CHAPTER 2

PROBLEMS WITH EXPLICIT SOLUTIONS

The formulation of Stefan Problems as models of basic phase-change
processes was presented in §1.2. Under certain restrictions on the parameters and
data such problems admit explicit solutions in closed form. These simplest
possible, explicitly solvable Stefan problems form the backbone of our
understanding of all phase-change models and serve as the only means of
validating approximate and numerical solutions of more complicated problems.

Unfortunately, closed-form explicit solutions (all of which are of similarity
type) may be found only under the following very restrictive conditions:
1-dimensional, semi-infinite geometry, uniform initial temperature, constant
imposed temperature (at the boundary), and thermophysical properties constant in
each phase.

Within these confines we present a succession of models of increasingly
complicated phase-change processes.

We begin with the simplest possible models, the classical 1-phase Stefan
problem ( §2.1), and 2-phase Stefan Problem ( §2.2), modeling the most basic
aspects of a phase-change process (as discussed in §1.2). We present the Neumann
similarity solution and familiarize the reader with some of the information it
conveys.

Next ( §2.3 ) we relax the assumption of constant density by allowing the
densities of solid and liquid to be different (but each still a constant), thus bringing
density change effects into the picture. We study the effect of volume expansion
(no voids), and of shrinkage (causing formation of a void near the wall). In each
case we formulate explicitly solvable thermal models (neglecting all mechanical
effects) and examine the effect of density change on the Neumann solution. More
precise models, which include mechanical effects but don’t admit explicit
solutions, are derived from first principles in the last subsection.

In §2.4 we introduce supercooling, thus relaxing the assumption that the phase-
change occurs at the melt temperature 7),,. We discuss the thermodynamics of
phase-coexistence and derive the Laplace-Young, Clausius-Clapeyron and Gibbs-
Thomson relations from first principles. The classical Mullins-Sekerka
morphological stability analysis is also presented.

In §2.5 we discuss binary alloy solidification, coupling heat conduction and
solute diffusion. We present the classical model of Rubinstein and its explicit
solution, as well as various other models of freezing over an extended temperature
range.

The introduction of each new physical phenomenon in the simplest possible
setting (dictated by the desire to have explicit solutions available) helps us
understand the phenomenon more easily and see its effects on the solution.
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Similarity solutions in cylindrical and spherical geometries for special
problems are the subject of §2.6. Finally, in §2.7 we present a contrived (artificial)
multi- dimensional phase-change problem whose explicit solution may serve as
benchmark for 2 or 3 dimensional numerical codes. Such a debugging tool
becomes necessary because no explicitly solvable phase-change problem exists in
2 or 3 dimensions.

Each phase-change process involving melting has a counterpart involving
Jfreezing. For consistency throughout our discussions we will be treating the case
of melting, unless we are specifically interested in a solidification process (as in
§2.5). The paralle]l developments for freezing will be mostly left as exercises for
the reader in the PROBLEMS, but the changes needed to turn the solution of the
one to the other will be indicated in the text.

2.1. THE ONE-PHASE STEFAN PROBLEM

2.1.A Introduction

The simplest explicitly solvable phase-change problem is the 1-phase Stefan
Problem (§1.2.F) with constant imposed temperature and constant thermophysical
properties. Its solution is the classical Neumann similarity solution [CARSLAW-
JAEGER], [RUBINSTEIN] involving the error function. As prototype example
we treat the melting problem leaving the case of freezing for the reader to examine
via the Problems.

The term “one-phase™ refers to only one of the phases (liquid) being ‘“‘active”,
the other phase staying at the melt temperature T, (§1.2.F). Thus the physical
situation is the following:

PHYSICAL PROBLEM: Melting of a (semi-infinite) slab, 0 < x < oo, initially
solid at the melt temperature, T,,, by imposing a constant temperature
T,>T, on the face x=0. Thermophysical parameters: p, ¢y,
kr, L, oy = k; / pcy, all constant,

The physical realization of this problem is an insulated pipe, filled with a PCM,

and exposed at one face to a heat source, while its length is so great that the second

face is not reached by the melting front during the life of the experiment (Figure

