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Pseudo-Random Generators PRGs

• Pseudorandomness is a property of a distribution on strings.
Say you have a distribution X on `-bit strings that assigns some
probability to every string in {0, 1}`. Pseudorandomness means
that sampling form X is indistinguishable from sampling a
uniform string of length `.

• Ideally, we want a PRG to efficiently produce, from short seeds,
long sequences of bits that appear to be generated by
successive flips of a fair coin.

• Unpredictability is a very important property of sequences of
coin tosses. Pseudo-random sequences should be
unpredictable to computers with feasible resources. Given a
sequence of (n− 1) bits, can you guess the nth bit with a
probability better than 1/2?
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Pseudo-Random Generators PRGs
• A PRG is an efficient deterministic algorithm that expands a

short, uniform seed into a longer, “uniform-looking” output.
• Informally, a PRG is cryptographically secure, if it passes all

efficient statistical tests.

Definition

Let G : {0, 1}n → {0, 1}`(n) a deterministic polynomial-time
algorithm where `(n) > n. G is a secure pseudorandom generator
if ∀ probabilistic poly-time distinguisher (also called statistical test)
D, the advantage

Advprg
G,D(n) = |Pr[D(r) = 1]− Pr[D(G(s)) = 1]| ≤ negl(n)

where the probabilities are taken over uniform choice of
s ∈ {0, 1}n, r ∈ {0, 1}`(n) and the randomness of D.
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Pseudo-Random Generators

• Do PRGs exist? Can we construct them?
• Not if NP = P
• What is the weakest assumption under which we can construct

PRGs?
• It is the existence of one-way functions (i.e. easy to compute-

hard to invert)
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PRG: examples

• Linear Congruential Generator (Non-Crypto PRG)
◦ Xn+1 = aXn + b mod m, where a, b,m are the constants and X0 is

the seed.
• Cryptographically suitable PRGs: /dev/random, Fortuna, Intel

RdRand (available in Ivy Bridge processors), etc.
◦ They continuously add entropy to internal state
◦ Example of entropy source: Timing (hardware interrupts, e.g.

keyboard, mouse, etc.).
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Security of PRGs

• Attackers abilities: What they can observe or
influence/manipulate in the inputs/outputs/state.

• Types of attacks:
◦ Input Based Attacks (security goals: minimize the number of

possible outputs, so guessing becomes easier, or force the
generator to produce a particular output),

◦ State Based attacks (security goals: backward/forward secrecy,
i.e. predict past/future outputs).
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• Remember, the goal is to “make our secure OTP practical”...
• OTP is perfectly secure. But |k| ≥ |m|...!
• What if we use pseudo-random generators?
• And use a different security definition...
• (t, ε)-indistinguishability: We allow that the security may fail with

probability ≤ ε and we restrict attention to adversaries running
in time ≤ t.

• This is the basic idea of a new security definition called
semantic security or indistinguishable encryptions!

• Perhaps we can now encrypt a 1 MB file using only 128-bit key!
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Fixed-length Encryption scheme using a PRG

Let G be a pseudorandom generator with expansion factor `. For
messages of length `, we define the following encryption scheme
E = (KeyGen,Enc,Dec):
• KeyGen(n) : It randomly picks random bit string of length n, i.e.

k ∈ {0, 1}n.
• Enc : it takes as input a key k ∈ {0, 1}n and a message

m ∈ {0, 1}`(n), it outputs

c← Enc(G(k),m) = G(k)⊕ m

• Dec : it takes as input a key k ∈ {0, 1}n and a ciphertext
c ∈ {0, 1}`(n), it outputs

m← Dec(G(k), c) = G(k)⊕ c.
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Semantic Security

Security Game

Challenger Ch Adversary A
m0,m1,|m0|=|m1|←−−−−−−−−−

b←$ {0, 1}
c=Enc(k,mb)−−−−−−−→ Outputs his guess b′

Definition
An encryption scheme is semantically secure if for all efficient A
the following holds:

Adveav
E,A(n) = Pr[A wins]− 1/2 ≤ negl(n)

What about security for multiple encryptions?
11 of 37



Semantic Security (also called Computational
indistinguishability)

More formally,
• Let us distinguish between the two cases of b = 0 or b = 1. Call

the first EXP(0) and the second EXP(1).
• For b = 0, 1, let Gb be the event that the output of the

experiment EXP(b)=1. Now

Advss
E,A(n) = |Pr(G0)− Pr(G1)|
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Theorem
If G is a secure PRG, then the encryption scheme derived from G
is semantically secure.

