Further PDEs 1-1

1 Eigenfunction Expansions

1.1 Matrices

Consider the linear system of equations
Ax = b, (1.1)

where A is a real symmetric N x N matrix and x and b are column vectors of length
N.

The right eigenvectors e,, of A, with corresponding eigenvalues \,,, satisfy
Ae, = \,e,.

These are orthogonal and by an appropriate scaling may be made orthonormal, so that
e e, = Onnm

where

P 1 ifn=m,
Ml 00 ifn#£m.

is the Kronecker delta.

[Proof: consider el Ae, = el \,e, = (ATe,,)Te, = (de,,) e, = \nele,. If N\, # \n,
then el e, = 0. For eigenvalues of multiplicity greater than one choose an orthonormal
basis of the corresponding eigenspace. |

Proposition 1.1. We can write the identity matrix I as

N
I = Z ene’.
n=1
Proof.

N N

T _ _ _
E e.e, | e, = E e,0nm = €m = le,,.
n=1 n=1
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Since the vectors e, form a basis we conclude that

N
E e.el =1.
n=1

O
Proposition 1.2. We can write A as
N
A= Z /\nenez.
n=1
Proof. Again, we consider the action of the matrix on the basis vectors e,,.
N N
(Z Anene£> e, = Z M€nOnm = Am€m = Ae,,.
n=1 n=1
O

Proposition 1.3. We can write A™! as

Proof. We left multiply equation (1.1) by el:

T pe — oT
e, Ax =e,b

= (ATe,)'x =elb
= (Ae,)"x =elb
= Melx =elb
If A\, # 0 then
1
e,X = )\—neZb

Now

Since b is arbitrary the proposition is proved. [l
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This is just another way of writing

MO 0 c1
0 A 0

A:(el‘ ‘eN) '2 : :EAET,
0 0 Ay el

AT = (BAET) ' = (E")'AT'ET = EAT'ET

AL 0 -0 €1

0 X' - 0 N
(e fev) | T ,

0 0 A e_T

Note
E'E=FEE" =1.

Exercise (problem sheet 1) Suppose A\; = 0, A\, # 0 for n # 1. Show that when
el'b # 0 there is no solution to Ax = b, while when e!b = 0 the solution is

N el
X:Z 3 b + aey,

where « is arbitrary.

1.2 Functions

Consider the Sturm-Liouville problem
Lu=f

for functions u(x) with x € [a,b] with suitable boundary conditions, where L is self-
adjoint, so that

b b
/ v(x)Lu(x) de = / u(z)Lv(z) dz.
Let us use the notation

(u,v) = /ab u(z)v(z) dz.
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Sturm-Liouville problems have complete sets of orthonormal eigenfunctions ¢, (x) such
that

Lon = Anon
and
(On) Pm) = Onim-
[Why?
(Om, Lon) = An{dm, On) = (Lpm, n) = Am(dn; Pm)-
Thus

(/\n - )\m)<¢n7 ¢m> = 07
so that A\, # A, implies (¢, ¢,,) = 0.]

How do we approximate a function f using the eigenfunctions ¢,? Let us minimise

If - Zamr? (f - Zam,f Zam
= (f, f - Z%% Z“i i, f — Zaj¢j>
- Zaj fr03) Zaz O f) + D D (i 5)
—Hf|!2—22041f¢@ +Za j
Now complete the square on «a; to give
1 = D cidill” = 3 (i = (£,60)° + [If1I* = 3_(f,00)*,

The only dependence on «; is in the first term, which is minimised by taking a; = (f, ¢;).

This leaves
0<[1f = el = [IFII* = D_{F,00)*.

i

This gives Bessel’s inequality:

1112 =) (i)
If the ¢; are complete then ||f — Y, a;¢;||* = 0, giving Parseval’s theorem:

1117 =D _{f, i)™

7
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Thus we have

Zam =D _{f:000i()
—Z/f )6u(€) décn( /(Z@ )ou(o ) &) de.

But this means that
> 0i&di(x) = oz =€),
This is the equivalent of
Z e.el =1
for the case of matrices.

Now we can solve the linear equation
Lu=f
(with the same boundary conditions as before). Taking the inner product with ¢,, gives

<¢n7 f> = <¢n>Lu> = <L¢n>u> = )‘n<¢n>u>'

Therefore
(Dn, [)

<¢na u> = \,

provided A, # 0. Then

w= Y (60 uon = 3 10 S

Thus n |
u(z) = fj N ab 6n(€) £(€) dEbn(a)
_ /ab (i ¢n<§>fn<x>) Fe)de
-/ G )£(€) de
where
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Thus is the equivalent of

for real symmetric matrices.

We should not be surprised by this expression for G. For any function u = >~ | a, ¢,

with a,, = (u, ¢y,),
Lu = Z QnAn¢n7
n=1

=L (i Oén)\nqsn> = f: an}‘iqsn’
n=1 n=1
and so

(k)u = Z an)\z(bm
n=1

for any k. Thus, if g(z) is a polynomial we can define the operator g(L) by

L)u = Zang()‘ )¢

If g is analytic the same definition is reasonable. Thus the inverse operator g(L) = L™}
is

L u= i anx\;lgzﬁn.
n=1

Thus
0o 00 b b ©©
L =S oA b =3 ( F€)6u(6) d&) 2ol [ 5n 2l gy
n=1 n=1 —a n 4 p=1 n
Example 1.1. Waves on a string Consider
0? 1 0%u
8_:;; ~2or = = f(x) cos(wt)

for 0 <z <m t >0, with u(0,t) = u(m,t) = 0. Try u(z,t) = U(z)cos(wt) with
U(0) = U(w) = 0. This gives the forced Helmholtz equation

ev o,

42 +kU=f



Further PDEs 1-7

with k = w/c € Z. Thus

d*U

LU =5+ KU with U(0) = U(r) = 0.
The eigenfunctions are
2 .
On(z) = \/;Sln(nx),
with eigenvalues
A = k% —n?, forn=1,2,...

