
Cryptography Today

Ali El Kaafarani1,2

1Mathematical Institute
2 PQShield Ltd.

1 of 45

About the Course

• Regular classes with worksheets so you can work with some
concrete examples (every Friday at 11 am in Room C4 first
week, then in C5).

• Every other week, write a short summary (≈ 500 words) about
one research paper (suggested in the further reading sections
in the slides).

• You hand in your worksheets/summaries every Wednesday by
4 pm. First week, you solve sheet-0 with the tutor and
investigate some useful crypto-tools, then you hand in/solve
sheet-1 in week-2, and so on.

• One class (Friday, 16 Nov) to give presentations (in groups)
about a chosen research paper (not graded).

2 of 45

About the Course

• Mini project.
• Reading research papers!

3 of 45

Outline

1 Cryptography Usage in the Real World: Do we use it?
Where?

2 Modern Cryptography
Provable Security
Symmetric Key Cryptosystems
Public Key Cryptosystems
Hash Functions
Digital Signatures
Advanced Cryptographic Tools/Schemes

3 Classical Vs Post-Quantum Cryptography

4 of 45

Web Browsers

5 of 45

Some Recent Cryptanalysis

6 of 45

Some Recent Cryptanalysis (Feb 2017)

7 of 45

E-voting

8 of 45

Mobile Applications

9 of 45

Bitcoin

https://bitcoin.org/en/
10 of 45

https://bitcoin.org/en/

Cryptography Usage in the Real World: a
Summary

• On-line banking, e-commerce (https:)
• SSH: to remotely login and to transfer files.
• Bitcoin: a decentralized digital currency
• Electronic Voting.
• Emails, cloud computing, etc.
• Mobile applications.
• ATM machines, etc.

11 of 45

Cryptography Usage in the Real World: a
Summary

• On-line banking, e-commerce (https:)

• SSH: to remotely login and to transfer files.
• Bitcoin: a decentralized digital currency
• Electronic Voting.
• Emails, cloud computing, etc.
• Mobile applications.
• ATM machines, etc.

11 of 45

Cryptography Usage in the Real World: a
Summary

• On-line banking, e-commerce (https:)
• SSH: to remotely login and to transfer files.

• Bitcoin: a decentralized digital currency
• Electronic Voting.
• Emails, cloud computing, etc.
• Mobile applications.
• ATM machines, etc.

11 of 45

Cryptography Usage in the Real World: a
Summary

• On-line banking, e-commerce (https:)
• SSH: to remotely login and to transfer files.
• Bitcoin: a decentralized digital currency

• Electronic Voting.
• Emails, cloud computing, etc.
• Mobile applications.
• ATM machines, etc.

11 of 45

Cryptography Usage in the Real World: a
Summary

• On-line banking, e-commerce (https:)
• SSH: to remotely login and to transfer files.
• Bitcoin: a decentralized digital currency
• Electronic Voting.

• Emails, cloud computing, etc.
• Mobile applications.
• ATM machines, etc.

11 of 45

Cryptography Usage in the Real World: a
Summary

• On-line banking, e-commerce (https:)
• SSH: to remotely login and to transfer files.
• Bitcoin: a decentralized digital currency
• Electronic Voting.
• Emails, cloud computing, etc.

• Mobile applications.
• ATM machines, etc.

11 of 45

Cryptography Usage in the Real World: a
Summary

• On-line banking, e-commerce (https:)
• SSH: to remotely login and to transfer files.
• Bitcoin: a decentralized digital currency
• Electronic Voting.
• Emails, cloud computing, etc.
• Mobile applications.

• ATM machines, etc.

11 of 45

Cryptography Usage in the Real World: a
Summary

• On-line banking, e-commerce (https:)
• SSH: to remotely login and to transfer files.
• Bitcoin: a decentralized digital currency
• Electronic Voting.
• Emails, cloud computing, etc.
• Mobile applications.
• ATM machines, etc.

11 of 45

Outline

1 Cryptography Usage in the Real World: Do we use it?
Where?

2 Modern Cryptography
Provable Security
Symmetric Key Cryptosystems
Public Key Cryptosystems
Hash Functions
Digital Signatures
Advanced Cryptographic Tools/Schemes

3 Classical Vs Post-Quantum Cryptography

12 of 45

Hardness Assumptions

Some mathematical problems are believed to be computationally
hard (to different extents):
• Integer Factorization: given a composite number n, compute its

(unique) factorization n =
∏

pei
i where pi are prime numbers.

