
Further Mathematical Methods 1–1

1 Integral Equations

We will be concerned with the following four main types of integral equation.

Volterra non-homogeneous

y(x) = f(x) +

∫ x

a

K(x, t) y(t) dt, x ∈ [a, b].

Volterra homogeneous

y(x) =

∫ x

a

K(x, t) y(t) dt, x ∈ [a, b].

Fredholm non-homogeneous

y(x) = f(x) + λ

∫ b

a

K(x, t) y(t) dt, x ∈ [a, b].

Fredholm homogeneous

y(x) = λ

∫ b

a

K(x, t) y(t) dt, x ∈ [a, b].

The function K(x, t) is the kernel of the integral equation.

A value of λ for which the homogeneous Fredholm equation has a solution which is not
identically zero is called an eigenvalue, and the corresponding non-zero solution y(x) is
an eigenfunction.

1.1 Relationship with differential equations

Example 1.1. Consider the differential equation

y′′(x) + λy(x) = g(x),
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where λ > 0 is constant and g is contonuous on [a, b]. Integrating from a to x ∈ [a, b]
gives

y′(x)− y′(a) + λ

∫ x

a

y(t) dt =

∫ x

a

g(t) dt.

Integrating again gives

y(x)− y(a)− y′(a)(x− a) + λ

∫ x

a

∫ u

a

y(t) dt du =

∫ x

a

∫ u

a

g(t) dt du.

Switching the order of integration gives

y(x)− y(a)− y′(a)(x− a) + λ

∫ x

a

(x− t)y(t) dt =

∫ x

a

(x− t)g(t) dt. (1.1)

Initial conditions Suppose y(a) and y′(a) are given. Then we have a Volterra non-
homogeneous integral equation with

K(x, t) = λ(t− x), f(x) = y(a) + y′(a)(x− a) +

∫ x

a

(x− t)g(t) dt.

Boundary conditions Suppose y(a) and y(b) are given. Then, putting x = b in (1.1)

y(b)− y(a)− y′(a)(b− a) + λ

∫ b

a

(b− t)y(t) dt =

∫ b

a

(b− t)g(t) dt,

so that

y′(a) =
1

b− a

(

y(b)− y(a) + λ

∫ b

a

(b− t)y(t) dt−
∫ b

a

(b− t)g(t) dt

)

.

On substituting into (1.1) and simplifying this gives the non-homogeneous Fredholm
equation

y(x) = f(x) + λ

∫ b

a

K(x, t) y(t) dt

where

f(x) = y(a)+
(x− a)

(b− a)
(y(b)−y(a))+

1

b− a

∫ x

a

(x−b)(t−a)g(t) dt+
1

b− a

∫ b

x

(x−a)(t−b)g(t) dt

K(x) =







(t− a)(b− x)

b− a
a ≤ t ≤ x ≤ b,

(x− a)(b− t)

b− a
a ≤ x ≤ t ≤ b.

�
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2 Fredholm Alternative

2.1 Integral equations

We consider the non-homogeneous Fredholm equation

y(x) = f(x) + λ

∫ b

a

K(x, t) y(t) dt, x ∈ [a, b].

2.1.1 A simple case

To motivate the statement and proof of the theorem we consider the simplest possible
degenerate kernel, that is, we set

K(x, t) = g(x)h(t), x, t ∈ [a, b],

where g and h are continuous on [a, b]. Then

y(x) = f(x) + λ

∫ b

a

g(x)h(t)y(t) dt = f(x) + λXg(x), (2.1)

where

X =

∫ b

a

h(t)y(t) dt.

We also need to consider the non-homogeneous transpose (adjoint) equation

y(x) = f(x) + λ

∫ b

a

g(t)h(x)y(t) dt = f(x) + λY h(x), (2.2)

where

Y =

∫ b

a

g(t)y(t) dt.

In addition, we have the two corresponding homogeneous equations

y(x) = λ

∫ b

a

g(x)h(t)y(t) dt = λXg(x), (2.3)
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and the transpose

y(x) = λ

∫ b

a

g(t)h(x)y(t) dt = λY h(x), (2.4)

Multiplying (2.1) by h(x) and integrating with respect to x gives

X

(

1− λ

∫ b

a

g(x)h(x) dx

)

=

∫ b

a

f(x)h(x) dx. (2.5)

Multiplying (2.2) by g(x) and integrating with respect to x gives

Y

(

1− λ

∫ b

a

g(x)h(x) dx

)

=

∫ b

a

f(x)g(x) dx. (2.6)

Now, if

1− λ

∫ b

a

g(x)h(x) dx 6= 0

then we can solve for X and Y and hence determine the solutions

y(x) = f(x) +
λ
∫ b

a
f(x)h(x) dx

1− λ
∫ b

a
g(x)h(x) dx

g(x)

of (2.1) and

y(x) = f(x) +
λ
∫ b

a
f(x)g(x) dx

1− λ
∫ b

a
g(x)h(x) dx

h(x)

of (2.2).

However, if

1− λ

∫ b

a

g(x)h(x) dx = 0

then neither (2.1) or (2.2) has a unique solution. Indeed, from (2.5), equation (2.1)
cannot have a solution unless

∫ b

a

f(x)h(x) dx = 0,

and, from (2.6), equation (2.2) cannot have a solution unless
∫ b

a

f(x)g(x) dx = 0,

Now every solution of (2.3) must be of the form y(x) = cg(x) for some constant c.
Furthermore, if

1− λ

∫ b

a

g(x)h(x) dx = 0



Further Mathematical Methods 2–3

and y(x) = cg(x) then

λX = λc

∫ b

a

h(t)g(t) dt = c,

so that y = cg(x) is a solution for any c. Similarly, if λ
∫ b

a
g(x)h(x) dx = 1, then

y(x) = dh(x) solves (2.4) for any d.

Thus we arrive at the following conclusion.

Fredholm Alternative
Either

1. There are unique solutions to (2.1) and (2.2);

or

2. The are nonzero solutions to (2.3) and (2.4). In this case there exists a solu-
tion to (2.1) if and only if the integral of f times the solution of (2.4) vanishes

(
∫ b

a
f(x)h(x) dx = 0). If a solution exists it is nonunique, since any nonzero solu-

tion of (2.3) can be added.

If the solvability condition
∫ b

a
f(x)h(x) dx = 0 is met then the general solution of (2.1)

is
y(x) = f(x) + cg(x).

2.2 Matrices

Preliminary observation about linear equations

Ax = b. (2.7)

A is an m× n real matrix, x is a vector in R
n, b in R

m. There is a solvability condition
as follows.

Proposition 2.1. The Fredholm Alternative for general matrices
Either

1. The system Ax = b has a solution x;

or
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2. The system ATv = 0 has a solution v with vT b 6= 0;

Thus Ax = b has a solution x if and only if vT b = 0 for every v in R
m such that ATv = 0.

Proof.

Ax = b has a solution x ⇔ b is a linear combination of the columns of A

⇔ b ∈ L(a1, · · · , an)
⇔ Lb ⊆ L(a1, · · · , an)
⇔ Lb⊥ ⊇ L(a1, · · · , an)⊥
⇔ every vector v with each aTi v = 0 also has bTv = 0.

Here ai are the columns of A; L(a1, · · · , an) = the linear span of a1, · · · , an.

To relate this to integral equations we need to consider square matrices. Then we can
write

Proposition 2.2. The Fredholm Alternative for square matrices
Either

1. The system Ax = b has a unique solution x;

or

2. There exist nonzero solutions to the system ATv = 0. In this case Ax = b has a
solution if and only if vT b = 0 for every v such that ATv = 0. If there is a solution
it is not unique, since any null vector of A may be added to it.

2.3 Integral equations: general case

We consider the Fredholm equation

y(x) = f(x) + λ

∫ b

a

K(x, t)y(t) dt, x ∈ [a, b] (F)
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along with the adjoint and homogeneous equations

y(x) = f(x) + λ

∫ b

a

K(t, x)y(t) dt, x ∈ [a, b] (FT )

y(x) = λ

∫ b

a

K(x, t)y(t) dt, x ∈ [a, b] (H)

y(x) = λ

∫ b

a

K(t, x)y(t) dt, x ∈ [a, b] (HT )

where f : [a, b] → R and the kernel K : [a, b]2 → R are continuous and λ is constant.