Thus the Green’s function is

Gla,€) = Z¢n P _%i n(nz smn&)

and
- %; ( — /0 sin(né) f(&) df) sin(nx).
If we solve
LG =06(x = &), G(0)=G(m) =0
we find

_sin(kx) sin(k(m —§))
- ksin km
G(z,8) = _sin(k) sin(k(r — x))
ksin km

0<¢é<ax<m
(see problem sheet 1). How can we relate these two expressions for G?7 Consider

sin(kz) sin(k(m — &))

F(k)=—
(k) ksin km

for x < ¢ as a function of k. A general complex function F'(k) with poles but no branch
points can always be written

res(F, ky)

F(k) = —

+ entire function (1.2)

where res(F, k,) is the residue of F' at the pole k,. In this case our F'(k) has simple
poles at k = £1,42,... and a removable singularity at & = 0. To find the residue at
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k =n put k =n + ¢ and expand for € small

_sin((n + €)z) sin((n + €) (1 — §))

F(n+e) =

(n+€)sin(n + €)m
_sin(na) sin(n(r — §))
n(—1)"er

N sin(nzx) sin(ng) .

nme

Thus
sin(nx) sin(ng)

res(F,n) =

nm

To eliminate the entire function in (1.2) we need to estimate the behaviour of G as
|k| — oo. We find
1 om®)egm®m|r-8)  omk)|—¢)

~ = —0
2k| elm®x 2]

|Gl

as |k| — oo since z < ¢. Thus the entire function is zero by Liouville’s theorem.
Therefore, for z < &,

G, €) = Z sin(nx) sin(ng) Z (sin(nm) sin(ng)  sin(nz) sin(n§)>

= nr(k —n) — nr(k —n) nr(k +n)

- i Sm(mqiim(nf) ((k: i n)  (k i n))

n=1

sin(nx) sin(n 2n 2 o= sin(nz) sin(n
(na) sin(ne) - 2y Sabesinint)

nm k2 —n2 k2 —n? ’

I
WK

n=1

3
Il
i

as required.
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2 Fourier Transform

2.1 Continuous spectrum

Consider the modified Helmholtz equation
d?U

with U bounded as |z| — oo. The corresponding eigenvalue problem is
The bounded solutions are '
U = elkx
with corresponding eigenvalue A\(k) = —(k* + a?). In this case k is not limited to a

discrete set but can take any real value.

Let us solve equation (2.1) by Fourier transform. Define

U(k) :/ Ul(x)e* da.
Then, applying this operator to equation (2.1),
—k*U — ?U = f.
Thus .
R (2.2)
k? + o2
Inverting the transform gives
_ 1 = - —ikx _ 1 OO f(k) —ikx
U(z) = /OOU(k:)e dk—27T N _(k2+&2)e dk

2m J_
_ 1 R L ke —ikz
A T

-/ " G0 f(6) de

—0o0
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where

1= etk ¢k
G(z,8) = %/ (kQ—l—on dk = /

e—ik’x

This is the continuous version of

Gz, &)= —¢"(§;f"(x),

in which the sum over n becomes an integral over k.

where

and ME) = —(k* + a?).

The Fourier transform is an expansion in the eigenfunctions

e—ika:

of d/dx with eigenvalues —ik.

Note that it is possible for an eigenvalue problem to have bother a continuous and
discrete spectrum. For example, the Schrédinger equation

(—dd—22+V( ))\p:w

with V(z) <0 and V(z) — 0 as |z| — oo has a discrete spectrum with ¥, ~ e *l7l ag
|z| — oo and a continuous spectrum with Wy ~ e as |z| — oo.

2.2 Fourier Transform

We saw above that the Fourier transform is an expansion in the eigenfunctions

eflkac

V21

of d/dz with eigenvalues —ik. The pure imaginary eigenvalue ensures the eigenfunctions
are bounded as r — Fo0.

or(x) =

The forward Fourier transform is

= /_Z f(x)e* dx.
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The inverse Fourier transform is

f(z) = L / h F(k)e ** dk.

21 J_o

Putting these two together gives

f0) = [ are [Tageerie = [T (o [T emear) peae

0o . oo —ikx Lik€ S
5@_@_%/_ e =8 qf; — i eﬁj—%dk—/_ Or(2)p (&) dk.

Note that the inverse Fourier transform is really an eigenfunction expansion in the
eigenfunctions of d/du:

f(z) = % /_OO F(k)e % dk = /_Oo Jj/(gd)k(x) dk

where )
e—lk:c

Compare to

F@) = (f 6n)n()

n

in the discrete case. In fact, to complete the correspondence, we should use the sym-
metric Fourier transform, in which the forward Fourier transform is

) = o= [ t@eao= [ f@e i

and the inverse Fourier transform is

o0

1 > 2 —ikx _ n
f(x):E/OOF(k)e k dk;_/ F(k)pw () dk.

—0o0

2.2.1 Properties of Fourier Transforms

If g(x) = f'(x) then

o0

Gt = [ f@pet de = [F@e], ik [ f(o)el do = —ikF (R

—00
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Thus differentiation becomes multiplication by —ik (the eigenvalue of d/dx).

If g(x) = f(x — a) with a constant then
G(k) = / flz —a)e* do = / f(z)e*e2) dz = e*a (k)

by putting x = a + z. Thus translation becomes multiplication by a phase.
Conversely, if g(z) = €'%® f(z) then
G(k) = / ' f(x)e” do = / f(2)e!* 9% de = F(k + a).