• It is believed to be hard if n = pq for well-chosen p 6= q.

• Discrete Logarithm: given a cyclic group (G = 〈g〉, ◦), h ∈ G,
compute k ∈ Z|G| such that gk = h

• Dlog is believed to be hard in G = F∗p and even harder in groups
of points on (well-chosen) elliptic/hyperelliptic curves.

13 of 45

Hardness Assumptions

Some mathematical problems are believed to be computationally
hard (to different extents):
• Integer Factorization: given a composite number n, compute its

(unique) factorization n =
∏

pei
i where pi are prime numbers.

• It is believed to be hard if n = pq for well-chosen p 6= q.
• Discrete Logarithm: given a cyclic group (G = 〈g〉, ◦), h ∈ G,

compute k ∈ Z|G| such that gk = h
• Dlog is believed to be hard in G = F∗p and even harder in groups

of points on (well-chosen) elliptic/hyperelliptic curves.

13 of 45

Hardness Assumptions

Short Vector Problem in Lattices (SVP)

• A lattice is a discrete version of a vector subspace, more
formally;

• Given n linearly independent vectors ~b1, . . . ,~bn ∈ Rm, the lattice
generated by them is defined as

L(~b1, . . . ,~bn)
def
=

{ n∑
i=1

xi~bi | xi ∈ Z
}

• SVP: it is hard to determine the smallest non-zero vector in an
arbitrary lattice (easy in low dimensions).

14 of 45

Hardness Assumptions

b2

b1

(a) The lattice Z2 with
B = {(0, 1), (1, 0)}

b1
b2

(b) The lattice Z2 with a
B′ = {(1, 1), (2, 1)}

15 of 45

Hardness Assumptions: Average vs. Worst
Cases 1

Do we have the same confidence in different cryptosystems that
are based on different hardness assumptions?

• Breaking a lattice-based cryptographic scheme is at least as
hard as solving several hard lattice problems in the worst case.

• Breaking a cryptographic scheme that is based on factoring
might imply the ability to factor some numbers chosen
according to a certain distribution, but not the ability to factor all
numbers!

How can we prove the security of our cryptosystems?
• Proofs by reduction!

1Post-Quantum Cryptography, Daniel Bernstein et al.
16 of 45

Hardness Assumptions: Average vs. Worst
Cases 1

Do we have the same confidence in different cryptosystems that
are based on different hardness assumptions?
• Breaking a lattice-based cryptographic scheme is at least as

hard as solving several hard lattice problems in the worst case.

• Breaking a cryptographic scheme that is based on factoring
might imply the ability to factor some numbers chosen
according to a certain distribution, but not the ability to factor all
numbers!

How can we prove the security of our cryptosystems?
• Proofs by reduction!

1Post-Quantum Cryptography, Daniel Bernstein et al.
16 of 45

Hardness Assumptions: Average vs. Worst
Cases 1

Do we have the same confidence in different cryptosystems that
are based on different hardness assumptions?
• Breaking a lattice-based cryptographic scheme is at least as

hard as solving several hard lattice problems in the worst case.
• Breaking a cryptographic scheme that is based on factoring

might imply the ability to factor some numbers chosen
according to a certain distribution, but not the ability to factor all
numbers!

How can we prove the security of our cryptosystems?
• Proofs by reduction!

1Post-Quantum Cryptography, Daniel Bernstein et al.
16 of 45

Hardness Assumptions: Average vs. Worst
Cases 1

Do we have the same confidence in different cryptosystems that
are based on different hardness assumptions?
• Breaking a lattice-based cryptographic scheme is at least as

hard as solving several hard lattice problems in the worst case.
• Breaking a cryptographic scheme that is based on factoring

might imply the ability to factor some numbers chosen
according to a certain distribution, but not the ability to factor all
numbers!

How can we prove the security of our cryptosystems?
• Proofs by reduction!

