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1D Parabolic PDEs



1D Heat Equation

Last week we considered the simplest parabolic PDE in the form of
the heat equation:

∂u

∂t
=

∂2u

∂x2
,

for t > 0 and x ∈ [a, b] with an initial condition

u(x , 0) = u0(x) ,

for x ∈ [a, b]. We began by considering Dirichlet boundary
conditions

u(a, t) = ua(t) ,

u(b, t) = ub(t) ,

for t > 0.



Finite Difference Schemes

Common finite difference schemes are

I Forward Euler (or Explicit Euler)

Um+1
j − Um

j

∆t
=

Um
j+1 − 2Um

j + Um
j−1

∆x2

I Backward Euler (or Implicit Euler)

Um+1
j − Um

j

∆t
=

Um+1
j+1 − 2Um+1

j + Um+1
j−1

∆x2

I θ-Method (Crank Nicolson when θ = 1/2)

Um+1
j − Um

j

∆t
= θ

Um+1
j+1 − 2Um+1

j + Um+1
j−1

∆x2

+(1− θ)
Um
j+1 − 2Um

j + Um
j−1

∆x2



Finite Difference Schemes
All these finite difference schemes hold for j = 1, . . . ,N − 1 and
m = 0, 1, . . ..

We must also discretise the initial and boundary conditions as

U0
j = u0(xj) , j = 0, 1, . . . ,N

Um
0 = ua(tm) , m = 1, 2, . . .

Um
N = ub(tm) , m = 1, 2, . . .

For the θ-method for θ > 0 we have to solve a linear system at
each timestep of the form

(I − µθA)Um+1 = (I ′ + µ(1− θ)A)Um + gm+1 .

Here, µ = ∆t/∆x2, Um = (Um
0 ,U

m
1 , . . . ,U

m
N )T , I is the

(N + 1)× (N + 1) identity matrix, I ′ is the (N + 1)× (N + 1)
identity matrix but with the (1, 1) and (N + 1,N + 1) entries being
zero, and gm+1 = (ua(tm+1), 0, . . . , 0, ub(tm+1))T .



2D Parabolic PDEs



2D Heat Equation

The heat equation in 2D is given by

∂u

∂t
=

∂2u

∂x2
+
∂2u

∂y2
,

for t > 0 and x ∈ Ω ⊂ R2 with an initial condition

u(x , y , 0) = u0(x , y) ,

for x ∈ Ω. We consider Dirichlet boundary conditions

u(x , y , t) = uD(x , y , t) for (x , y) ∈ ∂Ω , t > 0.



The Mesh

We define a sequence of uniform timesteps by

tm = m∆t

for m = 0, 1, 2, . . . where ∆t > 0 is the constant timestep size.

For the spatial mesh, we assume that the domain Ω is a rectangle,
namely Ω = (a, b)× (c, d) so that x ∈ [a, b] and y ∈ [c , d ]. We
then define a set of uniform mesh points by

xi = a + i∆x ,

yj = c + j∆y ,

for i = 0, 1, . . . ,Nx , j = 0, 1, . . . ,Ny and with the meshsizes
∆x = (b − a)/Nx and ∆y = (d − c)/Ny .

We write u(xi , yj , tm) = umi ,j and seek to approximate umi ,j by Um
i ,j

for i = 0, 1, . . . ,Nx , j = 0, 1, . . . ,Ny and m = 0, 1, 2, . . ..



Finite Difference Schemes

We can write down finite difference schemes in an analogous way
to the 1D case. First define

δ2xUi ,j = Ui+1,j − 2Ui ,j + Ui−1,j ,

δ2yUi ,j = Ui ,j+1 − 2Ui ,j + Ui ,j−1 .

Then we may write

I Forward Euler (or Explicit Euler)

Um+1
i ,j − Um

i ,j

∆t
=

δ2xU
m
i ,j

∆x2
+
δ2yU

m
i ,j

∆y2

I Backward Euler (or Implicit Euler)

Um+1
i ,j − Um

i ,j

∆t
=

δ2xU
m+1
i ,j

∆x2
+
δ2yU

m+1
i ,j

∆y2



Finite Difference Schemes

I θ-Method (Crank Nicolson when θ = 1/2)

Um+1
i ,j − Um

i ,j

∆t
=

θδ2xU
m+1
i ,j + (1− θ)δ2xU

m
i ,j

∆x2

+
θδ2yU

m+1
i ,j + (1− θ)δ2yU

m
i ,j

∆y2
(1)



Finite Difference Schemes

All these finite difference schemes hold for i = 1, . . . ,Nx − 1,
j = 1, . . . ,Ny − 1 and m = 0, 1, . . ..