Theorem 2.1. Convolution Theorem. If

then

Proof. We can use the shift formula:

H(k) :/_: (/_Zg(w—y)f(y) dy) ™ dz

= [ ot i) swran

-/ T MG(R) f(y) dy = GR)F(R).

—00

Theorem 2.2. Plancharel Theorem Equivalent to Parseval for sums.

/Oo |f(x)]? dz = L |F(k)|? dk.

2.3 Examples

Example 2.1. Transform of a delta function.

5(z) = /_ N §(x)e™ dx = 1.

o0
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The inverse transform is

Similarly
_ R 1 o0 .
1= / e do = 216(k), 1=— 2ré(k)e * dk.

—00

Example 2.2. Consider f(z) = e~®*l. The Fourier transform is

0 ' 0o . (a+ik)z 7Y (—a+ik)z ] >®
F(k’) — / eaccelk:r: dz +/ e—axelkm dr = € : + e—
0 a+ik | _ —a+ik |,

1 1 B 2a
a+ik —a+ik a2+ k%

The inverse transform, for x > 0 say, is

fa) 1 /°° 2ae~ ke k.

2w ) a4+ k?
Since Re(—ikz) = Im(k)x for z real, e'** is exponentially small in the lower half plane
if x > 0. Close the contour with a large semi-circular arc in the lower half-plane. The
contribution from the circular arc tends to zero as the arc tends to infinity (Jordan’s
lemma). We are left with the residue contribution from the pole at k = —ia, which we
are circling clockwise. Thus, for z > 0,

1 2ae %%
p— —2 ‘_ p— 7041.
f(@) Moy g ©

For z < 0 close with a semicircular contour in the upper half plane to get

Together f(r) = e~*l as expected.
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2.4 Laplace Transform

Suppose we have a function which is only defined for ¢ > 0. If we do not care about
t <0 we may set f =0 for £ < 0. The Fourier transform of f is then

Fk) = /0 e f (1) dt

with inverse

f(t) ! /OoeiktF(k)dk.

:% N

If F(k) exists for real k it is analytic in the upper half k-plane. Now we make the change
of variables k = ip with p > 0 we find

F(ip) = /0 T e () dt

with inverse

f(t) = 2 / ety dp= = [ ' F(ip)dp.

B % ico B 2_7“ —ioco
The quantity F(ip) is the Laplace transform of f. In fact the Laplace transform also

exists for functions which grow at infinity (not too quickly), for which the Fourier trans-
form does not exist (for real k). In general, writing F'(ip) = f(p), we have

o= [Ceminan =55 [ " i) d,

0 271 Jeioo

where ¢ is such that the inversion contour lies to the right all all sigularities of f in
the complex plane. This ensures that for ¢ < 0 the contour can be deformed to infinity
giving f =0 for t < 0.

Combining the transform and its inverse gives

£(t) = % /f: o ( /0 e () dT> dp

0o 1 c+ico ()
— — Pi=7) 4 d
/0 (271 /c—ioo ‘ p) fir)dr

giving the resolution of the identity as

1 c+ioco
Mr—t)= —/ P dp.

271 J oo
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3 Hankel transforms

3.1 Discrete eigenfunction expansion

3.1.1 Eigenfunctions

Consider axisymmetric eigenfunctions of the 2d Laplacian in plane polar coordinates

d*v  1du
T\ 1
dr?2 = rdr “ (3.1)
with u = 0 (say) on 7 = R. If we write A = —k? then the solutions to the equation are

the Bessel functions of order zero,
Jo(kr) and Yo(kr).
Since Yj is unbounded at the origin, we must have
u = cJo(kr).
The eigenvalues are determined by imposing the boundary condition
Jo(kR) = 0.

This equation has roots k, where 0 < k; < ko < k3 < ---.
The Sturm-Liouville form of (3.1) is

d du
L = — e = = — 2 .
U T (r dr) ATU k*ru

The r on the RHS means that this doesn’t quite fit into the framework of §1.2: there
is an extra weight function r which needs to be included in the integrals. With (-, )
defined as before

— k2 (U, 7)) = (U, Ltty) = (L, ) = — K2 (T, Uy,).
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Thus, if n # m then

R R
/ U Upr dr = 0, ie. / Jo (k1) Jo(kpr)rdr = 0.
0 0

To normalise the eigenfunctions we evaluate

R R2
/ Jo(kpr)?rdr = 7J1(k5nR)2.
0

Thus
W — Jo(k’n’f’)ﬂ
" Rl (k.R)|

satisfies

R
/ Uy Uy, AT = Opy,.-
0

We can now expand a given function f in terms of these eigenfunctions as

o0

fr) = Z Catin(T)

n=1

where .
e = /0 r F(ryun(r) dr.
Then
:;</ ()dp> / (Zpun Un(r )f(ﬁ)dp,
so that
S~ palr) = - L) — ) (:2)

Note that this implies that

irun(p Z np JO k ) =d(p—r)

n=1 =1

also.
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3.1.2 Inhomogeneous equation

Now we can solve
— 4+ —-——=f, (3.3)

with « = 0 on r = R via an eigenfunction expansion. Writing

= Z At (1), f(r)= Z Crtin (1)

n=1 n=1
gives

[o.¢] o0

Z —kianun Z Cnllp (T

n=1 n=1
Now multiply by ru,,(r) and integrate to give

2 ~ ¢

—k. am = cm ie. Ay, = —é

Thus

Inserting our expression for ¢, gives
S f Un ()
u) =3 (= [ orohmidp)

. / > () i)

where the Green’s function

- run(r)un(p) (7 U (r)un(p) L 2rdo(kar) Jo(knp)
Glrp =2~ N Y R (kR)]?

n=1 n=1 n=1

I
o\
=y
Q
—
=
=
S
S—
(oW
e}

3.2 Hankel transform

Instead of a finite disc, now consider an infinite domain. We replace the discrete spec-
trum of eigenfunctions Jy(k,r) by a continuous spectrum Jo(kr) with continuous eigen-
value k.
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The resolution of the identity is
l/ ke Jo(kr) Jo(kp) dk = 5(r — p). (3.4)
0

This is the continuous version of (3.2). This resolution of the identity tells us what the
transform pair is. The Hankel transform is

u(k) = /OOO ru(r)Jo(kr) dr

with the inversion given by

Together we have

u(p) = /000 (/000 ru(r)Jo(kr) dr) kJo(kp) dk = /000 (/000 krJo(kr)Jo(kp) dk‘) u(r) dr

giving (3.4).