Lemma
If A is an adversary against a semantic secure encryption scheme
E , then there exists an adversary B against the PRG G of E s.t.

Advss
E,A(n) ≤ 2 · Advprg

G,B(n)
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Proof.
(By reduction)
Let Gb the event that the adversary outputs b′ = 1 if the challenger
uses the PRG while encrypting and Rb is the same but when using
a truly random generator.

Advss
E,A(n) = |Pr(G0)− Pr(G1)|

= |Pr(G0)− Pr(R0) + Pr(R0)− Pr(R1)

+ Pr(R1)− Pr(G1)|
≤ |Pr(G0)− Pr(R0)|+ |Pr(R0)− Pr(R1)|︸ ︷︷ ︸

= 0 as OTP is sem. secure.

+ |Pr(R1)− Pr(G1)|
= 2Advprg

G,B(n).
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Stream Ciphers

• Terminology is not standard: it is either considered to be
practical instantiations of pseudo-random generators or the
encryption scheme which uses it.

• They produce as many random bits as exactly needed.
• They are more flexible (no upper bound on the number of bits)

and efficient (each application takes the exact number of
random bits that it requests)

• A stream cipher consists of two main deterministic algorithms:
• Init(s, IV): takes a seed s and an optional initialization vector IV

and outputs an initial state st0
• GetBits(sti): takes the i-th state information sti and outputs a bit

y and an updated state, i.e. sti+1
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Stream Ciphers

Construction of a PRG G`:
st0 ← Init(s, IV)

for i = 1, · · · , `;
(yi, sti)← GetBits(sti−1)

return y1, · · · , y`

15 of 37



Stream Cipher Mode of Operations
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Stream Cipher Modes of Operations

• synchronized mode.
◦ It gives a stateful CPA-secure encryption scheme.
◦ Sender and Receiver must be synchronized.
◦ It generates a long pseudo-random stream- different parts of it are

used to encrypt different messages.
◦ Therefore, messages should be received in order.

• unsynchronized mode.
◦ It needs initialization vectors.
◦ It gives stateless CPA-secure encryption.
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Examples of Stream Ciphers

• Linear-Feedback Shift Registers (LFSR)
• RC4 by Ron Rivest 1987 (recent attack: AlFardan et al. 2013)
• eStream: Salsa 20, ChaCha (2008), and SOSEMANUK.
• eStream competition page:
http://competitions.cr.yp.to/estream.html

18 of 37
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RC4

• The state in RC4 consists of the triplet (S, i, j). S is a 256-byte
array that contains a permutation of the numbers 0, · · · , 255.
both i, j ∈ {0, · · · , 255}.

• The key can be up to 256 byte long.
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RC4- the Init() algorithm

Input: a 16-byte key
Output: Initial state (S, i, j)

for i = 1, · · · , 255 :

S[i]← iI it sets S to the identity permutation
k[i]← k[i mod 16]I it expands the key to 256 bytes by repetition

j = 0
for i = 1, · · · , 255;

j← j + S[i] + k[i] mod 256
Swap S[i] and S[j] I “pseudo-random” swapping of S’s elements

i← 0, j← 0
return (S, i, j)
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RC4- the GetBits() algorithm

Input: Current state (S, i, j)

Output: byte y, updated state (S, i, j)

i← i + 1 mod 256
j← j + S[i] mod 256 I changing j in a “pseudo-random” way
Swap S[i] and S[j]

t← S[i] + S[j] mod 256
y← S[t]

return (S, i, j), y
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RC4: Security Analysis

• Weaknesses in its key scheduling algorithm, i.e. the Init()
algorithm.