1Post-Quantum Cryptography, Daniel Bernstein et al.
16 of 45

Security Games: Proofs by Reduction

Challenger Adversary

17 of 45

Challenger Adversary

18 of 45

Challenger Adversary

Public parameters

19 of 45

Challenger Adversary

Public parameters

Queries

20 of 45

Challenger Adversary

Public parameters

Queries

Answers

21 of 45

Challenger Adversary

Public parameters

Queries

Answers

Challenge

22 of 45

Challenger Adversary

Public parameters

Queries

Answers

Challenge

More queries

23 of 45

Challenger Adversary

Public parameters

Queries

Answers

Challenge

More queries

Answers

24 of 45

Challenger Adversary

Public parameters

Queries

Answers

Challenge

More queries

Answers

Guess

25 of 45

Challenger Adversary

Public parameters

Queries

Answers

Challenge

More queries

Answers

Guess

26 of 45

Outline

1 Cryptography Usage in the Real World: Do we use it?
Where?

2 Modern Cryptography
Provable Security
Symmetric Key Cryptosystems
Public Key Cryptosystems
Hash Functions
Digital Signatures
Advanced Cryptographic Tools/Schemes

3 Classical Vs Post-Quantum Cryptography

27 of 45

Symmetric Key Cryptosystems
A symmetric encryption scheme consists of three algorithms that
are (KeyGen, Enc, Dec); LetM be message space whereas the
key space is K. Below are the descriptions of the algorithms:
• KeyGen(n):2 is a randomized algorithm that, given the security

parameter n, returns a key SK ∈ K.
• Enc(SK,m): is a randomized algorithm that on input a key

SK ∈ K and a plaintext m ∈M, outputs a ciphertext c.
• Dec(SK, c): is a deterministic algorithm that on input a key SK

and a ciphertext c outputs a message m ∈M∪⊥.
Correctness:

∀m ∈M,Pr[SK← KeyGen(n) : Dec(SK,Enc(SK,m)) = m] = 1

2You often equivalently see KeyGen(1n), which emphasizes that the algorithm
runs in time polynomial in the length of its input.

28 of 45

Outline

1 Cryptography Usage in the Real World: Do we use it?
Where?

2 Modern Cryptography
Provable Security
Symmetric Key Cryptosystems
Public Key Cryptosystems
Hash Functions
Digital Signatures
Advanced Cryptographic Tools/Schemes

3 Classical Vs Post-Quantum Cryptography

29 of 45

Public Key Cryptosystems

An asymmetric encryption scheme consists of the following
algorithms:

• KeyGen(n): is a randomized algorithm that takes the security
parameters as input and returns a pair of keys (PK,SK), the
public key PK and its matching secret key SK, respectively.

• Enc(PK,m): A randomized algorithm that takes a public key PK,
a plaintext m and returns a ciphertext c.

• Dec(SK, c): A deterministic algorithm that takes the secret key
SK and a ciphertext c, and returns a message m ∈M∪⊥.

Correctness:

∀m ∈M,Pr[(SK,PK)← KeyGen(n) : Dec(Enc(PK,m),SK) = m] = 1

30 of 45

Outline

1 Cryptography Usage in the Real World: Do we use it?
Where?

2 Modern Cryptography
Provable Security
Symmetric Key Cryptosystems
Public Key Cryptosystems
Hash Functions
Digital Signatures
Advanced Cryptographic Tools/Schemes

3 Classical Vs Post-Quantum Cryptography

31 of 45

Hash Functions

• Informally speaking, hash functions take a long input string and
output a shorter string of a fixed length called a digest.

• They are used to achieve integrity (or authenticity) in the
private-key setting.

• They are used almost everywhere in Cryptography, e.g. HMAC,
commitment schemes, saved passwords, etc.

• If you imagine that hash functions are truly random (modelled
as random oracle model), then proving the security of some
cryptographic schemes becomes achievable (e.g. RSA-OAEP).

• A debate/controversy over the soundness of the random oracle
model.

• Cryptographic hash functions are much harder to design than
those used to build hash tables in data structures.

32 of 45

Outline

1 Cryptography Usage in the Real World: Do we use it?
Where?

2 Modern Cryptography
Provable Security
Symmetric Key Cryptosystems
Public Key Cryptosystems
Hash Functions
Digital Signatures
Advanced Cryptographic Tools/Schemes

3 Classical Vs Post-Quantum Cryptography

33 of 45

Digital Signatures

• Are used to achieve integrity (or authenticity) in the public key
setting.

• If a signature σ on a message m is verified correctly against a
given public key PK, it ensures that the message was indeed
sent by the owner of this public key (already known to potential
verifiers) and the message was NOT modified in transit.

• More importantly, signers cannot deny having signed a
message, also known as non-repudiation.

• This is how you verify that the update sent by a certain
company is authentic.

• In comparison to message authentication codes (MAC);
◦ Key distribution and management is hugely simplified.
◦ Signatures are publicly verifiable!

34 of 45

Digital Signatures

• Are used to achieve integrity (or authenticity) in the public key
setting.