Theorem 2.1. The Fredholm Alternative For each fixed λ exactly one of the fol-
lowing two statements is true. Either

1. The equation (F) has a unique continuous solution. In particular if f ≡ 0 on [a, b]
then y ≡ 0 on [a, b]. In this case (FT ) also has a unique continuous solution.

or

2. The equation (H) has a finite maximal linearly independent set of, say, r contin-
uous solutions y1, . . . , yr (r > 0). In this case (HT ) also has a maximal linearly
independent set of r continuous solutions z1, . . . , zr and (F) has a solution if and
only if the solvability conditions

∫ b

a

f(x)zk(x) dx = 0, k = 1, . . . , r,

are all satisfied. When they are, the complete solution to (F) is given by

y(x) = g(x) +
r∑

i=1

ciyi(x), x ∈ [a, b],

where c1, . . . , cr are arbitrary constants and g : [a, b] → R is any continuous
solution to (F).

We sketch the proof of the theorem for the degenerate kernel

K(x, t) =
n∑

j=1

gj(x)hj(t), x, t ∈ [a, b].
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We may assume that each of the sets {g1, g2, · · · , gn} and {h1, h2, · · · , hn} are linearly
independent (otherwise express each element in terms of a linearly independent subset).
Then we have

y(x) = f(x) + λ
n∑

j=1

Xjgj(x), where Xj =

∫ b

a

hj(t)y(t) dt, (F1)

y(x) = f(x) + λ
n∑

j=1

Yjhj(x), where Yj =

∫ b

a

gj(t)y(t) dt, (FT
1 )

y(x) = λ

n∑

j=1

Xjgj(x), (H1)

y(x) = λ

n∑

j=1

Yjhj(x). (HT
1 )

Multiply (F1) by hi(x) and integrate over x to give

µXi −
n∑

j=1

aijXj = bi,

where

µ =
1

λ
, aij =

∫ b

a

gj(x)hi(x) dx, bi = µ

∫ b

a

f(x)hi(x) dx.

We may write this as

(µI − A)X = b (F2)

where X = (Xj) and b = (bj) are column vectors, A = (aij) is a matrix, and I is the
identity matrix. Similarly (FT

1 ) becomes

(µI − A)T Y =
(
µI − AT

)
Y = c (FT

2 )

where AT is the transpose of A and c = (cj) with

cj = µ

∫ b

a

f(x)gi(x) dx.

Similarly (H1) and (HT
1 ) become

(µI − A)X = 0 (H2)

(µI − A)T Y = 0 (HT
2 )



Further Mathematical Methods 2–7

Now we are back in the case of linear algebra. So, suppose that there are no nontrivial
solutions to (H2), i.e., that µ is not an eigenvector of A. Then, since µI−A is nonsingular,
there are unique solutions to (F2) and (FT

2 ), thus (1) holds.

On the other hand, suppose µ is an eigenvalue of A with eigenspace of dimension r
spanned by eigenvectors Xk, k = 1, . . . , r. Then the corresponding eigenspace of AT is
also of dimension r and spanned by Yk, k = 1, . . . , r, say. Then

yk(x) = λ
n∑

j=1

Xk
j gj(x), (2.8)

zk(x) = λ

n∑

j=1

Y k
j hj(x), (2.9)

form a maximal set of linearly independent solutions of (H) and (HT ) respectively. We
know (F2) has a solution if and only if

bTYk = 0, k = 1, . . . , r,

which is, noting from (2.9) that Yk corresponds to the solution zk(x) of (H
T ),

n∑

j=1

(

µ

∫ b

a

f(x)hj(x) dx

)(∫ b

a

gj(t)zk(t) dt

)

= 0.

Rearranging, this is

∫ b

a

(
∫ b

a

(
n∑

j=1

gj(t)hj(x)

)

zk(t) dt

)

f(x) dx = 0,

i.e. ∫ b

a

(∫ b

a

K(t, x)zk(t) dt

)

f(x) dx = 0,

which gives
∫ b

a

zk(x)f(x) dx = 0,

since zk is a solution of (HT ).

This method of proof can be used to solve (F) for degenerate kernels.

Example 2.1. Solve the integral equation

y(x) = f(x) + λ

∫ 2π

0

sin(x+ t)y(t) dt,

in the two cases
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(a) f(x) = 1;

(b) f(x) = x.

The equation may be written

y(x) = f(x) + λ

∫ 2π

0

(sin x cos t+ cosx sin t) y(t) dt

= f(x) + λX1 sin x+ λX2 cos x (2.10)

where

X1 =

∫ 2π

0

y(t) cos t dt, X2 =

∫ 2π

0

y(t) sin t dt.

Note that it is self-adjoint. Multiplying (2.10) by cos x (and sin x) and integrating with
respect to x gives

X1 − λπX2 =

∫ 2π

0

f(x) cos x dx, (2.11)

X2 − λπX1 =

∫ 2π

0

f(x) sin x dx (2.12)

since ∫ 2π

0

cos2 x dx =

∫ 2π

0

sin2 x dx = π,

∫ 2π

0

cos x sin x dx = 0.

This system is invertible if the determinant of the coefficient matrix
∣
∣
∣
∣

1 −λπ
−λπ 1

∣
∣
∣
∣
= 1− λ2π2 6= 0.

In this case the (unique) solution is

X1 =
1

1− λ2π2

∫ 2π

0

f(x) (cos x+ λπ sin x) dx,

X2 =
1

1− λ2π2

∫ 2π

0

f(x) (sin x+ λπ cos x) dx.

Since
∫ 2π

0

x sin x dx = −2π,

∫ 2π

0

cos x dx =

∫ 2π

0

sin x dx =

∫ 2π

0

x cos x dx = 0,

in case (a) we have X1 = X2 = 0 and therefore

y(x) = 1, x ∈ [0, 2π],
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while in case (b) we have

y(x) = x− 2πλ

1− λ2π2
(λπ sin x+ cos x) ,

provided λ2π2 6= 1.

When λ = 1/π the homogeneous version of (2.11)-(2.12) has solutions X1 = X2, while
when λ = −1/π it has solutions X1 = −X2. Thus the homogeneous version of (2.10)
has solutions

y(x) = c(sin x+ cos x) when λ = 1/π,

y(x) = d(sin x− cos x) when λ = −1/π,

where c and d are constants. Thus in order for solutions to exist we have the solvability
conditions ∫ 2π

0

f(x)(sin x+ cos x) dx when λ = 1/π,

and ∫ 2π

0

f(x)(sin x− cos x) dx when λ = −1/π.

In case (a) both conditions are met. Since y = 1 is a particular solution when λ = ±1/π,
the general solution in this case is

y(x) = 1 + c(sin x+ cos x) when λ = 1/π,

y(x) = 1 + d(sin x− cos x) when λ = −1/π,

where c and d are arbitrary constants.

In case (b) neither condition is met and there are no solutions when λ = ±1/π.

�

2.4 Linear ordinary differential equations

We are going to describe solvability conditions for linear ode’s analogous to those for
linear algebraic equations. We will do this for the 2nd order real scalar case, and give
the general version later.

Consider a differential operator

L[u] =
d2u

dx2
+ α(x)

du

dx
+ β(x)u = u′′ + αu′ + βu,

where α(x), β(x) are continuous real-valued functions on [0, 1]. We are going to consider:
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Primary problem

L[u] = b(x) on 0 ≤ x ≤ 1,

with 2 linear homogeneous boundary conditions on u and u′ at x = 0, 1.

Adjoint problem

L∗[v] = 0 on 0 ≤ x ≤ 1,

with 2 linear homogeneous boundary conditions on v and v′ at x = 0, 1.

The solvability result is that

Primary has a solution u ⇔
∫ 1

0
v(x)b(x) dx = 0 for every solution v of the Adjoint problem

The adjoint differential operator is

L∗[v] = v′′ − (αv)′ + βv.

