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1 Differentiable, holomorphic

It all begins with the innocuous definition that a function f(z) of the complex variable z is
differentiable at the point z if

lim
h→0

f(z + h)− f(z)

h
(1)

exists however h → 0; and f(z) is holomorphic (some people use analytic) in a region D if it
is differentiable at each point of D.

Writing z = x+ iy, f = u+ iv where x, y, u and v are real, and taking h real gives

f ′(z) = lim
h→0

(
u(x+ h, y)− u(x, y)

h
+ i

v(x+ h, y)− v(x, y)

h

)
=

∂u

∂x
+ i

∂v

∂x
.

Now taking h imaginary by writing h = iδ with δ real gives

f ′(z) = lim
δ→0

(
u(x, y + δ)− u(x, y)

iδ
+ i

v(x, y + δ)− v(x, y)

iδ

)
=

1

i

∂u

∂y
+

∂v

∂y
.

Setting these two values of f ′(z) equal, we find the Cauchy–Riemann equations

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −

∂v

∂x

relating the real and imaginary parts of f(z) wherever f(z) is differentiable.
Cross-differentiating the Cauchy–Riemann equations shows that u and v are solutions of

Laplace’s equation (i.e. they are harmonic functions):

∂2u

∂x2
+

∂2u

∂y2
= 0,

∂2v

∂x2
+

∂2v

∂y2
= 0.

This is enormously important in applications, because Laplace’s equation arises very fre-
quently, and we can use complex functions to solve boundary value problems for it (in two
dimensions, at least).

2 Integrals

The integral of a function of z along a curve Γ, which may be open or closed, is defined
parametrically in the obvious way. If the path Γ is given parametrically by z = z(t), t0 < t <
t1, then ∫

Γ
f(z) dz =

∫ t1

t0

f(z(t))
dz

dt
dt.
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3 Cauchy’s theorem and path independence

Having defined integrals of a function of z along a curve by parametrising the curve, we can
state the mainspring of complex analysis, Cauchy’s theorem:

If a function f(z) is holomorphic within, and continuous on, on a simple curve Γ, then

∫

Γ
f(z) dz = 0.

It is an immediate consequence of Cauchy’s theorem that if Γ1 and Γ2 are two curves
joining the point z0 to another point z1, and if f(z) is holomorphic in a region containing Γ1,
Γ2 and the region between them, then

∫

Γ1

f(z) dz =

∫

Γ2

f(z) dz,

so that the integral is path-independent. This is often stated as the deformation theorem:
if one contour Γ1 can be deformed smoothly into another one Γ2 while crossing only points
at which f(z) is holomorphic, then the integral of f(z) along Γ1 is equal to the integral along
Γ2.

4 Cauchy’s integral formula

Take a simple closed contour Γ, and let f(z) be holomorphic on Γ and inside it. Then then
values of f(z) on Γ determine its values at all points within Γ as well, via Cauchy’s integral

formula: for all z within Γ,

f(z) =
1

2πi

∮

Γ

f(t)

t− z
dt.

The proof is simple, by deforming the contour to a small circle surrounding z and adding and
subtracting f(z):

∮

Γ

f(t)

t− z
dt. =

∮

|t−z|=ǫ

f(t)

t− z
dt =

∮

|t−z|=ǫ

f(z)

t− z
dt+

∮

|t−z|=ǫ

f(t)− f(z)

t− z
dt;

the first integral on the right is equal to 2πif(z) and the second vanishes as ǫ → 0 by continuity
of f .

5 Infinite differentiability!

Given that

f(z) =
1

2πi

∮

Γ

f(t)

t− z
dt,

it is tempting to differentiate with respect to z under the integral sign to find

f ′(z) =
1

2πi

∮

Γ

f(t)

(t− z)2
dt
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and the justification of this, via (f(z + h) − f(z))/h, is not difficult. But then, we can
differentiate again (with essentially the same justification), to find that f ′′(z) exists and is
equal to

2

2πi

∮

Γ

f(t)

(t− z)3
dt.

and we have effortlessly established that once a complex function of z is differentiable, so is
its derivative! Hence, holomorphic functions are infinitely differentiable. The contrast with
real analysis is very marked. Indeed, all the interest in complex analysis is focused on the
points where functions fail to be holomorphic, known as singularities or singular points.

Furthermore, we have a formula for the derivatives: continuing to differentiate under the
integral sign, we have

f (n)(z) =
n!

2πi

∮

Γ

f(t)

(t− z)n+1
dt,

this is rarely used per se, but it is the key to Taylor’s theorem.