2.1.1). The experiment begins with the material initially solid and at its melt

temperature. The nearby face temperature is raised as quickly as possible to the

value 77, and maintained at that value for all time. This may be done by pumping

a heat exchange fluid at temperature T at very high mass flow rate across the

face. The mathematical model of this process leads, as in §1.2, to the following:

MATHEMATICAL PROBLEM  (1-phase Stefan Problem for a slab melting
from the left) :
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Figure 2.1.1. Physical realization of the One-Phase Stefan Problem.
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Figure 2.1.2. Space-time diagram for the One-Phase Stefan Problem.

Find T'(x,t) and X () such that (Figure 2.1.2)

T, = o Ty, 0<x<X(t), t>0 (liquid) )
T(X(),t) = Ty, t20 (2a)
pLX(1) = =k T (X(1),t) ,1>0 (2b)
X(0) = 0, (materialinitially completely solid) 3)
TO,t) =Ty>T, ,t>0 )

The corresponding problem for a slab freezing from the left due to a tempera-
ture Ts < T, being imposed at x = 0 is formally obtained by replacing every sub-
script L by s and the latent heat L by —L in (2b).
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2.1.B The Neumann Solution

We introduce the similarity variable

X
== &)
d Vi’
and seek the solution in the form
T(x,t)=F(&), (6)

with F(§) an unknown function. Accordingly it is natural that we would seek the
interface location X (f) to be proportional to V, searching therefore for a constant
A for which

X(n=AV1t. M
Substituting into (1) and integrating we obtain
s
F(& = Bfo ¢ Touds 4 C = ByTa efly=)+ C ®)
for B, C constants, where
2 Z
af(o) = = J;e_xzds ©)

denotes the error function [ABRAMOWITZ-STEGUN] (see §1.2, also (28-35)
below). Conditions (4) and (2a) yield

T,-T 10)
C=T dB = —m L __ (
L A Nzag erf(Al2\ay)
Set
A

A= 2\/(7[’ AT, =T,-T,, an

and
AT
St = —Cl“-L—L = Stefan Number . (12)

Then the Stefan condition (2b) leads to an equation for A:
kL ATL _ CLATL _ StL (13)
pL \/EaL - \zL - '

Hence it is more convenient to express the solution in terms of 4. From (5-7, 11),

X(@t) = 24, (14)

leﬂ'zerf(l) =

and from (5-8,10)

X
erf(>—)
T(x,f) = Ty — AT, — 2%

erf(l) ' (13

with 4 a root of the transcendental equation
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Aeterf(A) = St /7. (16)

It is easily shown (PROBLEM 2) that the quantity f(2)= Ae*erfd is a strictly
increasing function of A 20, f(0)=0, Alim f(A) =+00, and therefore the graph
— o0

of y = f(A) intersects any horizontal line y = St, Az exactly once. In other words,
for each value of St; > 0, there exists a unique root, 1, of equation (16), Figure
2.1.3. Once A is found by solving the transcendental equation (16), the solution of
the Stefan Problem is given by (14-15). This is the classical Neumann solution to
the Stefan Problem (after F. Neumann).

Note that the uniqueness of the root A implies the uniqueness of the similarity
solution, i.e. that (14-15) is the only solution of the form (6-7). Is this the only
possible solution of (1-4)? The answer is Yes. The Stefan problem is a well-posed
mathematical problem (§1.2.C,§4.5 ), so it admits only one solution, Uniqueness
of the solution follows from the much more general uniqueness of a weak solution
presented in §4.4 .

2.1.C Dimensionless form

We observe in (16) that the value of the root A and hence also the solution,
depends on a single dimensionless parameter, the Stefan Number, defined in (12).
This is better brought out by undimensionalizing the problem itself. We introduce
the dimensionless length and time variables,

{ = ﬁ , Fo = Of—ZL t = Fourier Number, amn
x X
where x is any convenient length scale (note that there is no “natural” length in
this problem), and the dimensionless interface and temperature

_ X0 _T(x,0-T, (18)
I(Fo) = Pk u(¢, Fo) = AT,

where ATy, = Tp — T, as in (11). Then the Stefan Problem (1-4) takes the form
(PROBLEM 6)

Upo=tge, 0<§ <X(Fo), Fo>0 19)
u(X(Fo), Fo)=0, Fo>0 (20)
X(Fo)=— Sty ug(£(Fo), Fo), Fo>0 21)
L0)=0 22)
u(0,Foy=1, Fo>0, (23)

containing a single parameter, the Stefan number (12). For alternative dimension-
less forms see §3.1.

