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. Suppose that the real, symmetric N x N matrix A has precisely one zero eigenvalue A1,
with eigenvector e;. Show that when el'b # 0 there is no solution to Ax = b, while
when e!'b = 0 the solution is
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where « is an arbitrary constant.

. Show that the Green’s function G(z; ) for the forced one-dimensional Helmholtz equation
satisfying
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. Show that an eigenfunction expansion gives the solution of
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Show that this is the Fourier sine series of the solution obtained by conventional means.



4. Show that any “well-behaved” function f(r) in the interval 0 < r < 1 may be expanded
as the series
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where the constants a1 < ag < ag--- are given by the roots J,(a,) = 0, and the
coefficients ¢, are given by
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[Hint: consider the eigenfunction problem
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Completeness of the eigenfunctions can be assumed. For the normalisation condition
consider the usual Sturm-Liouville argument for the integral fol r(a? — a2)po, dr for a
not an eitgenvalue and then let o« — ay,.

The Bessel function J,(r) satisfies the differential equation
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with J,(0) =0 for v > 0, and the identities
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5. Investigate the behaviour of the partial sums of the representation of the identity

N
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for increasing numbers of terms N, and your favourite set of orthonormal functions ¢,
using suitable mathematical software.
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