To solve the inhomogeneous equation

+-—=1 (3.5)

with u decaying at infinity, apply the Hankel transform. On the left-hand side this gives

© /d?u 1du < d du
— - kr)dr = — | r— kr)d
/0 (dr2 + Td?“) rJo(kr) dr /0 o (Tdr) Jo(kr)dr

=— / k*ur Jo(kr) dr = —k*a(k)
0

on integration by parts, where we have used the fact that Jo(kr) satisfies (3.1):

4z 1d )

This is why the Hankel transform is the natural transform for this operator. Thus the
transformed equation is

~

~Ri(k) =
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1.e. .
X /
Compare to (2.2). Inverting gives
U _k:

Inserting the expression for f we can try and find the Green’s function

u(p) = /OOo _i];QkJo(kp) dk = /OOO (/OOO ru(r)Jo(kr) dr) kJ_ochm dk

. /OOO (/OOO 7”“‘]0(’“_2;](’(]“”) dk) u(r) dr

- /0 " Gl ryulr) dr.

where

< rkJo(kr)Jo(kp) < rkJo(kr)Jo(kp)
Glp,r) = /0 AR g = /0 S (3.7)

Unfortunately in this case this doesn’t quite work because the resulting integral doesn’t
exist. This is associated with the fact the Green’s function behaves like logr at infinity
(see example 3.2).

3.3 Examples

Example 3.1. Green’s function for modified Helmholtz eqn.

The Green’s function for the modified Helmholtz equation in 2d satisfies
V3G — ®G = —§(2)d(y)
with G decaying at infinity. The solution is axisymmetric, giving

eq 1da
ST 20 =
dr? + r dr @ o2mr

where 6,.(r) is the half-range radial o-function:

1://5(x)5(y)dxdy:/02ﬂ/ooo 5§iz)rdrd8:/oooér(r)dr.
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Taking a Hankel transform gives

C2A 2 A oor<7’) __J0(0>__i
kG — oG = /0 e rJo(kr)dr = 5 = T3
Thus
G 1
N 2 (k2 + a2)'

Inverting gives

1 * kJo(kr) 1

27 /0 k? + o2 dk 27 o(ar) (38)

The evaluation of the integral is via contour deformation with residues at k = +ia.

Example 3.2. Green’s function for Laplace eqn. If o = 0 we have instead Laplace’s
eqn. Unfortunately we cannot apply the Hankel transform directly in this case because
G grows at infinity.

We can try to take the limit o — 0 in the previous example. However the integral in
(3.8) fails to exist when a = 0 [of course we can take the limit o — 0 in Ky(ar)].

One way out is to differentiate with respect to r to give
dG 1 /OO k2, (kr) i
dr 2w )y k2+a2

Now we can safely let @« — 0 to give

& _ i/ T (k) dl = — {JOW)} 1
0 2m

E_QW T

Thus

1
G= —%logr

as expected.

3.4 Direct proof of inversion formula

Suppose f(p) is analytic in some region containing [a, b]. Consider

I(t) = /OOO (/b 2f(2)Jo(kz) dz) keJo(kt) dk.



Further PDEs 37

The part in parentheses is the forward Hankel transform of the function

{f(z) a<z<b,

0 otherwise

To prove the inversion formula we need to show that I is equal this function. Recall the
Hankel functions

HP(k2) = Jo(kz) +iYo(k2),  HP(k2) = Jo(kz) — iYo(k2).

decays exponentially in the upper half plane, H decays exponentially in the lower
half plane We write

Jo(k2) = 5 (B (k=) + HP (k2) )

giving
/ / (2)HS (kz) dz kJo(kt) dk + = / / (2)HS? (kz) dz kJo(kt) dk.
Ct

Use the decay of Hy to swap the order of integration

/ / 2f(2)HD (k2)kJo(kt) dk dz + = / / 2f(2)H (k2)kJo(kt) dk dz
C+

= 1(t) + L(¢t),
say. Now (compare (3.6))
d2 1d )
d* 1d 0 2 170)
dk:QH V(kz) + kdkH (kz) = —2°H’ (k2).
Thus
£ /B kHSY (k2)Jo(kt) dk = —/B kHSY (k) <, (kt) + 1d, (kt) ) dk
0 L0 dr2’ kdk”’

d
H (k t
/ oF (k:dkjo(k )) dk

- [H(gn(k;z) (kdkoo(kt))]j—k/j ddkH (kz)kddkjo(kt) dk

Pa g od g
—/A = (kdkH (kz)) Jo(kt) dk
A

d d b
= {kJo(kt) dkH(l)(kz) — kH" (k2) koo(kt)} + 27 /A kH" (kz) Jo(kt) dk.
A

d d
- {kjo(k;t)&Hél)(kz) — kHY (k2)— o Jo(kt)}
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Thus
B B
(12 — 22) / kHSY (k2) Jo(kt) dk = [szo(kz)Hé”’(kz) - ktHé”(kz)Jg(kt)} N
A
Let A — 0 and B — oo to find

(2 — 22 / KHSY (k2)Jo(kt) dk = lim <ktHél)(kz)J{)(kt) - szo(kt)Hé”’(kz)) .
0

k—0
Now
Jo(kt) =1,  Jy(kt) = 0 ask — 0
but 0
Hél)(kz) ~ log(kz) ask—0
™
so that o
HY (kz) ~ W—lz as k=0
Thus - N 9
2 2 (1) g 22
(t*—z )/0 kHy " (kz)Jo(kt) dk %gr(l) kzﬂkz —
Similarly
2 o [ (2) 21
(t* — 27) kHy" (kz)Jo(kt)dk = —
0 ™
Therefore

0 otherwise

as required.