We must also discretise the initial and boundary conditions as

U0
i ,j = u0(xi , yj) , i = 0, 1, . . . ,Nx , j = 0, 1, . . . ,Ny

Um
0,j = uD(a, y , tm) , j = 0, 1, . . . ,Ny , m = 1, 2, . . .

Um
Nx ,j = uD(b, y , tm) , j = 0, 1, . . . ,Ny , m = 1, 2, . . .

Um
i ,0 = uD(x , c , tm) , i = 1, . . . ,Nx − 1, m = 1, 2, . . .

Um
i ,Ny

= uD(x , d , tm) , i = 1, . . . ,Nx − 1, m = 1, 2, . . .



Forward Euler Scheme

The forward Euler scheme is

Um+1
i ,j − Um

i ,j

∆t
=

δ2xU
m
i ,j

∆x2
+
δ2yU

m
i ,j

∆y2

for i = 1, . . . ,Nx − 1, j = 1, . . . ,Ny − 1 and m = 0, 1, . . .. Writing
µx = ∆t/∆x2 and µy = ∆t/∆y2, we may re-arrange the scheme
to get

Um+1
i ,j = Um

i ,j + µx(Um
i+1,j − 2Um

i ,j + Um
i−1,j)

+µy (Um
i ,j+1 − 2Um

i ,j + Um
i ,j−1)

for i = 1, . . . ,Nx − 1, j = 1, . . . ,Ny − 1 and m = 0, 1, . . ..

As in 1D, this is very simple to implement.



θ-Method

The θ-method is

Um+1
i ,j − Um

i ,j

∆t
=

θδ2xU
m+1
i ,j + (1− θ)δ2xU

m
i ,j

∆x2

+
θδ2yU

m+1
i ,j + (1− θ)δ2yU

m
i ,j

∆y2
.

(Recall this includes the backward Euler scheme if we take θ = 1.)

We may re-arrange the scheme to get

−µxθ(Um+1
i+1,j + Um+1

i−1,j)− µyθ(Um+1
i,j+1 + Um+1

i,j−1) + (1 + 2θ(µx + µy ))Um+1
i,j

= µx(1− θ)(Um
i+1,j + Um

i−1,j) + µy (1− θ)(Um
i,j+1 + Um

i,j−1)

+(1− 2(1− θ)(µx + µy ))Um
j

for i = 1, . . . ,Nx − 1, j = 1, . . . ,Ny − 1 and m = 0, 1, . . ..



θ-Method — Linear System

In the case of homogeneous Dirichlet boundary conditions we have
Um+1
0,j = Um+1

Nx ,j
= Um+1

i ,0 = Um+1
i ,Ny

= 0 and we may write the vector
of unknowns as

Um+1 = (Um+1
1,1 ,Um+1

1,2 , . . .Um+1
1,Ny−1,U

m+1
2,1 . . .Um+1

Nx−1,Ny−1)T .

We may then write a linear system

(I − θA)Um+1 = (I + (1− θ)A)Um ,

where A is a matrix with (Nx − 1)(Ny − 1) rows and columns and
I is the identity matrix of the same size.



θ-Method — Linear System

The structure of A is

A =


B C
C B C

. . .
. . .

. . .

C B C
C B




Nx − 1 blocks

where B,C ∈ R(Ny−1)×(Ny−1) are given by

B =


−2(µx + µy ) µy

µy −2(µx + µy ) µy
. . .

. . .
. . .

µy −2(µx + µy )

 ,

and C = µx INy−1 with INy−1 being the identity matrix of size
Ny − 1.



Truncation Error
The truncation error for the θ-method is given by

Tm
i ,j =

um+1
i ,j − umi ,j

∆t
−
θδ2xu

m+1
i ,j + (1− θ)δ2xu

m
i ,j

∆x2

−
θδ2yu

m+1
i ,j + (1− θ)δ2yu

m
i ,j

∆y2
.

It is standard to perform Taylor series approximations about the
point (xi , yj , tm+1/2). This gives

Tm
i ,j =

(
1

2
− θ
)

∆tutt −
1

12
(∆t2uttt + ∆x2uxxxx + ∆y2uyyyy ) .

Thus for θ independent of ∆t and ∆x :

I in general, the θ-method is first order in ∆t and second order
in ∆x and ∆y ;

I for the particular case θ = 1/2, the Crank Nicolson method is
second order in ∆t, ∆x and ∆y .



