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1D Parabolic PDEs



1D Heat Equation

Last week we considered the simplest parabolic PDE in the form of
the heat equation:
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for t > 0 and x € [a, b] with an initial condition
u(x,0) = wo(x),

for x € [a, b]. We began by considering Dirichlet boundary
conditions

u(a,t) = u,(t),
u(b7t) = ub(t)a

for t > 0.



Finite Difference Schemes

Common finite difference schemes are
» Forward Euler (or Explicit Euler)
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» Backward Euler (or Implicit Euler)
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At Ax?
» 6-Method (Crank Nicolson when 6 = 1/2)
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Finite Difference Schemes

All these finite difference schemes hold for j =1,..., N —1 and
m=20,1,....

We must also discretise the initial and boundary conditions as
0 .
U = w(x), j=01,....N

U = ustm), m=12 ..
Uy = up(tm), m=1,2...

For the #-method for # > 0 we have to solve a linear system at
each timestep of the form

(I — o AU™L = (I 4+ pu(1 - )A)U™ + g™t |

Here, = At/Ax?, U™ = g, o, Uﬁ)T, | is the

(N +1) x (N + 1) identity matrix, /" is the (N +1) x (N + 1)
identity matrix but with the (1,1) and (N + 1, N + 1) entries being
zero, and g™ = (ua(tmy1),0,...,0, up(tmy1))7.



2D Parabolic PDEs



2D Heat Equation

The heat equation in 2D is given by
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for t > 0 and x € Q C R? with an initial condition
u(x,y,0) = uw(x,y),
for x € Q. We consider Dirichlet boundary conditions

u(x,y,t) = up(x,y,t) for (x,y) €0, t>0.



The Mesh

We define a sequence of uniform timesteps by
tm = mAt
for m=0,1,2,... where At > 0 is the constant timestep size.

For the spatial mesh, we assume that the domain € is a rectangle,
namely Q = (a, b) x (¢, d) so that x € [a, b] and y € [c, d]. We
then define a set of uniform mesh points by

X; = a4+ ilAx,

yj = c+jby,

fori=0,1,..., N, j=0,1,..., N, and with the meshsizes
Ax = (b—a)/Ny and Ay = (d —c)/N,.

We write u(x;, yj, tm) = u]"; and seek to approximate u/”; by U
fori=0,1,...,N.,j=0,1,...,N,and m=0,1,2,....



Finite Difference Schemes

We can write down finite difference schemes in an analogous way
to the 1D case. First define

Uiy = Un1j—2Uij+ Uiy,
5)2,U,'7j = U,"j+1 — 2U,'J + UiJ,1 .

Then we may write

» Forward Euler (or Explicit Euler)

m—+1 m 2 2
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» Backward Euler (or Implicit Euler)
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Ui — Uy _ Uy oU;

At Ax? Ay?




Finite Difference Schemes

» 0-Method (Crank Nicolson when 6 = 1/2)

urtt—um 052Um L + (1 — 9)52Ur
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Finite Difference Schemes

All these finite difference schemes hold for i =1,..., N, — 1,
j=1,...,N,—1and m=0,1,....

We must also discretise the initial and boundary conditions as

U = wo(xiny), i=0,1,..., Ny, j=0,1,...,N,
U = up(ay,tm), j=0,1,...,Ny, m=1.2,...
Un.j = up(b,y,tm), j=0,1,....N,, m=12,...
M = up(x,Ctm), i=1,... Ne—1 m=12,...
Uy, = up(xditm), i=1,..,Ne—1, m=1.2,..



Forward Euler Scheme

The forward Euler scheme is

+1
urT = ur _ 52 ur 52 ur
At Ax? Ay?

fori=1,...,Ny—1,j=1,...,N,—1and m=0,1,.... Writing
px = At/Ax? and p, = At/Ay?, we may re-arrange the scheme
to get

1
UTF = U (U — 207+ U7 )

fori=1,...,Ny—1,j=1,...,N,—1land m=0,1,....

As in 1D, this is very simple to implement.



0-Method

The 0-method is

m+1 m 2 1 m+1 21 /m
At Ax?
053U + (1 - 0)5zUp
+ Ay? .

(Recall this includes the backward Euler scheme if we take = 1.)

We may re-arrange the scheme to get

e O(UTEL + UL = 0(UTE 4 U 4 (L+ 200, + ) U
= (1= 0) Uy + Uy ;) +py (L= 0)(UT g + UTy)

(1= 2(1 = 0)(ux + 1)) U

fori=1,...,Ny—1,j=1,...,Ny—1land m=0,1,....



6-Method — Linear System

In the case of homogeneous Dirichlet boundary conditions we have

U’"J“:l U,’\Ztl U’thl Uerl = 0 and we may write the vector

of unknowns as

Um+1

m+1 m+1 m+1 m+1 m T
(U ,U UlN_l,U .Uy —1N—1) .