• Biases in the second output byte of RC4: the probability that it
is 0 is 1/128 instead of 1/256 for S = 256.

• Biases in further bytes: double-byte or adjacent-byte biases.
• Conclusion: not secure, nevertheless, “its usage is still running

at about 30% of all TLS traffic” (Garman et al. March 2015)
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RC4: Security Analysis [AlFardan et al. 2013]

Figure: Recovery rate of the single-byte bias attack (based on 256
experiments)
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More security definitions are needed...

• Stream ciphers are semantically secure.
• But what about multiple encryptions?
• What if the adversary wants to be challenged on two vectors of

messages instead of two single messages?
• Obviously, he can trivially win the game (why?)
• Conclusion: deterministic encryption schemes are NOT secure

under the multiple encryptions model.
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CPA Indistinguishability Experiment PrivKcpa
A,E

Challenger Ch Adversary A
k = KeyGen(n) Access to an oracle Enc(k, ·)

m0,m1,|m0|=|m1|←−−−−−−−−−
b← {0, 1}

c=Enc(k,mb)−−−−−−−→ Outputs his guess b′

Definition
An encryption scheme is CPA-secure if for all efficient A the
following holds:

Advcpa
A,E(n) = Pr[PrivKcpa

A,E(n) = 1]− 1/2 = negl(n)

Where PrivKcpa
A,E(n) = 1 if b′ = b, and 0 otherwise.

Note: CPA-secure⇒ CPA secure for multiple encryptions.
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CCA Indistinguishability Experiment PrivKcca
A,E

Challenger Ch Adversary A
k = KeyGen(n) Access to two oracles Enc(k, ·),Dec(k, ·)

m0,m1,|m0|=|m1|←−−−−−−−−−
b← {0, 1}

c=Enc(k,mb)−−−−−−−→ Access to two oracles Enc(k, ·),Dec(k, ·)c

Outputs his guess b′

Definition
An encryption scheme is CCA-secure if for all efficient A the
following holds:

Advcca
A,E(n) = Pr[PrivKcca

A,E(n) = 1]− 1/2 = negl(n)
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Pseudo-Random Functions

• A generalization of the notion of pseudo-random generators.
• We now consider a “random-looking” function.
• It is the pseudo-randomness of a distribution on functions.
• We are interested in keyed functions, i.e.

F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗.
• Once we choose k, we fix it, and then use Fk : {0, 1}∗ → {0, 1}∗.
• F is length-preserving if the lengths of the key, input, output are

equal.
• F is pseudo-random if the function Fk, for a uniform key k, is

indistinguishable from a function chosen uniformally at random
from the set of all functions with the same domain and range.
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Pseudo-Random Functions

Definition
Let Func[X,Y] be the set of all functions from X to Y. A function
F : K × X → Y is a secure Pseudo-Random Function (PRF) if F is
efficiently computable and for all PPT distinguishers A

Advprf
F,A(n) = |Pr[A

F()(n) = 1]− Pr[AFk()(n) = 1]| < negl(n)

where F ∈ Func[X,Y], k ∈ K, and A has access to the function in
question, i.e. either F() and Fk().

Note that |Func[X,Y]| = |X||Y|.
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Pseudo-Random Permutations

A pseudo-random function F : K × X → Y is an efficient
pseudo-random permutation if the following hold:

• F is injective and |X| = |Y|.
• F is deterministic and efficiently computable.
• F−1 is efficiently computable.

In practice: F : {0, 1}k × {0, 1}n → {0, 1}n, where;
• 3DES: n = 64 bits, k = 168 bits
• AES: n = 128 bits, k = 128, 192, 256 bits
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Encryption using PRP

Let F : {0, 1}n × {0, 1}n → {0, 1}n be a pseudo-random
permutation. We define the following encryption scheme
E = (KeyGen,Enc,Dec):
• KeyGen : it takes n and outputs a key k ∈ {0, 1}n.
• Enc: it takes a key k ∈ {0, 1}n and message m, it picks a

random r ← {0, 1}n, and outputs

(c0, c1)← (r,Fk(r)⊕ m).