Stability

Stability can be assessed by inserting the Fourier mode
Um
i ,j = [λ(kx , ky )]m ei(kxxi+kyyj ) into the numerical scheme. The

scheme is then practically stable if |λ(kx , ky )| ≤ 1. Substituting
such a Fourier mode into the θ-method (1) and simplifying gives

λ(kx , ky ) =
1− 4(1− θ)(µx sin2(kx∆x/2) + µy sin2(ky∆y/2))

1 + 4θ(µx sin2(kx∆x/2) + µy sin2(ky∆y/2))

for kx ∈ [−π/∆x , π/∆x ] and ky ∈ [−π/∆y , π/∆y ] and where
µx = ∆t/∆x2 and µy = ∆t/∆y2.

Clearly this satisfies λ(kx , ky ) ≤ 1 for all kx and ky . For
λ(kx , ky ) ≥ −1 we require

2(µx sin2(kx∆x/2) + µy sin2(ky∆y/2))(1− 2θ) ≤ 1 .

This is clearly true for all θ ≥ 1/2, but for θ < 1/2 this gives a
restriction on ∆t.



Stability

Thus for the θ-method we have

I If θ ≥ 1/2 the method is unconditionally stable. In particular
this means that the backward Euler and Crank-Nicolson
schemes are unconditionally stable.

I If θ < 1/2 the method is only conditionally stable. The values
of ∆t, ∆x and ∆y must be chosen so that

∆t ≤ ∆x2∆y2

∆x2 + ∆y2
1

2(1− 2θ)
.

In particular this means that the forward Euler method is only
conditionally stable and, in the case where ∆x = ∆y , the
condition for stability is that ∆t ≤ ∆x2/4.



ADI Method

Consider the Crank Nicolson scheme for the 2D heat equation:

Um+1
i ,j − Um

i ,j

∆t
=

1

2

δ2xU
m+1
i ,j + δ2xU

m
i ,j

∆x2
+

1

2

δ2yU
m+1
i ,j + δ2yU

m
i ,j

∆y2
,

or equivalently(
1− 1

2
µxδ

2
x −

1

2
µyδ

2
y

)
Um+1
i ,j =

(
1 +

1

2
µxδ

2
x +

1

2
µyδ

2
y

)
Um
i ,j .

ADI schemes are based on approximately factorising the operators
on the left and right of this equation.



ADI Method

We write this approximation as(
1− 1

2
µxδ

2
x

)(
1− 1

2
µyδ

2
y

)
Um+1
i,j =

(
1 +

1

2
µxδ

2
x

)(
1 +

1

2
µyδ

2
y

)
Um
i,j .

By introducing an intermediate time level Um+1/2 we may write
this in an equivalent form(

1− 1

2
µxδ

2
x

)
U

m+1/2
i ,j =

(
1 +

1

2
µyδ

2
y

)
Um
i ,j ,(

1− 1

2
µyδ

2
y

)
Um+1
i ,j =

(
1 +

1

2
µxδ

2
x

)
U

m+1/2
i ,j .

The advantage of doing this is that, instead of one large system of
equations, we have many smaller tridiagonal systems.



ADI Method: Truncation Error

It can be shown that the truncation error for the ADI method is

Tm
i ,j = − 1

12

(
∆t2uttt + ∆x2uxxxx + ∆y2uyyyy

)
+

1

4
∆t2uxxyyt

(i.e. the terms of the truncation error for Crank Nicolson with one
extra term added coming from the fact that the approximation of
Crank Nicolson is inexact).



ADI Method: Stability

Inserting the Fourier mode Um
i ,j = [λ(kx , ky )]m ei(kxxi+kyyj ) into the

numerical scheme gives

λ(kx , ky ) =
(1− 2µxσ

2
x)(1− 2µyσ

2
y )

(1 + 2µxσ2x)(1 + 2µyσ2y )
,

where

σ2x = sin2

(
kx∆x

2

)
,

σ2y = sin2

(
ky∆y

2

)
.

It is easy to see that |λ(kx , ky )| ≤ 1 for all values of µx and µy so
that the scheme is unconditionally stable.



Example

Solve the heat equation ut = uxx + uyy in the unit square [0, 1]2

with homogeneous Dirichlet boundary conditions and initial
condition

u(x , y , 0) = sin(πx) sin(3πy) .

The exact solution is

u(x , y , t) = e−10π
2t sin(πx) sin(3πy) .



Results with ∆x2 = ∆y 2 and ∆t = ∆x2/4
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