• If a signature σ on a message m is verified correctly against a
given public key PK, it ensures that the message was indeed
sent by the owner of this public key (already known to potential
verifiers) and the message was NOT modified in transit.

• More importantly, signers cannot deny having signed a
message, also known as non-repudiation.

• This is how you verify that the update sent by a certain
company is authentic.

• In comparison to message authentication codes (MAC);
◦ Key distribution and management is hugely simplified.
◦ Signatures are publicly verifiable!

34 of 45

Digital Signatures

• Are used to achieve integrity (or authenticity) in the public key
setting.

• If a signature σ on a message m is verified correctly against a
given public key PK, it ensures that the message was indeed
sent by the owner of this public key (already known to potential
verifiers) and the message was NOT modified in transit.

• More importantly, signers cannot deny having signed a
message, also known as non-repudiation.

• This is how you verify that the update sent by a certain
company is authentic.

• In comparison to message authentication codes (MAC);
◦ Key distribution and management is hugely simplified.
◦ Signatures are publicly verifiable!

34 of 45

Digital Signatures

• Are used to achieve integrity (or authenticity) in the public key
setting.

• If a signature σ on a message m is verified correctly against a
given public key PK, it ensures that the message was indeed
sent by the owner of this public key (already known to potential
verifiers) and the message was NOT modified in transit.

• More importantly, signers cannot deny having signed a
message, also known as non-repudiation.

• This is how you verify that the update sent by a certain
company is authentic.

• In comparison to message authentication codes (MAC);
◦ Key distribution and management is hugely simplified.
◦ Signatures are publicly verifiable!

34 of 45

Digital Signatures

• Are used to achieve integrity (or authenticity) in the public key
setting.

• If a signature σ on a message m is verified correctly against a
given public key PK, it ensures that the message was indeed
sent by the owner of this public key (already known to potential
verifiers) and the message was NOT modified in transit.

• More importantly, signers cannot deny having signed a
message, also known as non-repudiation.

• This is how you verify that the update sent by a certain
company is authentic.

• In comparison to message authentication codes (MAC);
◦ Key distribution and management is hugely simplified.
◦ Signatures are publicly verifiable!

34 of 45

Outline

1 Cryptography Usage in the Real World: Do we use it?
Where?

2 Modern Cryptography
Provable Security
Symmetric Key Cryptosystems
Public Key Cryptosystems
Hash Functions
Digital Signatures
Advanced Cryptographic Tools/Schemes

3 Classical Vs Post-Quantum Cryptography

35 of 45

Secret Sharing

• Lagrange Interpolating Polynomial: given n points
(x1, y1), · · · , (xn, yn), one can construct the polynomial P(x) of
degree ≤ (n− 1) that passes through them as follows:

Pj(x) = yj

n∏
k=1
k 6=j

(x− xk)

(xj − xk)

36 of 45

Shamir Secret Sharing

• Shamir Secret Sharing works in two phases as follows:
• Distribute the shares: first pick a random polynomial

Q(x) ∈ Fp[x] of degree ` < n (where n is the number of
participants) s.t. Q(0) = s. Then, compute the shares

Si = Q(i) mod p for i = 1, · · · , n

and send them over to the participants A1, · · · ,An.
• Reconstruct the secret: According to Lagrange interpolation,

any `+ 1 participants can together compute Q(0) mod p which
is the secret s.

37 of 45

Multi-Party Computation

• Suppose that we have n parties P1, · · · ,Pn, each has a secret
input si. They all want to evaluate a public function f on inputs
(s1, · · · , sn) to learn the output and yet keep their inputs hidden
from each other.

• Secure Multi-Party Computation is the solution!

38 of 45

Multi-Party Computation

• Suppose that we have n parties P1, · · · ,Pn, each has a secret
input si. They all want to evaluate a public function f on inputs
(s1, · · · , sn) to learn the output and yet keep their inputs hidden
from each other.

• Secure Multi-Party Computation is the solution!

38 of 45

Multi-Party Computation: an Application
https://www.youtube.com/watch?v=bAp_aZgX3B0

39 of 45

https://www.youtube.com/watch?v=bAp_aZgX3B0

Zero-Knowledge Proofs

• Completeness: Prover can always convince a verifier that a
given statement is true

(A valid vote will always be accepted).
• Soundness: Prover cannot convince the verifier if the statement

is false (You cannot fool the verifier and vote with -1000).
• Zero-Knowledge: The proof doesn’t reveal any extra

information beyond the validity of the statement (The vote is still
secret!).

