Private-Key Encryption

Ali El Kaafarani

¹Mathematical Institute ² PQShield Ltd.

1 of 37

Outline

Pseudo-Random Generators and Stream Ciphers

2 More Security Definitions: CPA and CCA

Pseudo-Random Functions/Permutations

Outline

2 More Security Definitions: CPA and CCA

3 Pseudo-Random Functions/Permutations

- Pseudorandomness is a property of a distribution on strings. Say you have a distribution X on ℓ-bit strings that assigns some probability to every string in {0,1}^ℓ. Pseudorandomness means that sampling form X is indistinguishable from sampling a uniform string of length ℓ.
- Ideally, we want a PRG to efficiently produce, from short seeds, long sequences of bits that appear to be generated by successive flips of a fair coin.
- Unpredictability is a very important property of sequences of coin tosses. Pseudo-random sequences should be unpredictable to computers with feasible resources. Given a sequence of (n 1) bits, can you guess the n^{th} bit with a probability better than 1/2?

- Pseudorandomness is a property of a distribution on strings. Say you have a distribution X on ℓ-bit strings that assigns some probability to every string in {0,1}^ℓ. Pseudorandomness means that sampling form X is indistinguishable from sampling a uniform string of length ℓ.
- Ideally, we want a PRG to efficiently produce, from short seeds, long sequences of bits that appear to be generated by successive flips of a fair coin.
- Unpredictability is a very important property of sequences of coin tosses. Pseudo-random sequences should be unpredictable to computers with feasible resources. Given a sequence of (n 1) bits, can you guess the n^{th} bit with a probability better than 1/2?

- Pseudorandomness is a property of a distribution on strings. Say you have a distribution X on ℓ-bit strings that assigns some probability to every string in {0,1}^ℓ. Pseudorandomness means that sampling form X is indistinguishable from sampling a uniform string of length ℓ.
- Ideally, we want a PRG to efficiently produce, from short seeds, long sequences of bits that appear to be generated by successive flips of a fair coin.
- Unpredictability is a very important property of sequences of coin tosses. Pseudo-random sequences should be unpredictable to computers with feasible resources. Given a sequence of (n 1) bits, can you guess the n^{th} bit with a probability better than 1/2?

- A PRG is an efficient deterministic algorithm that expands a short, uniform seed into a longer, "uniform-looking" output.
- Informally, a PRG is cryptographically secure, if it passes all efficient statistical tests.

Definition

Let $G : \{0,1\}^n \to \{0,1\}^{\ell(n)}$ a deterministic polynomial-time algorithm where $\ell(n) > n$. *G* is a secure pseudorandom generator if \forall probabilistic poly-time distinguisher (also called statistical test) *D*, the advantage

 $\mathsf{Adv}_{G,D}^{\mathsf{prg}}(n) = |\Pr[D(r) = 1] - \Pr[D(G(s)) = 1]| \le \mathsf{negl}(n)$

where the probabilities are taken over uniform choice of $s \in \{0,1\}^n$, $r \in \{0,1\}^{\ell(n)}$ and the randomness of *D*.

- A PRG is an efficient deterministic algorithm that expands a short, uniform seed into a longer, "uniform-looking" output.
- Informally, a PRG is cryptographically secure, if it passes all efficient statistical tests.

Definition

Let $G : \{0,1\}^n \to \{0,1\}^{\ell(n)}$ a deterministic polynomial-time algorithm where $\ell(n) > n$. *G* is a secure pseudorandom generator if \forall probabilistic poly-time distinguisher (also called statistical test) *D*, the advantage

 $\mathsf{Adv}_{G,D}^{\mathsf{prg}}(n) = |\Pr[D(r) = 1] - \Pr[D(G(s)) = 1]| \le \mathsf{negl}(n)$

where the probabilities are taken over uniform choice of $s \in \{0,1\}^n$, $r \in \{0,1\}^{\ell(n)}$ and the randomness of *D*.

- A PRG is an efficient deterministic algorithm that expands a short, uniform seed into a longer, "uniform-looking" output.
- Informally, a PRG is cryptographically secure, if it passes all efficient statistical tests.

Definition

Let $G: \{0,1\}^n \to \{0,1\}^{\ell(n)}$ a deterministic polynomial-time algorithm where $\ell(n) > n$. *G* is a secure pseudorandom generator if \forall probabilistic poly-time distinguisher (also called statistical test) *D*, the advantage

 $\mathsf{Adv}_{G,D}^{\operatorname{prg}}(n) = |\Pr[D(r) = 1] - \Pr[D(G(s)) = 1]| \le \mathsf{negl}(n)$

where the probabilities are taken over uniform choice of $s \in \{0,1\}^n$, $r \in \{0,1\}^{\ell(n)}$ and the randomness of *D*.