6 Liouville

A function is called entire if it is holomorphic in the whole complex plane (eg z, ez). Such a
function must have a singularity at infinity, because of:

Liouville’s theorem. Any bounded entire function f(z) is constant.

That is, if |f(z)| < M for some M and all z, then f is a constant (less than M in modulus).
The proof is by looking at Cauchy’s integral formula for f ′(z) and taking Γ to be a large circle;
letting the radius of the circle tend to infinity, we have f ′(z) = 0.

7 Taylor

Knowing that a holomorphic function has derivatives of all orders, we expect it to have power
series representation. It does:

Taylor’s theorem. If f(z) is holomorphic in a disc D(a;R), then there is a series repre-

sentation

f(z) =
∞∑

n=0

cn(z − a)n

which converges to f(z) for all 0 ≤ |z − a| < R. Moreover,

cn =
f (n)(a)

n!
.

Note that the series converges and it converges to f(z); the latter need not be true in real
analysis (eg the function e−1/x2

has the Taylor series 0 at the origin, as all its derivatives exist
but vanish there).

The circle of convergence for the series is the largest disc within which the series converges,
and so the radius of convergence is the distance from z = a to the nearest singular point of
f(z). The series diverges for |z − a| > R, while on the circle of convergence it may converge
at some points (but must diverge at at least one).
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8 Laurent

Taylor’s theorem gives a series in ascending powers of z for a function holomorphic in a disc
|z−a| < R. If, by contrast, we have a function f(z) which is holomorphic for S < |z−a| < ∞
and, for definiteness, vanishes at infinity, we can form a series in descending powers of z, by
finding the Taylor series of g(z) = f(1/z) (thereby finding expressions for the coefficients as
limits at infinity of powers of z times derivatives of f(z)). Alternatively by adapting the proof
of Taylor’s theorem so that Γ is a circle S < |t| < |z| (again, a = 0 wlog) and expanding in
powers of t/z, we have representations for the coefficients as integrals round Γ.

More generally, if our function is holomorphic in an annulus, we have:

Laurent’s theorem. If f(z) is holomorphic in the annulus S < |z − a| < R, then in that

annulus it has a series representation

f(z) =
∞∑

n=−∞

cn(z − a)n,

where

cn =
1

2πi

∮

Γ

f(t)

(t− a)n+1
dt;

for n ≥ 0, Γ is a circle |z−a| < |t−a| < R, while for n < 0, Γ is a circle S < |t−a| < |z−a|.

The part of the sum containing the negative powers is called the principal part of f(z) at
z = a, and it is holomorphic for S < |z − a| < ∞. The part containing positive powers is
holomorphic for 0 ≤ |z − a| < R.

9 Classification of singularities

Suppose that S = 0 in Laurent’s theorem, so that f(z) is holomorphic for 0 < |z− a| < R (it
may happen that R = ∞). Then f(z) has an isolated singularity at z = a. These singularities
can be classified into three categories, as follows.

1. If all the negative coefficients in the Laurent expansion vanish, then f(z) can be made
holomorphic at z = a by setting f(a) = c0 = limz→a f(z). Such a singularity is termed
removable.

2. If there is an integer m > 0 such that c−m 6= 0 but cn = 0 for n < −m, then f(z) has a pole

of order m at z = a. In this case the leading order behaviour of f(z) near a is c−m(z− a)−m,
and (z − a)mf(z) is holomorphic at z = a. A function whose only singularities are poles is
called meromorphic.

3. If neither of the above holds, then there are infinitely many nonzero negative Laurent
coefficients: the principal part goes on for ever. In this case f(z) has an isolated essential

singularity at z = a.

The behaviour of f(z) at infinity is classified according to the behaviour of f(1/z) near
z = 0; thus, for example, z has a pole of order 1 at infinity, while ez has an essential singularity
there.
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10 The residue theorem

We now turn Laurent’s theorem round: instead of evaluating Laurent coefficients in terms of
integrals, if f(z) has an isolated singularity at z = a and Γ encloses a, then

∮

Γ
f(z) dz =

∮

Γ

∞∑

n=−∞

cn(z − a)n dz

=
∞∑

n=−∞

cn

∮

Γ
(z − a)n dz

= 2πic−1,

as all the other integrals vanish (the powers (t − a)−(n+1) integrate to other powers, while
(t−a)−1 gives a log). The constant c−1 is the residue of f(z) at z = a, so-called (presumably)
because it is all that is left after integration.