This obeys the fundamental identity

∫ 1

0

(vL[u]− uL∗[v]) dx =

∫ 1

0

v(u′′ + αu′ + βu)− u(v′′ − (αv)′ + βv) dx

= [vu′ − uv′ + αuv]
1
0

= B(u, v),

a bilinear form in the boundary values of u and v. This bilinear form is non-singular.
B(u, v) is non-singular if B(u, v) = 0 for all v implies u = 0. Equivalently

B(u, v) =
(
v(1) v′(1) v(0) v′(0)

)







α(1) 1 0 0
−1 0 0 0
0 0 −α(0) −1
0 0 1 0













u(1)
u′(1)
u(0)
u′(0)







and B(u, v) is non-singular if the central matrix is non-singular. Then if u(1), u′(1),
u(0), u′(0) obey 2 linear homogeneous equations (the primary boundary conditions)
then we shall need 2 linear homogeneous equations on v(1), v′(1), v(0), v′(0) to force
B(u, v) = 0 (there are 2 degrees of freedom left). These conditions on v are the adjoint
boundary conditions.
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2.4.1 Examples of adjoints

Example 2.2. Suppose the primary boundary conditions are

u(0) = 0, u′(0) = 0 Primary boundary conditions.

(an initial value problem, IVP).Then

B(u, v) = v(1)u′(1)− v′(1)u(1) + α(1)v(1)u(1).

To force this to vanish (for arbitrary u(1), u′(1)) we must have

v(1) = 0, v′(1) = 0 Adjoint boundary conditions.

�

Example 2.3. Suppose the primary boundary conditions are

u(0) = 0, u(1) = 0 Primary boundary conditions.

(a boundary value problem, BVP).Then

B(u, v) = v(1)u′(1)− v(0)u′(0).

To force this to vanish (for arbitrary u′(0), u′(1)) we must have

v(0) = 0, v(1) = 0 Adjoint boundary conditions.

�

Example 2.4. Suppose the primary boundary conditions are

u(0) = u(1), u′(1) = 0 Primary boundary conditions.

(a generalised boundary value problem).Then

B(u, v) = −v′(1)u(0) + α(1)v(1)u(0)− v(0)u′(0) + v′(0)u(0)− α(0)v(0)u(0).

To force this to vanish (for arbitrary u(0), u′(0)) we must have

v(0) = 0, v′(1)− α(1)v(1) = v′(0) Adjoint boundary conditions.

�
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Easy part of proof If a solution u of the primary problem exists, and v is any solution
of the adjoint problem, then

∫ 1

0

(vL[u]− uL∗[v]) dx = B(u, v) = 0,

i.e. ∫ 1

0

vb dx = 0.

The harder part (if adjoint condition holds then a solution exists) requires 2 steps

1. Convert the ode problem to an integral equation by using a Green’s function.

2. Use the “Fredholm Alternative” theory of integral equations to write down solvabil-
ity conditions for the integral equation.

This is why the solvability condition for ode’s is sometimes called the Fredholm alter-
native.

2.4.2 Applications

Example 2.5. Primary:

u′′ = b(x), u′(0) = u′(1) = 0.

Adjoint:

v′′ = 0, v′(0) = v′(1) = 0.

There is a nontrivial solution of the adjoint, namely

v = 1.

Hence there is a solution of the primary if and only if

∫ 1

0

b(x) dx = 0.

�

Example 2.6. Find the asymptotic solution of the equation

ẍ+ (1 + ǫ)x = cos t, x(0) = x(2π), ẋ(0) = ẋ(2π), (2.13)
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as ǫ → 0. Suppose we try a perturbation expansion

x(t) ∼ x0(t) + ǫx1(t) + · · · . (2.14)

Substituting into the equation gives

(ẍ0 + ǫẍ1 + · · · ) + (1 + ǫ)(x0 + ǫx1 + · · · ) = cos t.

Expanding the brackets gives

ẍ0 + x0 + ǫ(ẍ1 + x0 + x1) + · · · = cos t.

Equating coefficients of powers of ǫ gives

ẍ0 + x0 = cos t, ẍ1 + x0 + x1 = 0, · · ·

Thus the leading-order problem is

ẍ0 + x0 = cos t, x0(0) = x0(2π), ẋ0(0) = ẋ0(2π). (2.15)

Note that this is self-adjoint. Is there a solution? The homogeneous version

ẍ0 + x0 = 0, x0(0) = x0(2π), ẋ0(0) = ẋ0(2π),

has solutions

x0 = cos t, and x0 = sin t.

Since ∫ 2π

0

cos2 t dt 6= 0

we conclude that (2.15) has no solution. This does not mean that (2.13) has no solution:
it means that our expansion (2.14) was incorrect. In (2.13) we are forcing with a term
that is almost resonant (it is resonant when ǫ = 0). Thus we expect the response to be
large. Let us try instead

x(t) ∼ 1

ǫ
x0(t) + x1(t) + · · · . (2.16)

Substituting into the equation gives

ẍ0 + x0 + ǫ(ẍ1 + x0 + x1) + · · · = ǫ cos t.

Equating coefficients of powers of ǫ now gives

ẍ0 + x0 = 0, ẍ1 + x0 + x1 = cos t, · · ·
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This time the leading-order problem is

ẍ0 + x0 = 0, x0(0) = x0(2π), ẋ0(0) = ẋ0(2π), (2.17)

with solution
x0 = A cos t+ B sin t,

where A and B are arbitrary constants, undetermined at this stage. To determine A
and B we need to consider the equation at next order. This is

ẍ1 + x0 + x1 = cos t,

or, using our expression for x0,

ẍ1 + x1 = (1− A) cos t−B sin t, x1(0) = x1(2π), ẋ1(0) = ẋ1(2π).

Now we use the Fredholm alternative again. There is a solution for x1 if and only if
the right-hand side is orthogonal to the solutions cos t and sin t of the homogeneous
problem. Multiplying by cos t and integrating gives

1− A = 0 ⇒ A = 1.

Multiplying by sin t and integrating gives

B = 0.

Thus the leading order solution is

x ∼ 1

ǫ
cos t.

�

Example 2.7. Consider the equation

ǫ
∂u

∂t
− ∂2u

∂x2
= u− u3 + ǫ, u′(−∞) = 0, u′(∞) = 0,

(with u(−∞) close to −1 and u(∞) close to 1). Consider an expansion

u ∼ u0 + ǫu1 + · · · .

Then, at leading order (equating coefficents of ǫ0)

−∂2u0

∂x2
= u0 − u3

0, u0(−∞) = −1, u0(∞) = 1.
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The solution is

u0 = tanh

(
x− x0(t)√

2

)

,

where x0(t) is arbitrary. This is the solution to the steady problem with ǫ = 0, but it
can be translated arbitrarily. To determine x0 we need to go to the next order. At first
order (equating coefficients of ǫ1)

∂u0

∂t
− ∂2u1

∂x2
= u1 − 3u2

0u1 + 1, u′

1(−∞) = 0, u′

1(∞) = 0.

Rearranging

−∂2u1

∂x2
− u1 + 3u2

0u1 = 1− ∂u0

∂t
= 1 +

dx0

dt

∂u0

∂x
. (2.18)

Now, since

−∂2u0

∂x2
− u0 + u3

0 = 0,

differentiating gives

−∂3u0

∂x3
− ∂u0

∂x
+ 3u2

0

∂u0

∂x
= 0.

Thus ∂u0/∂x satisfies the homogeneous version of (2.18). Therefore, by the Fredholm
Alternative, the right-hand side must be orthogonal to ∂u0/∂x:

0 =

∫
∞

−∞

(

1 +
dx0

dt

∂u0

∂x

)
∂u0

∂x
= [u0]

∞

−∞
+
dx0

dt

∫
∞

−∞

(
∂u0

∂x

)2

dx = 2+
dx0

dt

∫
∞

−∞

(
∂u0

∂x

)2

dx.

Thus
dx0

dt
= − 2

∫
∞

−∞
(∂u0/∂x)

2 dx
.

�

Example 2.8. Consider the equation for y(x):

y′′ + Ty + y3 = 0, y(0) = 0, y(1) = 0. (2.19)

Let us first consider the linearised equation:

y′′ + Ty = 0, y(0) = 0, y(1) = 0.

This is an eigenvalue problem: there are solutions only for particular values of T . After
imposing the boundary condition at x = 0 we have

y = sin
√
Tx.
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The condition at x = 1 then implies

sin
√
T = 0 ⇒ T = n2π2.