5 of 37

- Do PRGs exist? Can we construct them?
- Not if NP = P
- What is the weakest assumption under which we can construct PRGs?
- It is the existence of *one-way functions* (i.e. easy to compute-hard to invert)

- Do PRGs exist? Can we construct them?
- Not if NP = P
- What is the weakest assumption under which we can construct PRGs?
- It is the existence of *one-way functions* (i.e. easy to compute-hard to invert)

- Do PRGs exist? Can we construct them?
- Not if NP = P
- What is the weakest assumption under which we can construct PRGs?
- It is the existence of *one-way functions* (i.e. easy to compute-hard to invert)

- Do PRGs exist? Can we construct them?
- Not if NP = P
- What is the weakest assumption under which we can construct PRGs?
- It is the existence of *one-way functions* (i.e. easy to compute-hard to invert)

- Linear Congruential Generator (Non-Crypto PRG)
 - $X_{n+1} = aX_n + b \mod m$, where a, b, m are the constants and X_0 is the seed.
- Cryptographically suitable PRGs: /dev/random, Fortuna, Intel RdRand (available in Ivy Bridge processors), etc.
 - They continuously add entropy to internal state
 - Example of entropy source: Timing (hardware interrupts, e.g. keyboard, mouse, etc.).

Security of PRGs

- Attackers abilities: What they can observe or influence/manipulate in the inputs/outputs/state.
- Types of attacks:
 - Input Based Attacks (security goals: minimize the number of possible outputs, so guessing becomes easier, or force the generator to produce a particular output),
 - State Based attacks (security goals: backward/forward secrecy, i.e. predict past/future outputs).

• Remember, the goal is to "make our secure OTP practical"...

- OTP is perfectly secure. But $|k| \ge |m|...!$
- What if we use pseudo-random generators?
- And use a different security definition...
- (t, ϵ) -indistinguishability: We allow that the security may fail with probability $\leq \epsilon$ and we restrict attention to adversaries running in time $\leq t$.
- This is the basic idea of a new security definition called *semantic security* or *indistinguishable encryptions*!
- Perhaps we can now encrypt a 1 MB file using only 128-bit key!

- Remember, the goal is to "make our secure OTP practical"...
- OTP is perfectly secure. But $|k| \ge |m|...!$
- What if we use pseudo-random generators?
- And use a different security definition...
- (t, ϵ) -indistinguishability: We allow that the security may fail with probability $\leq \epsilon$ and we restrict attention to adversaries running in time $\leq t$.
- This is the basic idea of a new security definition called *semantic security* or *indistinguishable encryptions*!
- Perhaps we can now encrypt a 1 MB file using only 128-bit key!

- Remember, the goal is to "make our secure OTP practical"...
- OTP is perfectly secure. But $|k| \ge |m|...!$
- What if we use pseudo-random generators?
- And use a different security definition...
- (t, ϵ) -indistinguishability: We allow that the security may fail with probability $\leq \epsilon$ and we restrict attention to adversaries running in time $\leq t$.
- This is the basic idea of a new security definition called *semantic security* or *indistinguishable encryptions*!
- Perhaps we can now encrypt a 1 MB file using only 128-bit key!

- Remember, the goal is to "make our secure OTP practical"...
- OTP is perfectly secure. But $|k| \ge |m|...!$
- What if we use pseudo-random generators?
- And use a different security definition...
- (t, ϵ) -indistinguishability: We allow that the security may fail with probability $\leq \epsilon$ and we restrict attention to adversaries running in time $\leq t$.
- This is the basic idea of a new security definition called *semantic security* or *indistinguishable encryptions*!
- Perhaps we can now encrypt a 1 MB file using only 128-bit key!

- Remember, the goal is to "make our secure OTP practical"...
- OTP is perfectly secure. But $|k| \ge |m|...!$
- What if we use pseudo-random generators?
- And use a different security definition...
- (t, ϵ) -indistinguishability: We allow that the security may fail with probability $\leq \epsilon$ and we restrict attention to adversaries running in time $\leq t$.
- This is the basic idea of a new security definition called *semantic security* or *indistinguishable encryptions*!
- Perhaps we can now encrypt a 1 MB file using only 128-bit key!