The Neumann similarity solution of the dimensionless problem ( 19-23) is
given by (PROBLEM 7)
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XFo) = 2ANFo, Fo20, 24)
{
erf( )
w(¢, Foy = 1— —2VFo_ 0S¢ <X(Fo), Fo20,  (25)

erf A

with A the root of the same transcendental equation

St
de¥erfl = Sk 29

3

2.1.D The root A versus the Stefan Number

As the only parameter present in the problem (19-23), the Stefan number St L
completely characterizes the melting process. We may think of it as representing
the ratio of the “sensible heat”, ¢, AT; to the latent heat L. That this is indeed a
correct interpretation will be shown in §2.2.G. Note that for a freezing process we
define the Stefan number by
_ CS(T m T S)
=0

To gain perspective, let us compute St for some materials in typical phase-
change processes.

EXAMPLE 1: Ice and Water. Ice and water are the solid and liquid phases of the
same material (H,0). Under ordinary conditions the temperature of ice is less
than the value T, = 273.15 K (0°C); upon warming, ice melts at this tempera-
ture with a latent heat L = 333.4 kJ/kg, and water is found at temperatures
above T',. Its specific heat is ¢;, = 4.1868 kJ’kg K. Due to the low value of the
ratio ¢y /L, the Stefan Number for melting of ice is typically no more than 1;
e.g. with T, = 37°C (body temperature), we have St; = 0.46.

In freezing of water, the specific heat of ice varies strongly with tempera-
ture (see (1) §1.2), typically in the range of 1. < ¢y < 2.09, which results in
even smaller Stefan numbers. For example, in a food freezing process, we may
have Tg=-20°C; taking cg=2 as representative value, we find
Sts = cs(T,, — T¢)/L =~ 0.12.

EXAMPLE 2: Copper. For copper T, = 1356.2 K and L = 204.9 kJ/kg. Suppose
that copper, initially at the temperature 1470 K, cools down to T, and solidi-
fies; for liquid copper the average specific heat is ¢, = .51 kJ/kg K, hence we
have St =.28. Suppose that the process includes cooling to room temperature;
for this temperature range a representative value of the specific heatis ¢g = .45
kl/kg K; thus the temperature drop AT in the Stefan number is approximately
1200 K and St = 2, 64.
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EXAMPLE 3: Melting of a Paraffin Wax. Paraffin waxes have high latent heat.
A typical paraffin wax is N- Octadecane for which & = 2.16 klkg K, L = 243
ki/kg and the melting temperature T,, = 301.2 K. Over a range of tempera-
ture AT = 100K, St = .89. Like water, paraffin waxes generally have low Ste-
fan numbers associated with their melting and solidification.

EXAMPLE 4: Melting of Silicon-Dioxide from Room Temperature. Silica (sili-
con dioxide) is a material with a high specific heat In fact, over a range of tem-
peratures from room temperature to its melting point at 7, = 1996 K the aver-
age specific heat is ¢ = 1.12 ki/kg K, while its latent heat is L = 158,3 kJ/kg.
Hence for a melting process from room temperature (298 K), St = 12.

These examples point to the following rule of thumb. For certain families of non-

metallic solids such as waxes, St is small; hence, the bulk of heat stored or

released from them is latent heat. For metals St is of the order 1-10 and so the
effect of sensible heat is at least as large as that of latent heat. For other materials
such as silicates St may be very large; the sensible heat will then dominate the
heat transfer process. Of course St depends on the temperature drop AT experi-

enced by the material during the heat transfer process (PROBLEM 14).