Then the solution is
y = A sinnπx, T = n2π2,

where A is arbitrary.

Let us see how the nonlinear term affects this calculation when we are close to the
bifurcation point T = n2π2. Returning to (2.19) let us pose an expansion

y = ǫy0 + ǫ3y1 + · · · , T = T0 + ǫ2T1 + · · · .

Then, equating coefficients of ǫ1:

y′′0 + T0y0 = 0, y0(0) = 0, y0(1) = 0,

so that
T0 = n2π2, y0 = A sinnπx,

as above. The coefficient A is determined by proceeding to next order. Equating coef-
ficients of ǫ3:

y′′1 + T0y1 + T1y0 + y30 = 0, y1(0) = 0, y1(1) = 0.

Substituting in for y0, T0 gives

y′′1 + n2π2y1 = −AT1 sinnπx− A3 sin3 nπx. (2.20)

Now the homogeneous equation is satisfied by sinnπx. Thus in order for there to be a
solution for y1, by the Fredholm Alternative the right-hand side must be orthoginonal
to sinnπx. Thus

0 =

∫ 1

0

AT1 sin
2 nπx+ A3 sin4 nπx dx =

AT1

2
+

3A3

8
.

since ∫ 1

0

sin2 nπx dx =
1

2
,

∫ 1

0

sin2 nπx dx =
3

8
.

As an alternative to evaluating the integrals we observe

sin3 nπx =

(
1

2i

(
einπx − e−inπx

)
)3

= − 1

8i

(
e3inπx − 3einπx + 3einπx − e−3inπx

)3

= −1

4
(sin 3nπx− 3 sinnπx) .
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Thus the right-hand side of (2.20) is

−AT1 sinnπx+ A31

4
(sin 3nπx− 3 sinnπx) .

We know that sin 3nπx is orthogonal to sinnπx. Thus we need the coefficient of sinnπx
to vanish, i.e.

−AT1 −
3A3

4
= 0.

Thus the amplitude is

A =

√

−4T1

3
.

Note that this means that the branch of solutions exists for T1 < 0, i.e. for T slightly
less than the critical value n2π2.

�

2.4.3 Generalisation

Suppose u is a vector of complex-valued functions, obeying a higher-order primary prob-
lem

Primary
L[u] = b(x) on 0 ≤ x ≤ 1,

with primary boundary conditions on u at x = 0, 1, where

L[u] =
k∑

r=0

Ar(x)
dru

dxr
=

k∑

r=0

Ar(x)u
(r),

where the Ar(x) are matrices, continuous in x, and b is a vector of continuous functions.
To state the adjoint problem we introduce some notation.

1. A∗ = conjugate of transpose of A [like A′ in matlab]

2. If v is a vector of continuous functions (same order as b) then define an inner product

〈v, b〉 =
∫ 1

0

v(x)∗b(x) dx =
∑

i

∫ 1

0

vi(x)bi(x) dx.

Then

Primary has a solution u ⇔ 〈v, b〉 = 0 for every solution v of the Adjoint problem
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Adjoint
L∗[v] = 0,

with adjoint boundary conditions on v at x = 0, 1.The adjoint differential operator is

L∗[v] =
k∑

r=0

(−1)r (A∗

rv)
(r) .

The fundamental identity is

〈v, L[u]〉 − 〈L∗[v], u〉 =

∫ 1

0

∑

r

(
v∗Aru

(r) − (−1)r(v∗Ar)
(r)u
)
dx

=

[
∑

r

v∗Aru
(r−1) − (v∗Ar)

′u(r−2) + · · ·+ (−1)r−1(v∗Ar)
(r−1)u

]1

0

= B(u, v).

This B is used to construct the adjoint boundary conditions exactly as in the basic case
considered earlier (B is a Hermitian form now). The easy part of the proof is just as
before.
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3 Calculus of variations

Start with a simple example: consider a plane curve joining two points (a, c) and (b, d)
and given by the smooth graph y = y(x).

y = y(x)

ba

c

d

Figure 1:

NB this disallows some slopes.

Define the functional

J [y] =

∫ b

a

(y′(x))2 dx.

NB J : V → R, where V is a suitable function space, e.g. the set C2[a, b] of twice
continuously differentiable functions y(x) defined on [a, b], satisfying y(a) = c and y(b) =
d [we won’t dwell much on the strict conditions on y(x)].

Now we ask: which function y(x) ∈ V minimises the functional J [y]?

To answer this, let y(x) be the desired extremal function which minimises J [y]. Then
any admissable perturbation about y(x) should increase J . So consider J [y+ ǫη], where
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η ∈ C2[a, b] with η(a) = η(b) = 0. Now

J [y + ǫη] =

∫ b

a

(y′(x) + ǫη′(x))2 dx

= J [y] + 2ǫ

∫ b

a

y′(x)η′(x) dx+ ǫ2
∫ b

a

(η′(x))2 dx.

We want this to have a minimum when ǫ = 0, and a necessary condition is

∫ b

a

y′(x)η′(x) dx = 0.

[Then the coefficient of ǫ2 ≥ 0 so it is a minimum not a maximum.]

Now integrate by parts to give

[y′(x)η(x)]
b
a

︸ ︷︷ ︸

=0 since η(a)=η(b)=0

−
∫ b

a

η(x)y′′(x) dx = 0.

We deduce that
∫ b

a

η(x)y′′(x) dx = 0

for all η ∈ C2[a, b] with η(a) = η(b) = 0.

Fundamental Lemma of Calculus of Variations (FLCV)
If

∫ b

a

η(x)φ(x) dx = 0 ∀η ∈ C2[a, b] with η(a) = η(b) = 0,

and φ is continuous, then

φ(x) ≡ 0 on [a, b].

Hence we find that the function y(x) that minimises J [y] satisfies

y′′(x) ≡ 0,

i.e.

y = Ax+ B = c+
(d− c)

(b− a)
(x− a),

which is a straight line from (a, c) to (b, d).
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φ = 0φ = V

xl0

Figure 2:

Possible motivations
(i) 1-d flow of electricity through a semiconductor. φ(x) = electric potential (voltage).

The energy dissipated (as heat) in the medium is given by

J [φ] =

∫ l

0

σ(x)(φ′(x))2 dx,

where σ(x) is the ocnductivity of the medium. So dissipation is minimised when φ
satisfies

d

dx
(σ(x)φ′(x)) = 0.

(ii) Drive from A to B in a given time T . Let your position at time t be x(t). Then
x(0) = a, x(T ) = b. Suppose there is a frictional resistance kẋ(t). Then the work done
against friction during the journey is

J [x] =

∫ T

0

kẋ(t)2 dt.

This suggests that driving at constant speed (ẍ = 0) is the most efficient.
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Class of problems

This simple example falls into a class of problems: to minimise or maximise a functional

J [y] =

∫ b

a

F (x, y(x), y′(x)) dx

(where F (x, y, y′) is given) over all y ∈ C2[a, b] satisfying y(a) = c, y(b) = d.

Let y(x) be an extremal function and perturb:

J [y + ǫη] =

∫ b

a

F (x, y + ǫη, y′ + ǫη′) dx,

where η ∈ C2[a, b] with η(a) = η(b) = 0. Expand using Taylor’s theorem:

J [y + ǫη] = J [y] + ǫ

∫ b

a

(

η
∂F

∂y
(x, y, y′) + η′

∂F

∂y′
(x, y, y′)

)

dx+O(ǫ2).

NB here we treat x, y and y′ as independent variables.

At an extremal we must have
∫ b

a

(

η
∂F

∂y
+ η′

∂F

∂y′

)

dx = 0.

Integrate by parts:

∫ b

a

η

(
∂F

∂y
− d

dx

(
∂F

∂y′

))

dx+

[

η
∂F

∂y′

]b

a
︸ ︷︷ ︸

=0 since η(a)=η(b)=0

= 0.

Since this is true for all η ∈ C2[a, b] with η(a) = η(b) = 0 by the FLCV we have Euler’s
equation (basic equation of Calculus of Variations):

d

dx

(
∂F

∂y′

)

− ∂F

∂y
= 0

NB d/dx not ∂/∂x.