- Remember, the goal is to "make our secure OTP practical"...
- OTP is perfectly secure. But $|k| \ge |m|...!$
- What if we use pseudo-random generators?
- And use a different security definition...
- (t, ε)-indistinguishability: We allow that the security may fail with probability ≤ ε and we restrict attention to adversaries running in time ≤ t.
- This is the basic idea of a new security definition called *semantic security* or *indistinguishable encryptions*!
- Perhaps we can now encrypt a 1 MB file using only 128-bit key!

- Remember, the goal is to "make our secure OTP practical"...
- OTP is perfectly secure. But $|k| \ge |m|...!$
- What if we use pseudo-random generators?
- And use a different security definition...
- (t, ε)-indistinguishability: We allow that the security may fail with probability ≤ ε and we restrict attention to adversaries running in time ≤ t.
- This is the basic idea of a new security definition called *semantic security* or *indistinguishable encryptions*!
- Perhaps we can now encrypt a 1 MB file using only 128-bit key!

Fixed-length Encryption scheme using a PRG

Let *G* be a pseudorandom generator with expansion factor ℓ . For messages of length ℓ , we define the following encryption scheme E = (KeyGen, Enc, Dec):

- KeyGen(*n*) : It randomly picks random bit string of length *n*, i.e. $k \in \{0, 1\}^n$.
- Enc : it takes as input a key $k \in \{0, 1\}^n$ and a message $m \in \{0, 1\}^{\ell(n)}$, it outputs

$$c \leftarrow \mathsf{Enc}(G(k), m) = G(k) \oplus m$$

• Dec : it takes as input a key $k \in \{0,1\}^n$ and a ciphertext $c \in \{0,1\}^{\ell(n)}$, it outputs

$$m \leftarrow \mathsf{Dec}(G(k), c) = G(k) \oplus c.$$

Semantic Security

Security Game

Definition

An encryption scheme is semantically secure if for all efficient \mathcal{A} the following holds:

$$\mathsf{Adv}_{E,\mathcal{A}}^{\mathrm{eav}}(n) = \Pr[\mathsf{A} \text{ wins}] - 1/2 \le \mathsf{negl}(n)$$

What about security for multiple encryptions?

Semantic Security (also called Computational indistinguishability)

More formally,

- Let us distinguish between the two cases of *b* = 0 or *b* = 1. Call the first EXP(0) and the second EXP(1).
- For b = 0, 1, let G_b be the event that the output of the experiment EXP(b)=1. Now

$$\mathsf{Adv}_{E,\mathcal{A}}^{\mathrm{ss}}(n) = |\Pr(G_0) - \Pr(G_1)|$$

Theorem

If *G* is a secure PRG, then the encryption scheme derived from *G* is semantically secure.

Lemma

If A is an adversary against a semantic secure encryption scheme E, then there exists an adversary B against the PRG G of E s.t.

 $\mathsf{Adv}_{E,\mathcal{A}}^{\mathrm{ss}}(n) \leq 2 \cdot \mathsf{Adv}_{G,\mathcal{B}}^{\mathrm{prg}}(n)$

Proof.

(By reduction)

Let G_b the event that the adversary outputs b' = 1 if the challenger uses the PRG while encrypting and R_b is the same but when using a truly random generator.

$$\begin{aligned} \mathsf{Adv}_{E,\mathcal{A}}^{\mathrm{ss}}(n) &= |\operatorname{Pr}(G_0) - \operatorname{Pr}(G_1)| \\ &= |\operatorname{Pr}(G_0) - \operatorname{Pr}(R_0) + \operatorname{Pr}(R_0) - \operatorname{Pr}(R_1) \\ &+ \operatorname{Pr}(R_1) - \operatorname{Pr}(G_1)| \\ &\leq |\operatorname{Pr}(G_0) - \operatorname{Pr}(R_0)| + \underbrace{|\operatorname{Pr}(R_0) - \operatorname{Pr}(R_1)|}_{= 0 \text{ as OTP is sem. secure.}} \\ &+ |\operatorname{Pr}(R_1) - \operatorname{Pr}(G_1)| \\ &= 2\operatorname{Adv}_{G,\mathcal{B}}^{\mathrm{prg}}(n). \end{aligned}$$

