Practical Numerical Analysis: Sheet 7

1. We consider the heat equation

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}
$$

on the interval $x \in[0,1]$ and $t \in[0,0.25]$ with initial and boundary conditions given by

$$
\begin{aligned}
u(x, 0) & =\sin \left(\frac{3 \pi x}{2}\right)-\frac{3 \pi}{2} \cos \left(\frac{3 \pi x}{2}\right) \\
u(0, t) & =-\frac{3 \pi}{2} \mathrm{e}^{-(3 \pi / 2)^{2} t} \\
u(1, t) & =-\mathrm{e}^{-(3 \pi / 2)^{2} t}
\end{aligned}
$$

The exact solution to the problem is given by

$$
u(x, t)=\mathrm{e}^{-(3 \pi / 2)^{2} t}\left(\sin \left(\frac{3 \pi x}{2}\right)-\frac{3 \pi}{2} \cos \left(\frac{3 \pi x}{2}\right)\right)
$$

Solve the problem using the θ-method and take in $\operatorname{turn} \theta=0,0.5,1$. Use $N=32,64$, 128 and 256 mesh spacings in the x-direction and choose Δt so that $\mu=\Delta t / \Delta x^{2}=1 / 2$. By looking at the maximum absolute difference between the exact solution and the numerical solution at time $t=0.25$, confirm that you achieve the expected convergence rates.

Again solve the problem using the θ-method and take in turn $\theta=0,0.5,1$. Now fix $N=512$ and use $M=32,64,128$ and 256 equally spaced timesteps in the interval [$0,0.25]$. Again look at the error defined as the maximum absolute difference between the exact solution and the numerical solution at time $t=0.25$, and explain your results.
Finally use the Crank Nicolson scheme with $N=400$ mesh spacings and $M=400$ timesteps. Record the maximum error at $t=0.25$ and the time taken for the whole computation. Repeat with the explicit scheme with $N=400$ mesh spacings and $\mu=1 / 2$. Comment on your results.

Further Reading

1. K. W. Morton and D. F. Mayers, Numerical Solution of Partial Differential Equations, CUP, 1994 (1st Edition) or 2005 (2nd Edition). Chapter 2 contains an introduction to finite difference methods for 1D parabolic PDEs.