In general, the size of St will determine the suitability of a particular method
for analyzing a given heat transfer process. For large St the process will essen-
tially be one of pure conduction to which a variety of existing techniques are appli-
cable. For small 8t the conduction heat transfer process will be dominated by the
phase change.

Given a melting or freezing process, hence a Stefan number St, the transcen-
dental equation

reerf A = StNT (26)
is easily solvable by the Newton-Raphson iterative method [PRESS et al] using as

initial “guess” the value VS#/2. The latter is the approximate solution to (26)

when St =0, as we shall show in §2.1.F. Figure 2.1.3 displays the values of the

root 4 for each St in the range 0 < 8t < 5, found by the Newton-Raphson method.

For the convenience of the reader and easy reference we list here the basic
properties of the error function [ABRAMOWITZ-STEGUN]

2 _g 27
erf(z) = \/_7; J;) e ds
erf(0) = 0, erf(oo) = 1, (28)
erf(-z) = erf(z) 29
4 _ 2 2 (30
dz erf(2) = N7 >0
2 2 7 (3D)

erf(z) = )

2
— — + — o — + .
NN TR X
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[

0 1 2 3 4
Stefan Number

Figure 2.1.3. The root A of (26) vs the Stefan Number.

2

et 1
erf(z) = 1_2\/;(1~§z_2+m) as z — oo, (32)
complementary error function: erfe(z) = 1 —erf(z). (33)

Extensive tables of values appear in [ABRAMOWITZ-STEGUN], but many For-
tran libraries contain erf(z). A useful analytical approximation to the error func-
tion is given by the following relation:

1.128z, 0 <£z=£015
-0.0198 + z(1.2911 — 0.42627), 0.15<z<1.5
erfz = (34)
0.8814 +0.0584z , 1.5 £z52
1, 2 £z

In the same spirit, an effective approximation to the root A4 of (26) is given by
the expression

A = 0.706 VSt {1 — 0.21 (0.5642 §)*9B-0158t | (35)

This relation has less than a 1% relative error for 0 < St < 0. 83, a relative error
below 5% for 0.83 < St < 4.28 and below 10% for St < 4. 86.

2.1.E Example: Melting a slab of ice

A slab of ice is 10 cm thick. It is initially solid and at its melt temperature of
0°C. One face of the slab is insulated while from the initial moment ¢ = 0 of our
experiment, the other will be set at the warm temperature of 25 ° C and maintained
at this value for all time. We have placed three thermocouples in the slab, at
depths of 1 cm, 3 cm and 5 cm. We wish to know the time of melt of the portions
up to each thermocouple location, as well as the melting time for the entire slab,
We wish also to learn about the appearance of the time-temperature measurements
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provided by the thermocouples, as well as the appearance of the temperature distri-
bution as a function of position. The information that we seek is provided by the
relations (14) (for the melt front), and (15) (for the temperature distribution).
Before we hasten to compute, however, let us consider what we need to know and
what we are ignoring in our idealized melting model.

Firstly, this problem is not just a “textbook™ question, but one that appears in
various forms in a variety of applications. Three analogous cases that come to
mind are the thawing of food, the freezing or melting of the ground under a high-
way, and the freezing of ground around an earth-based heat exchanger for a heat
pump. Even if the basic geometry of the process is not slab-like, the slab geometry
may be a good approximation to it. Thus for a large portion of the melting process
of a rectangular region, the corners do not affect the process very much and it may
be considered as if uncoupled melting or freezing processes are taking place at
each face. Similarly unless the pipe radius is very small the freezing or melting
around a pipe is roughly speaking, slab-like.

The words “‘roughly speaking™ as used above are meaningful. While one may
strive for unlimited accuracy (and indeed, in the absence of that goal, a “rule of
thumb approach” will be questionable), nevertheless heat transfer process simula-
tion carries with it the burden of many sources of inaccuracy. These include the
lack of accurate thermophysical parameter values [TOULOUKIAN], the simplifi-
cations needed to apply the tools of mathematics to the goal of simulation, and the
simplifications needed to carry out experiments. The latter may arise, for example,
from the changes of density of a material under a change of phase, etc. (sce PROB-
LEMS 11-13). Besides, rough, first-cut approximations are informative, and, pos-
sibly, sufficient in some circumstances.