Examples
(i) In our previous example F (x, y, y′) = (y′)2. This gives

d

dx
(2y′) = 0, i.e. y′′ = 0.
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(ii) Curve of minimum length joining (a, c) to (b, d). Length

J [y] =

∫ b

a

√

1 + (y′)2 dx,

subject to y(a) = c, y(b) = d. Then

F =
√

1 + (y′)2,
∂F

∂y
= 0,

∂F

∂y′
=

y′
√

1 + (y′)2
.

So Euler’s equation is
d

dx

(
∂F

∂y′

)

=
y′′

(1 + (y′)2)3/2
= 0.

Thus y′′ = 0 so y = Ax+ B. Linear (again). Thus

y(x) = c+
(d− c)

(b− a)
(x− a),

a straight line, as expected.

Extensions

Natural boundary conditions

This time let

J [y] =

∫ b

a

F (x, y, y′) dx

where y(a) = c but y(b) is NOT prescribed. Again let y(x) be an extremal of J [y] and
consider y + ǫη, where η(a) = 0 but η(b) is arbitrary. Then

J [y + ǫη] =

∫ b

a

F (x, y, y′) dx

∼ J [y] + ǫ

∫ b

a

(

η
∂F

∂y
+ η′

∂F

∂y′

)

dx+O(ǫ2).

At an extremal, we must have

∫ b

a

(

η
∂F

∂y
+ η′

∂F

∂y′

)

dx = 0

⇒
∫ b

a

η

(
∂F

∂y
− d

dx

(
∂F

∂y′

))

dx+

[

η
∂F

∂y′

]a

b

= 0.
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This is true for all η ∈ C2[a, b] satisfying η(a) = 0. In particular it is true for all
η ∈ C2[a, b] satisfying η(a) = η(b) = 0, so

∫ b

a

η

(
∂F

∂y
− d

dx

(
∂F

∂y′

))

dx+

[

η
∂F

∂y′

]a

b

= 0, ∀η ∈ C2[a, b] such that η(a) = η(b) = 0.

Then FLCV ⇒ Euler’s equation again. Now we are left with

[

η
∂F

∂y′

]a

b

= 0 = η(b)
∂F

∂y′

∣
∣
∣
∣
x=b

.

Since η(b) is arbitrary we must have

∂F

∂y′
= 0 at x = b.

This is the natural boundary condition applied at any boundary where no boundary
conditions are prescribed in advance.

Trivial Example
Minimise the length

J [y] =

∫ b

a

√

1 + (y′)2 dx

subject to y(a) = c but y(b) kept free.

Euler equation is

y′′ = 0 ⇒ y = Ax+ B.

Boundary conditions.

Imposed boundary condition

y(a) = c.

Natural boundary condition

∂F

∂y′
=

y′
√

1 + (y′)2
= 0 at x = b.

Thus y′(b) = 0. Thus A = 0 and y′ ≡ 0, i.e.

y = c

as expected.
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ba

c

d y(b) specified

y(b) unspecified

Figure 3:

Constraints

Suppose we have to minimise or maximise a functional

J [y] =

∫ b

a

F (x, y, y′) dx

subject to y(a) = c and y(b) = d [can easily generalise to natural boundary conditions]
and y has to satisfy the constraint

K[y] =

∫ b

a

G(x, y, y′) = C (constant).

Example
The minimal length curve enclosing a given area

min J [y] =

∫ b

a

√

1 + (y′)2 dx

subject to y(a) = c, y(b) = d and

K[y] =

∫ b

a

y(x) dx = C.
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ba

c

d y(b) specified

y(b) unspecified
Area = C

Figure 4:

Now if we perturb about the extremal y(x) then

K[y + ǫη] ∼ K[y] + ǫ

∫ b

a

(

η
∂G

∂y
+ η′

∂G

∂y′

)

dx+O(ǫ2)

∼ C + ǫ

∫ b

a

(

η
∂G

∂y
+ η′

∂G

∂y′

)

dx+O(ǫ2)

= C,

so η is not arbitrary. It has to satisfy

∫ b

a

(

η
∂G

∂y
+ η′

∂G

∂y′

)

dx = 0.

A trick to get around this problem is to add two perturbation functions, ξ and η
satisfying ξ(a) = η(a) = ξ(b) = η(b) = 0. Then

K[y + ǫη + δξ] ∼ K[y] + ǫ

∫ b

a

(

η
∂G

∂y
+ η′

∂G

∂y′

)

dx+ δ

∫ b

a

(

ξ
∂G

∂y
+ ξ′

∂G

∂y′

)

dx+O(ǫ2)

= C. (3.1)

The idea now is to fix the function ξ(x) and, for any subsequently chosen η(x), then
to determine δ as a function of ǫ in such a way that (3.1) is satisfied. Thus η will be
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arbitrary, but we have to choose δ(ǫ) in the right way. In order to be able to choose
such a δ we need

∂K

∂δ

∣
∣
∣
∣
δ=0,ǫ=0

=

∫ b

a

(

ξ
∂G

∂y
+ ξ′

∂G

∂y′

)

dx =

∫ b

a

ξ

(
∂G

∂y
− d

dx

(
∂G

∂y′

))

dx 6= 0.

Provided
∂G

∂y
− d

dx

(
∂G

∂y′

)

6≡ 0

(cases where this is zero are degenerate and uninteresting), we can certainly choose ξ so
that this is true. Let us choose such a ξ. Then, for any subsequent choice of η, we can
determine δ as a function of ǫ so that (3.1) is satisfied. Now

J [y + ǫη + δ(ǫ)ξ] ∼ J [y] + ǫ

∫ b

a

(

η
∂F

∂y
+ η′

∂F

∂y′

)

dx+ δ(ǫ)

∫ b

a

(

ξ
∂F

∂y
+ ξ

∂F

∂y′

)

dx

+O(ǫ2)

∼ J [y] + ǫ

∫ b

a

(

η
∂F

∂y
+ η′

∂F

∂y′

)

dx+ ǫ
dδ

dǫ
(0)

∫ b

a

(

ξ
∂F

∂y
+ ξ

∂F

∂y′

)

dx

+O(ǫ2).

Since y is an extremal we must have

∫ b

a

η

(
∂F

∂y
− d

dx

(
∂F

∂y′

))

dx+
dδ

dǫ
(0)

∫ b

a

ξ

(
∂F

∂y
− d

dx

(
∂F

∂y′

))

dx = 0. (3.2)

Similarly, integrating by parts in (3.1) gives

∫ b

a

η

(
∂G

∂y
− d

dx

(
∂G

∂y′

))

dx+
dδ

dǫ
(0)

∫ b

a

ξ

(
∂G

∂y
− d

dx

(
∂G

∂y′

))

dx = 0. (3.3)

Solving (3.3) for dδ/dǫ and substituting into (3.2) gives

∫ b

a

η

(
∂

∂y
(F − λG)− d

dx

(
∂F

∂y′
− λ

∂G

∂y′

))

dx = 0, (3.4)

where λ is a constant, defined as the ratio of two definite integrals involving the arbitrary
fixed function ξ:

λ =

∫ b

a

ξ

(
∂F

∂y
− d

dx

(
∂F

∂y′

))

dx

∫ b

a

ξ

(
∂G

∂y
− d

dx

(
∂G

∂y′

))

dx

.
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Since (3.4) is true for any η ∈ C2[a, b] satisfying η(a) = η(b) = 0 the FLVC implies that
F − λG satisfies Euler’s equation:

∂

∂y
(F − λG)− d

dx

(
∂

∂y′
(F − λG)

)

= 0.

λ is called a Lagrange multiplier and is fixed by satisfying the constraint

∫ b

a

G(x, y, y′) dx = C.

This can also be thought of (and is taught in many books as) introducing a new func-
tional (e.g. for C = 0)

Ĵ =

∫ b

a

F (x, y, y′)− λG(x, y, y′) dx

and minimising over y. Then λ is determined from the constraint
∫ b

a

G(x, y, y′) dx = C.

Simple Example
Minimise ∫ 1

0

(y′(x))2 dx

over all C2[0, 1] functions satisfying y(0) = y(1) = 0 and
∫ 1

0

y(x) dx = 1.