P

We may then write a linear system
(I —0AU™ = (14 (1-0)AU™,

where A is a matrix with (N — 1)(N, — 1) rows and columns and
I is the identity matrix of the same size.



6-Method — Linear System

The structure of A is

A = Ny — 1 blocks
¢ B C
C B

where B, C € RN —1)x(My=1) are given by

—2(px + py) iy
Hy —2(px + pty) Hy
B = _ _ _
Hy —2(px + py)

and C = pxly,—1 with Iy, 1 being the identity matrix of size
N, — 1.



Truncation Error
The truncation error for the §-method is given by

um™t —ym 952um L (1 — 0)62um
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It is standard to perform Taylor series approximations about the

point (Xi, yj, tmy1/2). This gives

1 1
Tir:] = <2 — 9) Atutt — E(At2 Uter + AX2UXXXX + Ay2Uyyyy) .

Thus for 6 independent of At and Ax:

» in general, the 6-method is first order in At and second order

in Ax and Ay;

» for the particular case § = 1/2, the Crank Nicolson method is

second order in At, Ax and Ay.



Stability

Stability can be assessed by inserting the Fourier mode

Ul = [Mks, k)] e/(kXitkvi) into the numerical scheme. The
scheme is then practically stable if |A(k, k,)| < 1. Substituting
such a Fourier mode into the §-method (1) and simplifying gives

N 1 — 4(1 — 0)(pux sin®(keAx/2) + 1, sin?(k, Ay /2))

1+ 49(p1x sin®(kx Ax/2) + pu, sin?(k, Ay /2))

for ke € [-7/Ax,7/Ax] and k, € [-7/Ay,m/Ay] and where
px = At/Ax? and p, = At/Ay?.

Clearly this satisfies A(ky, k,) < 1 for all k. and k. For
A(kx, ky) > —1 we require

2(pux sin?(kxAx/2) + py sin®(k, Ay /2))(1 —20) < 1.

This is clearly true for all > 1/2, but for § < 1/2 this gives a
restriction on At.



Stability

Thus for the 0-method we have

» If & > 1/2 the method is unconditionally stable. In particular
this means that the backward Euler and Crank-Nicolson
schemes are unconditionally stable.

» If 6 < 1/2 the method is only conditionally stable. The values
of At, Ax and Ay must be chosen so that
Ax?Ay? 1
AxZ + Ay?22(1—20) "

At

In particular this means that the forward Euler method is only
conditionally stable and, in the case where Ax = Ay, the
condition for stability is that At < Ax?/4.



ADI Method

Consider the Crank Nicolson scheme for the 2D heat equation:

A I L A - L1 U+ syum

At 2 Ax? 2 Ay? ’

or equivalently
1 1 1 1
<1 - ENX(S)% - 2”)’5)2/) Ui,,TJ,'+1 = <1 + 5:“%5)2( + 2“}/5)2/) Ui’j} :

ADI schemes are based on approximately factorising the operators
on the left and right of this equation.



ADI Method

We write this approximation as

1 2 1 2 m+1 1 2 1 2 m
(1 — ZMX(SX) (1 — 2/,Ly(5y> U’.)jjL = <1 + §MX6X 1 + 5/,6},(5}, Ui,j .

By introducing an intermediate time level U™1/2 we may write
this in an equivalent form

2 m+1/2 1 2 m
(1-20) o = (14 ) up.
<1—;uy5§> umtt = <1+ uX52> Viasles

The advantage of doing this is that, instead of one large system of
equations, we have many smaller tridiagonal systems.



ADI Method: Truncation Error

It can be shown that the truncation error for the ADI method is

1
T = A U + AxP Uy + Dy? Uyyyy) + At Usxyyt

12 (
(i.e. the terms of the truncation error for Crank Nicolson with one
extra term added coming from the fact that the approximation of
Crank Nicolson is inexact).



ADI Method: Stability

Inserting the Fourier mode U = [A(k«, k)™ eilkxithyi) into the
numerical scheme gives

(1 —2px03)(1 — 2:“}10)2/)
(7 2moD) (A T 20,73)

M ky, ky) =

where

k, A
o2 = sin? <y2y>.

It is easy to see that |A(ky, k,)| < 1 for all values of 1, and p, so
that the scheme is unconditionally stable.



Example

Solve the heat equation uy = Uy + uy, in the unit square [0, 1)?
with homogeneous Dirichlet boundary conditions and initial
condition

u(x,y,0) = sin(mx)sin(3my) .
The exact solution is
67107r2t

u(x,y,t) = sin(mx)sin(3my) .



Results with Ax?> = Ay? and At = Ax?/4
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Solution Ax # Ay

Nx=16, Ny=32, maxerr=1.6e-04 Nx=32, Ny=32, maxerr=1.5e-04

,;;‘:g“{:}tttm

553

error

u}

o)
I

i
it

DA



	1D Parabolic PDEs
	2D Parabolic PDEs