40 of 45

Zero-Knowledge Proofs

• Completeness: Prover can always convince a verifier that a
given statement is true (A valid vote will always be accepted).

• Soundness: Prover cannot convince the verifier if the statement
is false (You cannot fool the verifier and vote with -1000).

• Zero-Knowledge: The proof doesn’t reveal any extra
information beyond the validity of the statement (The vote is still
secret!).

40 of 45

Zero-Knowledge Proofs

• Completeness: Prover can always convince a verifier that a
given statement is true (A valid vote will always be accepted).

• Soundness: Prover cannot convince the verifier if the statement
is false

(You cannot fool the verifier and vote with -1000).
• Zero-Knowledge: The proof doesn’t reveal any extra

information beyond the validity of the statement (The vote is still
secret!).

40 of 45

Zero-Knowledge Proofs

• Completeness: Prover can always convince a verifier that a
given statement is true (A valid vote will always be accepted).

• Soundness: Prover cannot convince the verifier if the statement
is false (You cannot fool the verifier and vote with -1000).

• Zero-Knowledge: The proof doesn’t reveal any extra
information beyond the validity of the statement (The vote is still
secret!).

40 of 45

Zero-Knowledge Proofs

• Completeness: Prover can always convince a verifier that a
given statement is true (A valid vote will always be accepted).

• Soundness: Prover cannot convince the verifier if the statement
is false (You cannot fool the verifier and vote with -1000).

• Zero-Knowledge: The proof doesn’t reveal any extra
information beyond the validity of the statement

(The vote is still
secret!).

40 of 45

Zero-Knowledge Proofs

• Completeness: Prover can always convince a verifier that a
given statement is true (A valid vote will always be accepted).

• Soundness: Prover cannot convince the verifier if the statement
is false (You cannot fool the verifier and vote with -1000).

• Zero-Knowledge: The proof doesn’t reveal any extra
information beyond the validity of the statement (The vote is still
secret!).

40 of 45

Zero-Knowledge Proofs

• Blog: http:
//blog.cryptographyengineering.com/2014/11/
zero-knowledge-proofs-illustrated-primer.html

• Online demo: http:
//web.mit.edu/~ezyang/Public/graph/svg.html

41 of 45

http://blog.cryptographyengineering.com/2014/11/zero-knowledge-proofs-illustrated-primer.html
http://blog.cryptographyengineering.com/2014/11/zero-knowledge-proofs-illustrated-primer.html
http://blog.cryptographyengineering.com/2014/11/zero-knowledge-proofs-illustrated-primer.html
http://web.mit.edu/~ezyang/Public/graph/svg.html
http://web.mit.edu/~ezyang/Public/graph/svg.html

Fully Homomorphic Encryption

• Cloud computing is a hot topic nowadays!
• Companies want to store their huge data on the clouds and let

the cloud companies do the computation on their data.

• But they want to preserve data confidentiality, so they decide to
encrypt their data (and not give away the encryption keys!)

• How can the cloud companies do computation on encrypted
data and give back the result in an encrypted format!

42 of 45

Fully Homomorphic Encryption

• Cloud computing is a hot topic nowadays!
• Companies want to store their huge data on the clouds and let

the cloud companies do the computation on their data.
• But they want to preserve data confidentiality, so they decide to

encrypt their data (and not give away the encryption keys!)

• How can the cloud companies do computation on encrypted
data and give back the result in an encrypted format!

42 of 45

Fully Homomorphic Encryption

• Cloud computing is a hot topic nowadays!
• Companies want to store their huge data on the clouds and let

the cloud companies do the computation on their data.
• But they want to preserve data confidentiality, so they decide to

encrypt their data (and not give away the encryption keys!)
• How can the cloud companies do computation on encrypted

data and give back the result in an encrypted format!

42 of 45

Fully Homomorphic Encryption

• Some encryption schemes are naturally partially homomorphic,
i.e., Enc(A)× Enc(B) = Enc(A× B).

• Fully homomorphic encryption allows for arbitrary computation
on ciphertexts. You can write a program of any functionality and
run it on a given ciphertext to get the desirable result in an
encrypted format!

• In theory, this was proven possible in 2009. In practice, it is still
far away from being practical!

43 of 45

Classical Vs Post-Quantum Cryptography

• What would happen to Dlog and Factorisation based
Cryptosystems if quantum computers existed?