So F = (y′)2, G = y, giving

−λ− d

dx
(2y′) = 0

so that

y(x) = −λx2

4
+ Ax+ B = −λx(x− 1)

4
,

after imposing the boundary conditions. Then fix λ by imposing the constraint
∫ 1

0

y(x) dx =
λ

24
= 1.

Thus λ = 24 and
y(x) = 6x(1− x).
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Generalisation to higher derivatives

Suppose we want to minimise

J [y] =

∫ b

a

F (x, y, y′, y′′) dx

subject to y(a) = c, y(b) = d, y′(a) = m, y′(b) = n. Perturbing y to y+ǫη and linearising
in η gives

J [y + ǫη] ∼ J [y] + ǫ

∫ b

a

(

η
∂F

∂y
+ η′

∂F

∂y′
+ η′′

∂F

∂y′′

)

dx+O(ǫ2).

At an extremal we have
∫ b

a

(

η
∂F

∂y
+ η′

∂F

∂y′
+ η′′

∂F

∂y′′

)

dx = 0

⇒
∫ b

a

(

η
∂F

∂y
− η

d

dx

(
∂F

∂y′

)

+ η
d2

dx2

(
∂F

∂y′′

))

dx+

[

η
∂F

∂y′
+ η′

∂F

∂y′′
− η

d

dx

(
∂F

∂y′′

)]b

a

= 0

Thus the Euler equation is

∂F

∂y
− d

dx

(
∂F

∂y′

)

+
d2

dx2

(
∂F

∂y′′

)

= 0.

This generalises in the obvious way.

More dependent variables

Suppose we want to minimise

J [y, z] =

∫ b

a

F (x, y, y′, z, z′) dx

subject to y(a) = c, y(b) = d, z(a) = m, z(b) = n. We perturb and consider J [y +
ǫη, z + δξ]. Since we can vary η and ξ independently we get an Euler equation for each
variable:

d

dx

(
∂F

∂y′

)

=
∂F

∂y
,

d

dx

(
∂F

∂z′

)

=
∂F

∂z
.

These will be coupled in general.
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Pointwise constraints

Once we have more dependent variables we can consider pointwise constraints of the
form

G(y, z) = 0. (3.5)

The condition for stationarity is

∫ b

a

([
∂F

∂y
− d

dx

(
∂F

∂y′

)]

η +

[
∂F

∂z
− d

dx

(
∂F

∂z′

)]

ξ

)

dx. (3.6)

However, now η and ξ cannot be assigned arbitrarily because of the constraint (3.5).
Taylor expanding (3.5) gives

∂G

∂y
η +

∂G

∂z
ξ = 0.

Multiply by a Lagrange multiplier λ (which in this case is a function of x) and integrate
to give

∫ b

a

(

λ
∂G

∂y
η + λ

∂G

∂z
ξ

)

dx = 0.

Subtract this from (3.6) to give

∫ b

a

([
∂F

∂y
− d

dx

(
∂F

∂y′

)

− λ
∂G

∂y

]

η +

[
∂F

∂z
− d

dx

(
∂F

∂z′

)

− λ
∂G

∂z

]

ξ

)

dx.

Now suppose we choose λ so that the coefficient of η vanishes. Then since ξ can be
chosen arbitrarily its coefficient must also vanish. Thus

∂F

∂y
− d

dx

(
∂F

∂y′

)

− λ
∂G

∂y
= 0,

∂F

∂z
− d

dx

(
∂F

∂z′

)

− λ
∂G

∂z
= 0.

These two equations and (3.5) form three equations for y, z and λ. Note that again this
is the same as minimising F − λG.

More independent variables

Consider

J [φ] =

∫∫

D

F (x, φ, φx, φy) dx dy

where φ = φ(x, y), D is a region of the (x, y) plane, and φ satisfies φ = 0 on ∂D.
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φ = 0

x

y

Figure 5:

J [φ+ ǫη] = J [φ] + ǫ

∫∫

D

(

η
∂F

∂φ
+ ηx

∂F

∂φx

+ ηy
∂F

∂φy

)

dx dy

Now instead of integration by parts we need to use Green’s Theorem. From the identity

∇ · (ηf) = ∇η · f + η∇ · f ,

we find ∫∫

D

(∇η · f + η∇ · f) dx dy =

∫

∂D

η f · n ds.

Thus, with

f =

(
∂F

∂φx

,
∂F

∂φy

)

,

we find
∫∫

D

(

ηx
∂F

∂φx

+ ηy
∂F

∂φy

)

dx dy = −
∫∫

D

(

η
∂

∂x

(
∂F

∂φx

)

+ η
∂

∂y

(
∂F

∂φy

))

dx dy

+

∫

∂D

η

(
∂F

∂φx

nx +
∂F

∂φy

ny

)

ds.

Thus ∫∫

D

(

η
∂F

∂φ
− η

∂

∂x

(
∂F

∂φx

)

− η
∂

∂y

(
∂F

∂φy

))

dx dy = 0
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for all η so the Euler equation (or Euler-Lagrange equation) is

∂

∂x

(
∂F

∂φx

)

+
∂

∂y

(
∂F

∂φy

)

=
∂F

∂φ
.

This is now a p.d.e.

Hamiltonian

Suppose a function y(x) satisfies Euler’s equation

d

dx

(
∂F

∂y′

)

=
∂F

∂y

for some function F (x, y, y′). Note that

dF

dx
=

∂F

∂x
+

∂F

∂y

dy

dx
+

∂F

∂y′
dy′

dx

=
∂F

∂x
+

d

dx

(
∂F

∂y′

)
dy

dx
+

∂F

∂y′
d2y

dx2

=
∂F

∂x
+

d

dx

(
dy

dx

∂F

∂y′

)

=
∂F

∂x
+

d

dx

(

y′
∂F

∂y′

)

.

Therefore, if we define the Hamiltonian

H = y′
∂F

∂y′
− F,

then
dH

dx
= −∂F

∂x
.

If F does not depend explicitly on x (the problem is autonomous) then

∂F

∂x
= 0

and hence H = constant. In this case H is a conserved quantity (often identifyable as
energy).

Example
Suppose

F =
√

1 + (y′)2 + y2.
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The Euler equation is

d

dx

(

y′
√

1 + (y′)2

)

= 2y.

This is not very nice...but

H =
(y′)2

√

1 + (y′)2
−
√

1 + (y′)2 − y2 = − 1
√

1 + (y′)2
− y2 = constant,

gives a first integral of the o.d.e.

We can transform the Euler equation into canonical form by changing independent
variables. Think of F and H as functions of (x, p, q) instead of (x, y, y′), where

q = y, p =
∂F

∂y′
;

p is known as the generalised momentum. Then, then definition of H is

H = py′ − F

(where y′ is a function of x, p, q) and Euler’s equation is

dp

dx
=

∂F

∂y
.

So
∂H

∂y′
= p+ y′

∂p

∂y′
− ∂F

∂y′
= y′

∂p

∂y′

by the Chain rule, since p = ∂F/∂y′. But

∂H

∂y′
=

∂H

∂q

∂q

∂y′
+

∂H

∂p

∂p

∂y′
=

∂H

∂p

∂p

∂y′
.

Thus

y′ =
dq

dx
=

∂H

∂p
.

Also

dp

dx
=

∂F

∂y
=

∂

∂y
(py′ −H) = y′

∂p

∂y
− ∂H

∂y
.

But
∂H

∂y
=

∂H

∂p

∂p

∂y
+

∂H

∂q

∂q

∂y
= y′

∂p

∂y
+

∂H

∂q
.
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Thus
dp

dx
= y′

∂p

∂y
− y′

∂p

∂y
− ∂H

∂q
= −∂H

∂q
.

Thus
dp

dx
= −∂H

∂q

dq

dx
=

∂H

∂p
.

These are Hamilton’s equations. Note that

dH

dx
=

∂H

∂x
+

∂H

∂p

dp

dx
+

∂H

∂q

dq

dx
=

∂H

∂x
+

dq

dx

dp

dx
− dp

dx

dq

dx
=

∂H

∂x
.

Thus if
∂H

∂x
= 0

then H is conserved as expected.

Free boundaries

Minimise

J [y, b] =

∫ b

a

F (x, y, y′) dx

subject to y(a) = c, y(b) = d where b is unspecified.