The result is easily generalised to the case when f(z) has several isolated singularities
inside Γ, and is known as:

The Residue theorem. If f(z) is holomorphic inside Γ with the exception of a finite

number of isolated singularities at z = aj, then

∮

Γ
f(z) dz =

∑

j

resajf(z).

Calculation of residues relies on a few variations on the theme of calculating local expan-
sions. Apart from functions such as e1/z for which we just calculate the power series, we may
often have functions with poles, in the form

f(z) =
g(z)

h(z)

where both g(z) and h(z) are holomorphic at z = a and h(a) = 0, g(a) 6= 0. The order of the
pole then depends on the order of the zero of h(z) at z = a. If h(z) = z−a the pole is a simple
one and the residue is g(a), and if h(z) = (z−a)n, the Taylor expansion of g(z) shows that the
residue is g(n−1)(a)/(n− 1)!. If h(a) = 0 but h′(a) 6= 0, expanding h(z) = (z − a)h′(a) + · · ·
shows that the residue is g(a)/h′(a); and so on.

11 Evaluation of integrals

Sometimes the original integral can be transformed into an integral round a closed contour,
which may be evaluated using the residue theorem, but in other cases the contour must be
made into a closed one by addition of a suitable return path; the integral along this must be
estimated and shown to vanish in a suitable limit.
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12 Fourier and Laplace transforms

The Fourier transform of a real function f(x) is

f̂(k) =

∫ ∞

−∞
f(x)eikx dx,

and the inverse is

f(x) =
1

2π

∫ ∞

−∞
f̂(k)e−ikx dk

(note the asymmetric position of the factor 1/2π; not all authors put it here, so watch out
for variations). Inversion is usually accomplished by contour integration in the k-plane.

Integration by parts shows that

d̂f

dx
(k) = −if̂(k),

and differentiation under the integral sign leads to

(̂xf)(k) = −i
df̂

dk
.

The Laplace transform operates on functions defined on the positive real axis:

f̃(p) =

∫ ∞

0
f(x)e−px dx,

and if f(x)e−γx is integrable (so that |f(x)| grows no worse than eγx as x → ∞), then f̃(p)
exists for Re p ≥ γ and is holomorphic in p for Re p > γ; it can usually (being given by a
formula) be analytically continued into the rest of the complex p-plane, although singularities
inevitably occur. The inversion formula is

f(x) =
1

2πi

∫ γ+i∞

γ−i∞
f̃(p)epx dp.

The contour is usually (but not always) completed in the left-hand half-plane and in many
problems the solution is given by a sum of residues from the interior of the completed contour,
although sometimes a branch cut is also present in f̃(p) and the solution is reduced to an
integral along this cut.

13 Multiple valued functions (multifunctions)

A function f(z) has a branch point at z = a if, on taking a circuit round a, the final value of

f(z) is not equal to the original one. Examples are f(z) = z
1

2 , where a circuit round the origin
takes us from one branch of the square root to the other (from the ‘plus’ root to the ‘minus’
root or vice versa), or f(z) = log z, for which an anticlockwise circuit around the origin leaves
the real part unchanged but increases the imaginary part by 2π (its multivaluedness stems
from the ambiguity in the definition of arg z). These functions also both have branch points
at infinity (infinity is a branch point for f(z) if the origin is a branch point for f(1/z)).
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There are two solutions to this difficulty. One is to extend the domain of definition
of the function by constructing its Riemann surface, on which the function is single-valued
and holomorphic everywhere except at the branch points (and any other singularities). For

example, the Riemann surface for z
1

2 consists of two copies of the complex plane (‘sheets’)
joined together at the origin and at infinity, and passing through each other in such a way
that a complete circuit of the origin takes us from one sheet to the other. The Riemann
surface for log z is like a multistory carpark.

The second solution is to restrict the domain of definition of the function so that the
problematic circuits are forbidden. This is achieved by introducing branch cuts, joining the
branch points, across which contours may not pass. Then it is possible to define single-
valued branches of the (multi)function, which is regarded as the collection of these branches.

For example, we can make z
1

2 single-valued by putting a cut along the negative real axis,
and defining the two branches to be r

1

2 eiθ/2 and −r
1

2 eiθ/2, where r = |z| and θ = arg z is
restricted so that −π < θ ≤ π. There is no need to take the cut along the negative real
axis; any curve joining 0 to ∞ will do, and the choice is problem-dependent. With the cut
again along the negative real axis and the same restriction on θ, the set of branches of log z is
{log r + iθ + 2kπi}, k ∈ Z; the branch with this cut and k = 0 is sometimes called the principal
branch, written Log z; the corresponding branch of arg z, which is θ above, is written Arg z.
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