3.5 Hankel transform as axisymmetric Fourier trans-
form

Suppose we have a function U(z, y) of two variables which depends only on r = /22 + 92,
so that U(z,y) = u(r) say. If we take the Fourier transform in the two variables x and
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y then, with x = (z,y) and k = (kq, k2),

Ulky, ko) = / / (z,y)e*r® lkwdxdy—/ / ™ Xy (r)rdrdf
2m )
= / / sl (r)r dr df = 27T/ ru(r)Jo(kr) dr = 2ra(k)
o Jo 0

where 6 is the angle between x and k, and k£ = |k|. Here we have used the integral
representation of the Bessel function

1 21 )
J (k’?") Qﬂ—/ elkrcos@ de.

Inversion is given by

1 00 [eS) ) 5
-1 / / e % x[7 (k) dk; dks
a —00 J —0
2

1 ~
= — / e W04 (k) k dO dk

0o 1 )

:/ (_/ e—lkrcosede) ,&(k,)k,dk
0 21 Jo

:/ ’
0

Jo(kr)u(k)k dk = u(r).

Aside

The integral representation of the Bessel function can be derived from the generating

function .
¢ _ ez/2(t71/t) _ Z thn(Z)

n=—oo

Jo(z) is the coefficient of #° in the expansion of ¢ about ¢ = 0. We can find this from

the Cauchy integral:
L [¢
foz) =55 f{c t

where the integration is around the unit circle in the complex plane. Thus, using the
parametrisation ¢ = ie'? for the unit circle,

1 2/2(t—1/t) 1 27 pz/20€0-1/ie7) 1 [
c t 21t Jy iel 21 Jo
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3.6 Parseval

/OOO ka(k)o(k) dk:/ooo ki(k) /OOOTU(T>JO(]€T> ar di
= /0°° ro(r) /OOO ki(k)Jo(kr) dk dr = /OOO ro(r)u(r) dr.

3.7 Applications

Example 3.3. Point charge between two parallel plates Consider the following
Poisson equation in three dimensions:

V26 = —4m3(x)3()3(2)

with ¢ = 0 on z = +a. As in Example 3.1 we look for an axisymmetric solution
¢ = ¢(r, z), giving

o 106 P &)
o2 ' ror 922 —Am 27r 0(z) = —26,(r)o(z).
Now take the Hankel transform to give
. 0%

with q; — 0 on z = +a. Thus ¢ is the Green’s function for the one-dimensional modified
Helmholtz equation. The solution is

sinh(k(z +a)) .

5 sinh(kla—|) _ | Tecosh(ha) ifz <0,
"~ kcosh(ka) | sinh(k(a—2z)) .

k cosh(ka) ifz>0.

Can easily check that this satisfies the equation for z # 0 and that

7 2=0+ Bl ot
[gb} im0— 0 [5] =%

z=0—
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We can rewrite

. ekaefk|z\ _ efkaek\z| (eka + efka)efk|z\ _ efka(efk|z| + ek|z|)
¢= 2k cosh(ka) B 2k cosh(ka)
cosh(ka)e ™ I — e=*e cosh(k|z|)

k cosh(ka)
ekl _ cosh(k|z|) e ha
k cosh(ka) k =

Thus

o(r,2) = /0 oMl g (o) e — /0 we—ka%%(m dk.

In fact the first term corresponds to the solution for a point charge in free space (note

it is independent of a),
1

me—klzlj kr)ydk = ——.
[t an = s

Note that this is the Laplace transform in & of Jo(kr).
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4 Mellin Transforms

Laplace’s equation in cylindrical polars is

ooy U 10U 10U

o Trar Troe

Seek a separable solution U(r, ) = u(r)e*? giving

d?u n 1du k2 0
- _— —u =
dr2  rdr 12 ’

which we may write

This is homogeneous in r with solutions r**.

The Mellin transform is -
u(s) :/ 5 tu(r) dr,
0

defined for those complex s for which the integral converges. Suppose

u(r) = O(r=®) asr—0,
Tl O@P) asr — oo
Then u(s) exists and is analytic for s in the strip o < Re(s) < .
The inversion formula is »
1 CT100
— ~si(s)d
u(r) 5 /Cioo r—*u(s)ds,
where a < ¢ < f3.
Combining the transform and its inverse gives

1 ct+ioco i fe'e) o
u(r) = — r p°u(p) dpds
c 0

271 J i

00 1 c+ico B .
- [ e [ tas)worss
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so that the resolution of the identity is

1 ico
or—p) =— ~Sp* 1 ds.
To show this put s = iy to give
1 .
Sr — _ —ip ip—1 d
(r=p) =5 /_ e du
1 o

"2 )
- %5(1og(p/r))
=60(r —p),

eitlog(p/r) 4 L

since

[f'(p)6(f(r) = f(p)) = 6(r — p).