J [y + ǫη; b+ ǫβ] =

∫ b+ǫβ

a

F (x, y + ǫη, y′ + ǫη′) dx

= J [y, b] + ǫ

{∫ b

a

(

η
∂F

∂y
+ η′

∂F

∂y′

)

dx+ βF (b, y(b), y′(b))

}

+O(ǫ2).

Taylor expanding the boundary condition

d = y(b+ ǫβ) + η(b+ ǫβ)

= y(b) + ǫ [βy′(b) + η(b)] +O(ǫ2)

= d+ ǫ [βy′(b) + η(b)] +O(ǫ2).

Thus

η(a) = 0, η(b) = −βy′(b).

At an extremal
∫ b

a

(

η
∂F

∂y
+ η′

∂F

∂y′

)

dx+ βF (b, y(b), y′(b)) = 0.
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Integrate by parts to give

βF (b, y(b), y′(b)) +

∫ b

a

η

[
∂F

∂y
− d

dx

(
∂F

∂y′

)]

dx+

[

η
∂F

∂y′

]b

a

= 0.

Hence

β

[

F − y′
∂F

∂y′

]

x=b

+

∫ b

a

η

[
∂F

∂y
− d

dx

(
∂F

∂y′

)]

dx = 0.

Thus FLCV gives us Euler’s equation and the extra free boundary condition

F = y′
∂F

∂y′
at x = b

(i.e. H = 0).

Example
minimise

J [y, b] =

∫ b

0

(
1

2
(y′)

2
+

1

2
y2 + 1

)

dx

subject to y(0) = 0, y(b) = 1. Euler’s equation is

y′′ = y.

Solving and applying the boundary conditions gives

y =
sinh x

sinh b
.

The extra free boundary condition is

1

2
(y′)

2 − 1

2
y2 − 1 = 0 at x = b.

This gives
cosh2 b

sinh2 b
= 3 ⇒ b = tanh−1

(
1√
3

)

.

CHECK

J

[
sinh x

sinh b
, b

]

=
1

2
coth b+ b.

This is minimised when

−1

2
cosech2b+ 1 = 0 ⇒ b = tanh−1

(
1√
3

)

.
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OR note that

H =
1

2
(y′)

2 − 1

2
y2 − 1 = constant (autonomous) = 0

by the free boundary condition. Hence

y′ =
√

y2 + 2.

Thus

x =

∫
dy

√

y2 + 2
= sinh−1

(
y√
2

)

.

Thus
y =

√
2 sinh x.

Then the boundary condition y(b) = 1 gives

b = sinh−1

(
1√
2

)

= tanh−1

(
1√
3

)

.
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4 Optimal control

Example
Suppose x(t) satisfies the differential equation

ẋ = u+ x,

where u(t) is our control variable. Suppose we want to vary u so as to control x. For
example, staring from x(0) = a we may wish to arrive at x(T ) = 0.

Is this possible? Yes! Just choose any function x(t) satisfying the initial and final
condition and then read off the required control as

u = ẋ− x.

However, in practice there may be bounds on the achievable u, e.g. −1 ≤ u ≤ 1. This
will leads to bounds on the initial condition for which the desired final condition is
achievable. In the example if u ≤ 1 then the maximum achievable value of x(T )− x(0)
occurs when

ẋ− x = 1 ⇒ x = −1 + Aet = −1 + (1 + a)et.

Then x(T ) = 0 gives a = −1+e−T . The problem is controllable only if a is greater than
this value.

We may wish to find the control which minimises a cost function. For example, the
work done agaist friction may be

∫ T

0

uẋ dt.

This we may want to define the cost function as

C =

∫ T

0

u(u+ x) dt

and ask for the control which achieves the goal and minimises C[x, u].

So, in general we may find the following optimal control problem:

minimise C[x, u] =

∫ T

0

h(t, x, u) dt,
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over all controls u(t) satisfying the control problem

ẋ = f(t, x, u), x(0) = a, x(T ) = b.

This now resembles a variational problem, with the control problem acting as a con-
straint.

Let us approach it by perturbing about the extremal functions:

C[x+ ǫξ, u+ ǫη] = C[x, u] + ǫ

∫ T

0

(

ξ
∂h

∂x
+ η

∂h

∂u

)

dt+O(ǫ2),

while

ẋ+ ǫξ̇ = f(t, x, u) + ǫ

(

ξ
∂f

∂x
+ η

∂f

∂u

)

+O(ǫ2)

ξ(0) = 0 = ξ(T ). Since ẋ = f(t, x, u) for an extermal function we need
∫ T

0

(

ξ
∂h

∂x
+ η

∂h

∂u

)

dt = 0,

for all ξ and η satisfying

ξ̇ = ξ
∂f

∂x
+ η

∂f

∂u
,

with ξ(0) = ξ(T ) = 0. We require ∂f/∂u 6= 0, otherwise the control u has no influence
on the problem. Then we can solve for

η =

(

ξ̇ − ξ
∂f

∂x

)/
∂f

∂u
,

and plug it into the integral
∫ T

0

(

ξ
∂h

∂x
+

(

ξ̇ − ξ
∂f

∂x

)
∂h

∂u

/
∂f

∂u

)

dt = 0.

As usual integrate by parts to give
∫ T

0

ξ

(
∂h

∂x
− ∂f

∂x

∂h

∂u

/
∂f

∂u
− d

dt

(
∂h

∂u

/
∂f

∂u

))

dt+

[

ξ
∂h

∂u

/
∂f

∂u

]T

0

= 0

Since ξ(0) = ξ(T ) = 0 the boundary term is zero. Hence we find that x and u have to
satisfy the o.d.e.

d

dt

(
∂h

∂u

/
∂f

∂u

)

=
∂h

∂x
− ∂f

∂x

(
∂h

∂u

/
∂f

∂u

)

.

This o.d.e. is coupled with the control problem

dx

dt
= f,

with x(0) = a, x(T ) = b. In principle two coupled first order o.d.e.s with two boundary
conditions gives a unique solution.
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Return to the example

f = u+ x, h = u(u+ x),

so that we get
d

dt
(2u+ x) = u− (2u+ x) ,

i.e.

2u̇+ ẋ = −(u+ x),

along with the control problem
ẋ = u+ x.

Adding gives
u̇+ ẋ = 0,

so that u+ x = A constant. Then ẋ = A, x(0) = a, x(T ) = 0 gives

x = a+ At, A = − a

T
,

so that

x = a

(

1− t

T

)

,

(constant velocity is the most efficient), and the optimal control is

u = a

(
t

T
− 1− 1

T

)

.

Note the existence of a first integral which facilitated the solution of this example. As
in the calculus of variations this will be generall true for autonomous problems. To see
this define the Hamiltonian

H(t, x, u) = f

(
∂h

∂u

/
∂f

∂u

)

− h.

Then direct differentiation and the chain rule leads to

dH

dt
=

(
∂h

∂u

/
∂f

∂u

)
∂f

∂t
− ∂h

∂t
,

so if the problem is autonomous, then

∂f

∂t
=

∂h

∂t
= 0

and H is conserved. In the example f = u+ x, h = u(u+ x) and

H = (u+ x)(2u+ x)− u(u+ x) = (u+ x)2

which is conserved as we found before.
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Example 2
Solve

ẋ = x+ u, x(0) = 0, x(1) = 1,

where u is chosen to minimise ∫ 1

0

u2 dt.

Now f = x+ u, h = u2, so the Hamiltonian is

H = (x+ u)× 2u− u2 = u2 + 2xu.

Completing the square

(u+ x)2 = H2 + x2 ⇒ u+ x = ±
√
H + x2.

Choose the plus sign (ẋ should be positive from the initial and final conditions) to give

ẋ =
√
H + x2.

Therefore

t =

∫
dx√

H + x2
= sinh−1

(
x√
H

)

.

Therefore
x =

√
H sinh t.

The final condition x(1) = 1 determines H, to gives

x =
sinh t

sinh 1
, H = cosech21, u =

e−t

sinh 1
.

4.1 The Pontryagin Maximum Principle

Form of problem : The state vector x of a system obeys

ẋ = f(x, t, u), x, f ∈ R
n,

where u is a control which we are free to choose subject to u(t) ∈ Uf (x(t), t), the set
of feasible controls which may depend on x and t. We have to choose u in such a way
as to maximise (or minimise) some “gain” function

∫ T

0

h(x, t, u) dt, h(x, t, u) ∈ R.

