boundary Conditions — Ficticious Node

An alternative method for applying the boundary conditions is to
use a central difference

∂u

∂x
(a, t) =

∂u

∂x
(x0, t) =

u(x1, t)− u(x−1, t)

2∆x
+O(∆x2) ,

where x−1 = a−∆x is a ficticious node to the left of the left-hand
end of the interval. This means we may approximate the mixed
boundary condition using

αUm+1
0 + β

Um+1
1 − Um+1

−1
2∆x

= γ , (4)

for m = 0, 1, To use this with the θ-method we use Equation
(3) with j = 0, namely

−µθUm+1
1 + (1 + 2µθ)Um+1

0 − µθUm+1
−1

= Um
0 + µ(1− θ)(Um

1 − 2Um
0 + Um

−1)

More General Boundary Conditions — Ficticious Node

We use Equation (4) to replace Um+1
−1 and Um

−1 in this finite
difference scheme to get

−µθ(1 + β)Um+1
1 + (1 + 2µθ(1− α∆x))Um+1

0

= Um
0 + µ(1− θ)((1 + β)Um

1 − 2(1− α∆x)Um
0)− 2µγ∆x .

Again we can use this to replace the first line of the linear system.
This method applies the boundary condition using an O(∆x2)
approximation.

More General Boundary Conditions — Comparison

10
1

10
2

10
3

N

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

M
a

x
 e

rr
o

r
a

t
t=

0
.2

5
Ficticious node

Forward difference