4.1 Relation with Fourier transform

Putting r = e gives
d L,dr d d
—_— = —— = —
"ar drdz dz
and thus transforms eigenfunctions of rd/dr to eigenfunctions of d/dzx. The domain

r € [0,00) maps to x € (—o0, 00).
u(ip) = / rt(r) dr
0

:/ (e””)i“_lu(e“c)g—;dx

—00

= / e u(e”) da
which is the Fourier transform of u(e”). Inversion is
@)= 55 |t d
u(e®) = — e (i
o 1) dp
— [ e atna
= — e u(i
o 1) dp
1 ico e
=5 (e®)*u(s)ds
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4.2 Properties of Mellin transform

With

then
M= [ ar

=[] = =) [
=—(s—1F(s—1)
with o < Re(s — 1) < 3 (to discard [r*~' f(r)];). Also

M [r*f(r)] = /OOO St f(r)dr = F(s + p).

4.3 Mellin transform convolutions

If
K(r) = / v F(r/y)g(y) dy

then
/ v £(r/9)g(y) dy dr

STyt f(r/y)g(y) dr dy

=)

Ll
//yt“"f y)y dt dy
L

/ y*g(y) dy

(8)g(s +p+1),

on setting r = yt.

Similarly, if

then

4-3
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4.4 Solving inhomogeneous equation

To solve 4 4 L 1
wy et 9
"ar (rdr) BT +rdr /()
apply the Mellin transform to give
s(s + 1)a(s) — su(s) = f(s),

ie. 7(s)
_ S
Now invert to give
1 c+ioco f(S)
- —s/\% 4
u(r) e /Cioo rt gt ds
1 c+ico 1 00 .
= — = 5 dpd
omi) T ) f u(p)dpds

[e’s) 1 c+ioco T—sps—l
= — d d
[ G [ )
~ [ Gt ot
0

where the Green’s function

1 c+ioco ,.—s s—1 1 cHioo \—s js—1
G(r,p) —/ r o ds:—,/ r P ds.

" 2mi ico 52 27 Joline A(S)

4.5 Applications

4.5.1 Summation of Series

Let S represent a series of the form

S=>f(n) (4.1)

in which the terms are samples of a function f(t) for integer values of the variable
€ (0,00). Suppose the Mellin transform F'(s) of f(t) exists in the strip ¢; < Re(s) < ca.
Then, the Mellin inversion formula gives
1 c+ioco

f(t) = —/ F(s)t™*ds, g <c<co.

21 J oo
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Substituting this into (4.1) gives

1 > c+ioco
S=— Z/ F(s)n™*ds.

27

n=1 Y c—ioco

Now, if F(s) is such that the sum and integral can be exchanged, an integral expression
for S is obtained: .
1 c+100
§=5- F(s)¢(s) ds,

c—ico

where ((s) is the Riemann zeta function defined by

((s)=> n

The integral can then be evaluated via the calculus of residues, which may give an
infinite sum which, with luck, will be more rapidly convergent that the original series.

Example 4.1. Compute the sum

() = Z COS(721$)'

n
n=1
Since
M [eiat] :/ tsfleiat dt
0
= (—ia)_s/ (—iat)*~te' (—ia)dt
0
= (—ia)s/ v e do
0
= a~%e™/ 2 (s) 0 < Re(s) <1,
we have

M [cos(zt)] = 21 (27°T(s)e™/2 + 27T (s)e ™/2) = 27°T'(s) cos (%) 0 < Re(s) < 1.

1

Thus
costx 9 s (s —2) N s
M a | =7 ['(s—2) cos —y )= ['(s—2) cos <7> : 2 < Re(s) < 3.
Hence the sum can be rewritten
1 c+ioco ) s
S o x (s —2)cos 5 ((s) ds,

c—ioco
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where the interchange of integration and summation is justified by absolute convergence.

To evaluate the integral we use Riemann’s functional relationship for the zeta function:

72¢(1 — s) = 2'7°T'(s) cos (E> ¢(s).

2
We find

1 c+ioco ) F(S o 2)

- —325—1 s 1— -\ = d

S 2mi c—ico ! " << 8) F(S) ’

1 c+ioco 1 -

= —— I2—325—1Ws—§( °) ds.

2mi c—ioo (S - 1)(‘9 - 2)

Now we can close the contour in the left half plane and evaluate by a sum of residues.
The zeta function ((s) is analytic except for a simple pole at s = 1 with residue 1. Thus
the integrand has poles at s =1, s = 2 and s = 0 giving

_ z?27! o ¢(0) Wzﬂ
5= (<—1><—2>+ ERE <1>)

132 T 2

T
i 2%
since ¢(0) = —1/2 and ((—1) = —1/12.

Note that the pole at s = m produces a term proportional to 22~™. As we move the
contour leftwards the powers of x produced are getting larger.

Often the number of poles is infinite, but we can generate an asymptotic series as x — 0
by considering only the first few poles.

4.5.2 Asymptotic evaluation of harmonic sums

A harmonic sum is a sum of the form
G(x) = Z Mg (prx).
k=1

Since M([f(ax);s] = M[f(x);s]/a* = f(s)/a® say (see problem sheet), taking a Mellin
transform gives

G(s) = Mpp g(s) = A(s)g(s),
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where .
A(s) = Z YT
k=1

Thus the “amplitude-frequency” information A, g is separated from the “base func-
tion” g(z).

Example 4.2. Find the asumptotic behaviour of

G(z) = Z o K

k=1

as x — 0.
Here A\ = 1, p, = k2, g(x) = e™®. Since
Mle ™, s] :/ ¥ e dw = T(s),
0

(where Re(s) > 0) taking a Mellin transform gives

G(s) = A(s)I'(s),

where .
A(s) =Y (K)™ = ((29),

k=1

providing Re(s) > 1/2. Hence
1 c+ioco
G(z) = %/Cioo C(2s)['(s)x™*ds,

where ¢ > 1/2. Now ((s) has a pole at s = 1 with residue 1, while I'(s) has poles
at the negative integers s = —m, m = 0,1,2,..., with residue (—1)™/m!. Note that
¢((—2m) = 0 for m = 1,2,.... Moving the contour to the left (i.e. reducing ¢ so that
¢ < 0) gives

1 [etioo
G(z) =res(C(25)[(s)x™%|s = 1/2) +res(((25)['(s)x™*|s = 0) + —/ ¢(2s)I'(s)z*ds

27
I'(1/2) e
= 571/2 +¢(0) + O(x™°)

= % —%—FO(:CC)

for any ¢ < 0 (thus the error is exponentially small).