In our example we are ignoring the thermal effects of the change of density,
which is reasonable for small temperature gradients and small volumes. For the
only effect of a density change is to replace less dense ice by denser water, thus in
effect “pulling” the material towards the heating face. This action would induce
convection in the liquid region (which is negligible due to the smallness of the
region involved), while the solid remains at the melt temperature for all time. The
mechanical effect of this action would, of course, be to buckle the container (if it is
tightly sealed) at the far end, (.1 m), an effect with which we are not concerned !
In any case, density change effects will be discussed in §2.3.

The assumption of the initial temperature being at the melting point is difficult
to attain in practice but may be “nearly” reached. As we will see in §2.2, the esti-
mate of the melt-depth that we will obtain will be greater than that obtained when
the initial subcooling is indeed taken into account (see §2.2).

Since our process is only “one-phase”, we only need the relevant properties of
water which are: melt temperature= T, =0 °C , density= p=1 g/cm®, specific
heat = ¢, =4.1868 J/ g°C , conductivity = k; = 0.564 %107 J/cm s °C, thermal
diffusivity = @ = k; / pc;=1.347x107 cm?/ s, latent heat = L=333.4 Jlg. We
then compute the Stefan number St and obtain the melt front history X(¢) and the
temperature distribution 7'(x, #) from (14-16).
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The temperature drop for our process is ATy = Ty — T,, = 25°C, and thus the
Stefan number is St = ¢, AT;/L =0.314. Using the Newton-Raphson method of
PROBLEM 9 we find the root 4 of (16) to be 2=0.3777. A much simpler
method for solving the transcendental equation is to use relation (35), giving us the
value 1=0.3776. If you are really “in a hurry” to obtain a “back of the
envelope” estimate, the value of VS$1/2 is 0.3962 (see §2.1.F) with a relative error
of 4.9%, which is well within the needs of a reasonable “sizing™ estimate.

From (14), the time needed for the melting front to reach a given depth X is

ey = X2 1 (42%ay) . (36)

Let £ s 20, 5 and fhen be the times needed for the melt front X (t) to reach
the thermocouples at depths X =1, 3, § centimeters, and the right hand face at 10
centimeters, respectively. Substitution into (36) yields

they = 130144 sec = 0.36 hr
2. = 11T3sec = 3.25hr
By = 32536sec = 9.04 hr
Aen = 130144sec = 36,15 hr

L els

In Figure 2.1.4 we see the simulated thermocouple readings at the three depths
where they were assumed placed. Note that the curves are all convex downward,
and heading asymptotically to the wall value of 25 °C. Figure 2.1.5 is interesting.
It shows temperature distributions in the liquid at the times fl,,, 2, and B etts
that to all intents and purposes are linear in the spatial variable. This is a particular
case of the general “rule of thumb” that for small values of the Stefan number St,
the temperature in the phase change process is at any time essentially at its steady
state, (quasistationary, see (38) and §3.1) because of the quickness of the response
of temperature relative to the movement of the phase change front. In Figure 2.1.6
we see the moving front as a function of time.
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Figure 2.1.4. Melting of ice: temperature histories at three depths.
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Figure 2.1.5. Melting of ice: temperature profiles at three times.
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Figure 2.1.6. Melting of ice: interface location.

2.1.LF The case of small Stefan Number

For many materials of interest the specific heat is considerably smaller than the
latent heat so that the Stefan number for processes with moderate AT is of the
order 107 or less. Consider equation (26). For §t=0, A must also be small, and

2
by 31) A ferfd = 11r = A ; hence (26) is approximately — /12
y N ( pp Y i \/—

/ (37)
A= % for St =0.