• Dec: it takes a key k and a ciphertext c = (c0, c1) and outputs

m← (Fk(c0)⊕ c1).
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Theorem
If F is a pseudo-random permutation then the encryption scheme
E is CPA-secure.

Proof.
We will first prove that a version E′ of this encryption scheme
would be indeed CPA-secure if the function F was truly random,
and then show that if E was insecure then we can distinguish F
from a truly random function.
For E′, there are two cases:
• rc didn’t appear in any of the encryption queries, and therefore

the probability to win the game in this case is exactly 1/2.
• rc appeared in at least one of the queries. Assuming that the

adversary is restricted to q(n) queries, then the probability of
this event is at most q(n)/2n.

Thus Pr[PrivKcpa
A,E′(n) = 1] ≤ 1/2 + q(n)/2n.
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Proof.
F is a PRP⇒∣∣Pr[AF()(n) = 1]− Pr[AFk()(n) = 1]

∣∣ < negl(n)

One can easily see that Pr[PrivKcpa
A,E′(n) = 1] = Pr[AF()(n) = 1]

and Pr[PrivKcpa
A,E(n) = 1] = Pr[AFk()(n) = 1]. Thus∣∣Pr[PrivKcpa
A,E(n) = 1]− Pr[PrivKcpa

A,E′(n) = 1]
∣∣ ≤ negl(n)

Therefore

Pr[PrivKcpa
A,E(n) = 1] ≤ 1/2 + q(n)/2n + negl(n) .
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Strong Pseudo-Random Permutations

Definition
Let Permn be the set of all permutations from {0, 1}n to {0, 1}n. Let
f : {0, 1}n × {0, 1}n → {0, 1}n be an efficient length-preserving,
keyed permutation. f is a strong pseudo-random permutation if for
all probabilistic polynomial-time distinguishers D, there exists a
negligible function negl such that

|Pr[Df (),f−1()(n) = 1]− Pr[Dfk(),f
−1
k ()(n) = 1]| < negl(n)

where f ∈R Permn, k ∈R {0, 1}k, and D has access to the functions
in question, i.e. either f (), f−1() and fk(), f−1

k ().

Notes:
• Strong PRP⇒ PRP
• |Permn| = 2n!
34 of 37



Further Reading (1)

Nadhem J AlFardan, Daniel J Bernstein, Kenneth G Paterson,
Bertram Poettering, and Jacob CN Schuldt.
On the security of RC4 in TLS.
In USENIX Security, pages 305–320, 2013.

Boaz Barak and Shai Halevi.
A model and architecture for pseudo-random generation with
applications to/dev/random.
In Proceedings of the 12th ACM conference on Computer and
communications security, pages 203–212. ACM, 2005.

Daniel J Bernstein.
The Salsa20 Family of Stream Ciphers.
In New stream cipher designs, pages 84–97. Springer, 2008.

35 of 37



Further Reading (2)

Lenore Blum, Manuel Blum, and Mike Shub.
A simple unpredictable pseudo-random number generator.
SIAM Journal on computing, 15(2):364–383, 1986.

Christian Cachin.
Entropy measures and unconditional security in cryptography.
PhD thesis, SWISS FEDERAL INSTITUTE OF
TECHNOLOGY ZURICH, 1997.

Scott Fluhrer, Itsik Mantin, and Adi Shamir.
Weaknesses in the key scheduling algorithm of RC4.
In Selected areas in cryptography, pages 1–24. Springer,
2001.

36 of 37



Further Reading (3)

Christina Garman, Kenneth G Paterson, and Thyla van der
Merwe.
Attacks only get better: Password recovery attacks against
RC4 in TLS.
2015.

Itsik Mantin and Adi Shamir.
A practical attack on broadcast RC4.
In Fast Software Encryption, pages 152–164. Springer, 2002.

37 of 37


	Pseudo-Random Generators and Stream Ciphers
	More Security Definitions: CPA and CCA
	Pseudo-Random Functions/Permutations