Boundary conditions: typically x(0) given; T and x(T ) may both be given, or T fixed
but x(T ) free, or x(T ) fixed but T free, etc. E.g. if x(T ) is given, T is free and h = 1 we

have a minumum time control,
∫ T

0
h dt = T = time to get between specified end states.
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Procedure (Pontryagin Maximum Principle) Introduce a vector p ∈ R
n and

define

H0(x, t, u, p) = h(x, t, u) + pf(x, t, u) ≡ h(x, t, u) +
∑

i

pifi(x, t, u).

(The “pre-Hamiltonian”.) Let u0(x, t, p) be the value of u in Uf (x, t) that maximises
H0(x, t, u, p), and let the Hamiltonian

H(x, t, p) = max {H0(x, t, u, p) : u ∈ Uf (x, t)} = H0(x, t, u0(x, t, p), p). (4.1)

Then the optimal trajectory is found by solving

ẋ = f(x, y, u0(x, t, p)) =
∂H

∂p
(if max is attained),

ṗ = −∂H

∂x

(system of 2n ode’s), subject to

(i) the given value of x(0),

(ii) given value of x(T ), or p(T ) = 0 if x(T ) is free,

(iii) given value of T , or H = 0 at T if T is free.

Notes

(i) Can replace max with min throughout.

(ii) p is called the dual variable vector, adjoint, co-state.

Example Suppose x ∈ R, ẍ = u, and u is restricted by −1 ≤ u ≤ 1, and from some
initial state you have to reach x(T ) = 0 in minimum time T . Take the start vector to
be (

x1

x2

)

=

(
x
ẋ

)

,

so the differential equations are

ẋ1 = x2,

ẋ2 = u,
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i.e.

f =

(
x2

u

)

.

We want to minimise

T =

∫ T

0

1 dt, so take h = 1,

and we have

(x1, x2) =

{
(x0, ẋ0) as t = 0,
(0, 0) as t = T.

Then
H0 = h+ pf = 1 + p1x2 + p2u,

where p1,p2 are conjugate to x1 and x2 respectively. Hence

H = minH0 = 1 + p1x2 − |p2|, u0 = −sign(p2).

Then

ṗ1 = −∂H

∂x1

= 0,

ṗ2 = −∂H

∂x2

= −p1.

We already see that

(a) the optimal trajectory will use u = ±1 only: “bang-bang” control.

(b) u changes between ±1 at most once on the optimal trajectory (since p2 monotonic
and u0 = −sign(p2).)

What does this mean in the phase plane?

trajectories with u = −1

x

ẋ

trajectories with u = +1

ẋ

x
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After the first switch, we must be on one of the dark paths. These are called the
switching locus. Hence we must follow one family until we hit the switching locus and
the the other until x = ẋ = 0.

apply u = −1

x

apply u = +1

ẋ

This is the “time optimal” control. (Can also find p1 and p2 etc by using the boundary
conditions, but using (a) and (b) and the phase plane is easier.)

Note u does not vary continuously on the optimal trajectory. There is a discontinuity
in ẍ where u changes sign. In some applications u may not be a real variable or vector
at all, e.g. sound insulation: a board is to be built of layers of different materials subject
to constraints on weight, thickness, cost, so as to minimise sound coming through. This
is optimal control

t → x,

u → what material used at x,

state → displacement/stress at x

(all assumed ∝ eiωt). Consequently we should prove the Pontryagin Maximum Principle
(P.M.P.) by a method not assuming and continuity in u.

“Proof” (Why the method usually works) First we prove the following
Lemma Suppose

g(y, z) = max{f(x, y, z) : x ∈ X(y)} = f(x0(y, z), y, z), x0(y, z) ∈ X(y).

Then
∂g

∂z
(y, z) =

∂f

∂z
(x0(y, z), y, z).
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Proof If f is differentiable

∂g

∂z
(y, z) =

∂f

∂z
(x0(y, z), y, z) +

∂f

∂x
(x0(y, z), y, z)

∂x0(y, z)

∂z
.

But x0 defined to be maximum implies that

∂f

∂x
(x0(y, z), y, z) = 0.

But this inequality holds even if f is not differentiable in x. We have

f(x0(y, z), y, z
′) ≤ g(y, z′)

with equality at z = z′. Hence the z′ derivatives are equal at z = z′, i.e. the required
result. Depends on z being in the interior of the set over which f is defined and on f ,
g being differentiable in z. Does not depend on any differentiability in x or y. �

Now, to prove the Pontryagin maximum principle we have to show that there is a p
defined on the optimal trajectory such that

(i) the optimal control u is the value maximising H.

(ii) ṗ = −∂H

∂x
on the optimal trajectory.

(ii) The boundary conditions hold.

Define

F (ξ, τ) = sup

∫ T

τ

h(x, t, u) dt starting from x(τ) = ξ,

(subject to ẋ = f , u ∈ Uf (x, t) etc.) Then F (x(0), 0) is the required maximum. Assume
f , f are continuous in (x, t) and F is C1. We are going to show that p = Fx (i.e.
pi = ∂F/∂xi) is the required function.

From the point (x, t) one possible control is to hold u constant (some value in Uf (x, t))
for small time δ, and then apply the optimal control from where you reach (x1, t + δ).
Here x1 = x + f(x, t, u)δ + o(δ), so h(x, t, u)δ + o(δ) + F (x1, t + δ) ≤ F (x, t). Subtract
F (x, t), divide by δ and let δ → 0:

h(x, t, u) + Fx(x, t)f(x, t, u) + Ft ≤ 0, (4.2)

for all u ∈ Uf (x, t). (i.e.

h(x, t, u) +
∑

i

∂F

∂xi

fi + Ft ≤ 0.
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If we integrate this inequality along any feasible trajectory (optimal or not) we have

∫ T

0

h(x, t, u) dt+ F (x(T ), T )− F (x(0), 0) ≤ 0,

i.e. ∫ T

0

h(x, t, u) dt ≤ F (x(0), 0).

(remember h ≥ 0.) This equation also clearly follows from the definition of F , since
F (x(0), 0) is the supremum of the left-hand side over all possible controls. However, this
definition of F means that there are controls that get arbitrarily close in this inequality.
For simplicity, assume equality is attained for some optimal control. Then, for the
optimal trajectory, equality holds in (4.2) for almost all t, and again for simplicity
assume it holds everywhere. So (4.2) says

H0(x, t, u, Fx(x, t)) + Ft(x, t) ≤ 0,

for all u, with equality for the optimal trajectory. Hence the optimal control does
maximise H0 for p = Fx [(i) is satisfied], and we also see that the maximised value is

H(x, t, Fx(x, t)) = −Ft(x, t). (4.3)

Now assume that H is C1 and F is C2. To derive the ṗ equation, first note that by (4.1)

H0(x, t, u0(x, t, p), p
′) ≤ H(x, t, p′),

with equality at p′ = p. Hence (by the previous Lemma) the p′-derivatives must agree
at p, so

f(x, t, u0(x, t, p)) = Hp(x, t, p). (4.4)

Then the derivative of p along the optimal trajectory is

ṗ =
d

dt
(Fx(x, t)) = Fxt(x, t) + Fxxf(x, t, u0(x, t, Fx)).

But by (4.3)

Fxt(x, t) = − ∂

∂x
(H(x, t, Fx))

= −Hx(x, t, Fx)−Hp(x, t, Fx)Fxx

= −Hx(x, t, Fx)− f(x, t, Fx)Fxx

by (4.4). So
ṗ = −Hx(x, t, Fx)



4–10 OCIAM Mathematical Institute University of Oxford

as required [(ii) is satisfied].

For the boundary conditions, note that if x(T ) is free then F (x, T ) ≡ 0 for all x, so
p = ∂F/∂x = 0 at T . If T is free but x(T ) = xT is fixed, then F (xT , T ) ≡ 0, so

0 =
∂F

∂t

∣
∣
∣
∣
T

= −H(T )

by (4.3). So (iii) is satisfied.

Note If max is replaced by min, all inequalities are reversed and the “proof” is still
OK.