◦ Shor’s algorithm! (using quantum Fourier transform).
• Any alternatives?
◦ Lattice-Based Cryptography (e.g. fully homomorphic encryption)
◦ Code-Based Cryptography (e.g. McEliece cryptosystem)
◦ Hash-Based Cryptography (e.g. Merkle signature)
◦ Multivariate-based Cryptography (e.g. Rainbow signature)

44 of 45

Classical Vs Post-Quantum Cryptography

• What would happen to Dlog and Factorisation based
Cryptosystems if quantum computers existed?
◦ Shor’s algorithm! (using quantum Fourier transform).

• Any alternatives?
◦ Lattice-Based Cryptography (e.g. fully homomorphic encryption)
◦ Code-Based Cryptography (e.g. McEliece cryptosystem)
◦ Hash-Based Cryptography (e.g. Merkle signature)
◦ Multivariate-based Cryptography (e.g. Rainbow signature)

44 of 45

Classical Vs Post-Quantum Cryptography

• What would happen to Dlog and Factorisation based
Cryptosystems if quantum computers existed?
◦ Shor’s algorithm! (using quantum Fourier transform).

• Any alternatives?

◦ Lattice-Based Cryptography (e.g. fully homomorphic encryption)
◦ Code-Based Cryptography (e.g. McEliece cryptosystem)
◦ Hash-Based Cryptography (e.g. Merkle signature)
◦ Multivariate-based Cryptography (e.g. Rainbow signature)

44 of 45

Classical Vs Post-Quantum Cryptography

• What would happen to Dlog and Factorisation based
Cryptosystems if quantum computers existed?
◦ Shor’s algorithm! (using quantum Fourier transform).

• Any alternatives?
◦ Lattice-Based Cryptography (e.g. fully homomorphic encryption)

◦ Code-Based Cryptography (e.g. McEliece cryptosystem)
◦ Hash-Based Cryptography (e.g. Merkle signature)
◦ Multivariate-based Cryptography (e.g. Rainbow signature)

44 of 45

Classical Vs Post-Quantum Cryptography

• What would happen to Dlog and Factorisation based
Cryptosystems if quantum computers existed?
◦ Shor’s algorithm! (using quantum Fourier transform).

• Any alternatives?
◦ Lattice-Based Cryptography (e.g. fully homomorphic encryption)
◦ Code-Based Cryptography (e.g. McEliece cryptosystem)

◦ Hash-Based Cryptography (e.g. Merkle signature)
◦ Multivariate-based Cryptography (e.g. Rainbow signature)

44 of 45

Classical Vs Post-Quantum Cryptography

• What would happen to Dlog and Factorisation based
Cryptosystems if quantum computers existed?
◦ Shor’s algorithm! (using quantum Fourier transform).

• Any alternatives?
◦ Lattice-Based Cryptography (e.g. fully homomorphic encryption)
◦ Code-Based Cryptography (e.g. McEliece cryptosystem)
◦ Hash-Based Cryptography (e.g. Merkle signature)

◦ Multivariate-based Cryptography (e.g. Rainbow signature)

44 of 45

Classical Vs Post-Quantum Cryptography

• What would happen to Dlog and Factorisation based
Cryptosystems if quantum computers existed?
◦ Shor’s algorithm! (using quantum Fourier transform).

• Any alternatives?
◦ Lattice-Based Cryptography (e.g. fully homomorphic encryption)
◦ Code-Based Cryptography (e.g. McEliece cryptosystem)
◦ Hash-Based Cryptography (e.g. Merkle signature)
◦ Multivariate-based Cryptography (e.g. Rainbow signature)

44 of 45

Further Reading (1)

I Jean-Jacques Quisquater, Myriam Quisquater, Muriel
Quisquater, Michaël Quisquater, Louis Guillou, Marie Guillou,
Gaïd Guillou, Anna Guillou, Gwenolé Guillou, and Soazig
Guillou.
How to explain zero-knowledge protocols to your children.
In Advances in Cryptology—CRYPTO’89 Proceedings, pages
628–631. Springer, 1990.

I Marc Stevens, Elie Bursztein, Pierre Karpman, Ange Albertini,
and Yarik Markov.
The first collision for full sha-1.
IACR Cryptology ePrint Archive, 2017:190, 2017.

45 of 45

	Cryptography Usage in the Real World: Do we use it? Where?
	Modern Cryptography
	Provable Security
	Symmetric Key Cryptosystems
	Public Key Cryptosystems
	Hash Functions
	Digital Signatures
	Advanced Cryptographic Tools/Schemes

	Classical Vs Post-Quantum Cryptography