It also follows that for 0< x< X(r)=2AJa,f the quantity \j———_—_ <A« 1,
whence, by (31),







44 CHAPTER 2

x 2 X
i =
© (2w/aLt) Nz Neag o x
effA 2 i X’
N7z
and the Neumann temperature (15) becomes
T(x,)=T, - AT, —, 0<x<X(), t20. (38)

xw’
For each ¢ > O this is linear in x, i.e. the temperature profile at each time is a
straight line joining the point (x =0, T = T;) with (x = X(¢), T = T,,). This is the
reason for the linear profile in Figure 2,1.5,
Note that (38) satisfies the steady-state equation T, = 0, while the Neumann
temperature satisfies T, = —7,. It is an approximate solution to (1-4), valid
Q

72
when St;,~0 and it is called the guasistationary approximation, the subject of
§3.1,3.2.

PROBLEMS

PROBLEM 1. (a) Formulate the 1-phase Stefan problem for a slab initially lig-
uid at 7, freezing from the left due to an imposed constant temperature
Tg<T,atx=0,

(b) Verify that the freezing problem results formally by replacing every sub-
script L by s and L by ~L in (1-4).

PROBLEM 2.Show that f(A)= Ae*erfi, 2> 0 , is strictly increasing
[f(4) > Oforany 1>01.

PROBLEM 3. Verify the Neumann solution, i.e. that (14-16) satisfy (1-4).
PROBLEM 4, For the case of freezing, in PROBLEM 1,
(a) Seek the similarity solution in the form: X =2Aagf,
T(x,)=F(), ¢&=x/Vt, and show that, with A satisfying
Ae¥ert = Stg INT

T(x,0) =Ty +[T,, ~ Tg] erf{ —

2‘\/“ st
(b) Verify that the solution for freezing results formally from the solution for

melting by the formal substitutions mentioned in PROBLEM 1 (b). Note
in particular, that the equation for A is the same.

PROBLEM 5. Show that (5) is the only possible similarity variable for the heat
equation (1) of the form & = x"1%.

YerfA, 0<x<X(@), t20,
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PROBLEM 6. Derive the dimensionless form (19-23) of the 1-phase Stefan Prob-
lem (1-4) for the variables (17-18).

PROBLEM 7. (a) Seck the similarity solution of (19-23) in the form
X(Fo)=2ANFo, w(¢{,Fo)=F(§), &= i, and show that this leads to
VFo

(24-26).
(b) By direct change of variables, obtain the solution in physical variables
(14-15) from the dimensionless solution (24-25).

PROBLEM 8. Repeat PROBLEMS 6,7 for the freezing case (see PROBLEMS
1,4).

PROBLEM 9. Write and implement a numerical scheme for solving (26) based on
the Newton-Raphson method

A
PR SO AC.ON N 7,3

JACHN
St
where f(A) = Aeterf 4 - N and produce a table of values of the root A for
7
0<St<5,8=.01,.02,

PROBLEM 10. Freezing of water: Repeat the work of §2.1.E for the freezing of
water initially at its melting point and subject to a face temperature of -25 ° C,
In this range, the properties of ice may be taken as: pg =091 g/en’,
cs =2 J/g K, kg =.023 J/em s K, hence ag =.0125 cm®/s. You may use the
approximation (35) for the root of equation (26), and the approximation of
(34) in the evaluation of the temperature function.

PROBLEM 11. A box has been constructed to house an experiment in melting
and freezing of materials. The experiments are to be “one-dimensional”, in
the sense that all but one of the box’s faces are insulated; the non-insulated
face is Aluminum through which Copper tubes carrying a cooling/heating
fluid pass. What problems can arise from the change of density of the mate-
rial that takes place when it melts or freezes? How would you deal with these
problems? What difficulties would arise in your modeling efforts as a result
of your handling of these problems.

PROBLEM 12. In the course of doing the experiments of the last PROBLEM you
encounter a material which in its liquid phase dissolves large amounts of air.
What may happen to your experiment?

PROBLEM 13. In the course of performing a melting experiment and recording
the temperature values read by a thermocouple held along a thin wire across
the box of PROBLEM 11, you find that the temperature value “‘jumped”
through a short temperature range discontinuously. The range begins at the
melt temperature, the density of the solid is greater than that of the liquid, and
the thermocouple and recording equipment are in order. What could have
caused the jump?.