—ioco
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Example 4.3. Let us revisit Example 4.1. We have A\, = 1/k%, uy, = k, g(x) = cos(z).
We have

Mcos z; s] = I'(s) cos (g)

if Re(s) > 0, while

providing Re(s) > —1. Hence

S(s) = ¢(s+2)T(s) cos <§) :

Thus rico
S(x) = i/ C(s+2)I'(s) cos (g) r%ds,

211 ) elioo

which of course is exactly what we found before. If instead of using the functional
relation for the zeta function we just shift the contour leftwards we will pick up the
asymptotic expansion of the sum as © — 0. There is a pole at s = —1 due to ((s + 2),
and poles at s = —m, m =0,1,2,... due to I'(s). But at the even integers ((—2m) = 0,
while at the odd integers cos(mw/2(2m~+1)) = 0. Thus we only have residue contributions

from s = —1, s =0, and s = —2. Evaluating the sum of residues gives
VI
S=" -4+ 10

for any b > 2, i.e. the error is again exponentially small. Of course, in this case we know
the error is identically zero.

4.5.3 Potential problem in a wedge

Let ¢ satisfy the two-dimensional Laplace equation in the wedge 0 < r < o0, —a < 0 < «
with boundary conditions

¢(r) = fe(r) onb=+a,

with ¢ bounded for finite r and ¢ — 0 as r — oo. In polar coordinates Laplace’s
equation is
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Taking the Mellin transform gives

d*®
2
S @(S,g) + W(S,Q) = 0.

The general solution is . ‘
d(s,0) = A(s)e? + B(s)e .

The boundary conditions give

A(s)e 5 4+ B(s)e"™ = F_(s),
A(s)e™ + B(s)e ™ = F(s),

where F(s) are the Mellin transforms of fi(r). Solving for A and B gives

eisaF+(S) _ e—isaF_(S) eisaF+(S) _ e—isaF_ (8)

A = - - —
(s) eZisa — g—2sa 2isin(2sa) ’
B(S) _ eisaF_('S) _ efis.aF_’_(S) _ eisaF_(j9>._ efisaF_’_(S) '
e2isa — g—2isa 2i sin(2sa)
Thus
o o [ (HE B ) )
271 Jolino 2isin(2sa) 2i sin(2sa)
1 c+ioo 1
= 5= /C_ioo Srein(2sa) (2isin(s(0 + «))Fy(s) + 2isin(s(a — 0))F_(s)) r*ds
1 /CHOO (sin(s(a+ 0))Fy(s) +sin(s(a — 0))F_(s)) r—* ds
27 S sin(2sa) '
Example 4.4. Suppose ¢ satisfies
Vi =0, O0<r<oo, —a<b<a,
with ;
1 if0<r<a,
o(r da) = fulr) = { 0 ifr>a.
Taking the Mellin transform gives
d*®
s*®(s,0) + W(s, 6) =0,

so that _ .
d(s,0) = A(s)e™? + B(s)e ™.
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The Mellin transform of the boundary condition is

Fi(s) = / rsldr = {T—] = a—, Re(s) > 0.
0

S 1o S

The boundary conditions give

A(s)e ™ 4 B(s)e'™™ = a—,
s
A(S)eisa 4 B<S)e—isa — CL_7
s
so that A and B are given by
Als) = B(s) — a® sin(sa) a’
B s sin(2sa)  2scos(sa)’
Thus
B(s,0) a’ cos(sé’)7
s cos(sa)

which is holomorphic in the strip 0 < Re(s) < 7/(2«). Thus

ctico s
o(r.0) = L/ a® cos(sh) s,

27 J._ioo TSScOS(SCY)

where 0 < ¢ < 7/(2a). It is possible to show (see problem sheet 3) that

2 (2 eos(B0)
o () mros<r<a
2, (2Ar/a) cos(36) o
- ( (/) — 1 ) forr > a.

where 8 = 7/(2a).
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5 Generation of transform pairs

5.1 Summary so far

Ax =b [:ienez :iejf

Lu=f =3 oo Gla,€) = Z¢”

S —atu= - [t Glr,g) = [ 2R

e - iru 0, Glr,p) fj r“”(’;): )

% %i—jf —f  (r—p) = /OOO krJo(kr) Jo(kp) dk - G(r, p) /0 W‘)(ia‘)}o%p) dk

TQ%wj—:ff 5(r—p)%/_1:7“831d5 G(r, p) %/_er(p;lds

5.2 Generation of transform pairs

The transform pair arises from the resolution of the identity. For example, once we

know

)= / o (2)65(€) dk

then if we define the forward transform as

u(k) = /_OO u(z)pr(z) dz
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then the inverse is given by
ug) = [ i) de

since

/_ Z a(k)}(€) dk = / Z ( / Z“W’“(“‘) d“””) O

- /Z uz) (/Z On ()83 (€) dk) dz

~ [ u@ite - s = ue).

o0

So the question of the generation of transform pairs, becomes a question about the
resolution of the identity. Now observe that the Green’s function for

d’G
@—Q2G25($—€>
is

o [ m(iii;’;(s) "

Suppose we found instead the Green’s function for the operator

d*G
@—QQG—MG:5([B—€).

Then it is easy to see that this is

[T (@) i(S)
G(x, & p) _/Oo)\(k)——kudk'

Now, thinking of this as a function of complex u, the integrand has a single simple pole

at u = A(k). Thus if we integrate in a large circular contour in the complex plane C,
(which we will let tend to infinity) then

/ G(z,& p)dp = —2mi /_OO or(x) o (&) dk = —2mid(x — &).

Thus if we can find G(z,&; 1) we can find a resolution of the identity. This works even
when there is a continuous spectrum.
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Example 5.1. Fourier transform Consider the operator

in —oo < x < oo with u € L2

The Green’s function we need to find satisfies

d’G
Td2 — pG =6(z = ),

in —0o < x < oo with G € L2 We calculate directly that, for x4 not a positive real
number,

A(E)e Vi —0o <1 < € < o0,
B(&)elvEe —00 < &< x <00,

Gz, & p) = {
where we choose the branch on which Im(y/xz) > 0 in order for G to decay as x — Fo0.
The conditions at x = £ then give

A(x)e V= B(x)e'VFe,
i/aB(x)e VT i /pA(z)e VI = 1.

Eliminating B gives

so that
iV/HE o=/l
—_— < r <<
2i\/1n ¢ ’
oIV gl /i
——— —o<{<r<oo,
2i/p ¢
Now, we have to integrate G around the large circle C,. However, there is a branch
point at the origin and a branch cut along the positive real axis. The origin is the only
singularity of G though, so that we can deform our contour to a contour Cs which lies
on the branch cut, that is, it goes from oo to 0 along the top of the positive real axis
and then back out to oo along the bottom of the positive real axis. We make the change
of variables ;1 = ¢? so that this contour is unfolded and the path of integration is simply
(=o00to(=—.

G(x,&p) =
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Thus, for x < &,

o
(z — 2m/ G(x,&p)d
1f§eflf:r
S or 2\/i
1 [ 1
- - iceg —1@:2
1 A T L

1 [~ . -
— i 71C:pd )
27T/_Ooe e ¢

This representation of the delta function gives the Fourier transform pair:

~ [ Cswean @ =g [ FQe

Example 5.2. Fourier sine series

Consider the operator

d?u
Lu=-S%—0
Y dz?

with u(0) = u(1) = 0. The Green’s function for (L — pu)u is (see example 1.1)
sin /i sin /(1 — &)
VIS /i
sin \/pé sin /(1 — x)
Vsin /i

There are simple poles at p = n?n? for n = 1,2,.... Note that u = 0 is not a pole or
branch point since for small p

z(1-¢) f0<z<E<l,
Gz, & p) = .
El—z) f0<{<ax<L
Applying the residue theorem we find that (for z < &)
1
oz—=8=—c=[ G&p)du

27 Jo

5 f: sin /g sin /(1 — &)

=2 Z sin kmx sin kw€.

k=1

ifo0<r<é<L1,
Gz, &p) =

if0<&<ax<l.
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95

This representation of the delta function is equivalent to the Fourier sine series, since

fa) = [ e — €)4(6) e
- isin ke <2 /0 1 F(€) sin ke dg)

oo
= E ay sin kmx,
k=1

where .
ap = 2/ f(&) sinkrg dg
0

is the usual Fourier coeflicient.

Example 5.3. Fourier sine integral transform

Consider the operator
d?u
Lu=—-——=0
“ dz? ’
in 0 <z < oo with u(0) = 0 with u € L?[0, 00).

The Green’s function we need to find satisfies

d’G
Td2 — pG =6(z = ),

in 0 <z < oo with G(0) = 0 with G € L?[0,00). We calculate directly that, for y not

a positive real number,

G(x, &) :{

A()sin/pr 0<z << oo,
B(¢)elvre 0<&<z< oo,

where we have imposed the conditions at x = 0 and x — co. We choose the branch on
which Im(y/z) > 0 in order for G' to decay as & — oo. The conditions at x = £ then

give

A(z) sin \/uz = B(z)eVi*,

iy/uB(x)eVF — A(z)\/pcos /uxr = —1.
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Eliminating B gives

1 1 elvHT
Alw) = i [Lsin \/x — (/L cos \/[ix - VIt (cos \/px — isin \/ux) - NS
Thus
Blr) = T
\/ﬁ
and therefore
1

- Vs
sin \/px e 0<z<&<oo,
VRl

Gz, & p) =
Lsin\/ﬁfei\/ﬁz 0<&<r<oo.
i

Now, we have to integrate G around the large circle C,,. However, there is a branch
point at the origin and a branch cut along the positive real axis. The origin is the only
singularity of G' though, so that we can deform our contour to a contour Cy which lies
on the branch cut, that is, it goes from oo to 0 along the top of the positive real axis
and then back out to oo along the bottom of the positive real axis. We make the change
of variables ;1 = ¢? so that this contour is unfolded and the path of integration is simply
(=00 to (= —o0.

Note also that

1

sin \/ux and COS /14T
7SV Vi

are entire functions of p and therefore integrate to zero around any closed contour. Thus

1

N sin \/pé cos \/px

1
—— sin y/px cos /€ and
Vi cos

integrate to zero and we need only consider the integral of

ﬁ sin \/pua sin \/pé.
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Thus

1
5(90—5):—% ; G(x, & p)dp

= —% . % sin \/px sin /p€ dp
_ _% i %sin((x) sin(C€) 2¢ d¢

_ % / sin(Cz) sin(CE) d¢

o0

™

_2 /0 " sin(Ca) sin(CE) dc

This representation of the delta function gives the Fourier sine integral transform:

FO= [ f@sinade, s =2 [ FQsin(ea) dc

™

Different operators may give the same transform pair. For example, any constant coef-
ficient linear differential operator in (—oo, 00) will give the Fourier transform pair. This
is why the Fourier transform is a good solution method for all such equations. We used
the operator

d?u
Lu=—-— —a’u=0
da?
to derive the Fourier transform, but often the operator
d?u
Lu=——
da?

is used.