Stream Ciphers

- Terminology is not standard: it is either considered to be practical instantiations of pseudo-random generators or the encryption scheme which uses it.
- They produce as many random bits as exactly needed.
- They are more flexible (no upper bound on the number of bits) and efficient (each application takes the exact number of random bits that it requests)
- A stream cipher consists of two main deterministic algorithms:
- Init(s, IV): takes a seed s and an optional *initialization vector IV* and outputs an initial state st₀
- GetBits(*st_i*): takes the *i*-th state information st_i and outputs a bit y and an updated state, i.e. st_{i+1}

Stream Ciphers

Construction of a PRG G_{ℓ} :

 $\begin{aligned} \mathbf{st}_0 &\leftarrow \mathsf{Init}(s, IV) \\ \mathbf{for} \ i &= 1, \cdots, \ell; \\ (y_i, \mathbf{st}_i) &\leftarrow \mathsf{GetBits}(\mathbf{st}_{i-1}) \\ \mathbf{return} \ y_1, \cdots, y_\ell \end{aligned}$

Stream Cipher Mode of Operations

Stream Cipher Modes of Operations

- synchronized mode.
 - It gives a stateful CPA-secure encryption scheme.
 - Sender and Receiver must be synchronized.
 - It generates a long pseudo-random stream- different parts of it are used to encrypt different messages.
 - Therefore, messages should be received in order.
- unsynchronized mode.
 - It needs initialization vectors.
 - It gives stateless CPA-secure encryption.

Examples of Stream Ciphers

- Linear-Feedback Shift Registers (LFSR)
- RC4 by Ron Rivest 1987 (recent attack: AlFardan et al. 2013)
- eStream: Salsa 20, ChaCha (2008), and SOSEMANUK.
- eStream competition page:

http://competitions.cr.yp.to/estream.html

- The state in RC4 consists of the triplet (*S*, *i*, *j*). S is a 256-byte array that contains a permutation of the numbers 0, · · · , 255. both *i*, *j* ∈ {0, · · · , 255}.
- The key can be up to 256 byte long.

RC4- the Init() algorithm

Input: a 16-byte key Output: Initial state (S, i, j)for $i = 1, \dots, 255$: $S[i] \leftarrow i \triangleright$ it sets S to the identity permutation $k[i] \leftarrow k[i \mod 16]$ it expands the key to 256 bytes by repetition i = 0for $i = 1, \dots, 255$; $i \leftarrow i + S[i] + k[i] \mod 256$ Swap S[i] and $S[i] \rightarrow$ "pseudo-random" swapping of S's elements $i \leftarrow 0, i \leftarrow 0$ return (S, i, j)

20 of 37

Input: Current state (S, i, j)Output: byte y, updated state (S, i, j) $i \leftarrow i + 1 \mod 256$ $j \leftarrow j + S[i] \mod 256 \triangleright$ changing j in a "pseudo-random" way Swap S[i] and S[j] $t \leftarrow S[i] + S[j] \mod 256$ $y \leftarrow S[t]$ return (S, i, j) r

return (S, i, j), y

- Weaknesses in its key scheduling algorithm, i.e. the Init() algorithm.
- Biases in the second output byte of RC4: the probability that it is 0 is 1/128 instead of 1/256 for S = 256.
- Biases in further bytes: *double-byte* or *adjacent-byte* biases.
- Conclusion: not secure, nevertheless, "its usage is still running at about 30% of all TLS traffic" (Garman et al. March 2015)

RC4: Security Analysis [AlFardan et al. 2013]

Figure: Recovery rate of the single-byte bias attack (based on 256 experiments)

More security definitions are needed...

- Stream ciphers are semantically secure.
- But what about multiple encryptions?
- What if the adversary wants to be challenged on two vectors of messages instead of two single messages?
- Obviously, he can trivially win the game (why?)
- Conclusion: deterministic encryption schemes are NOT secure under the multiple encryptions model.

More security definitions are needed...

- Stream ciphers are semantically secure.
- But what about multiple encryptions?
- What if the adversary wants to be challenged on two vectors of messages instead of two single messages?
- Obviously, he can trivially win the game (why?)
- Conclusion: deterministic encryption schemes are NOT secure under the multiple encryptions model.

CPA Indistinguishability Experiment $\mathsf{PrivK}_{\mathcal{A},E}^{\mathsf{cpa}}$

Definition

An encryption scheme is CPA-secure if for all efficient \mathcal{A} the following holds:

$$\mathsf{Adv}^{\mathsf{cpa}}_{\mathcal{A}, E}(n) = \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A}, E}(n) = 1] - 1/2 = \mathsf{negl}(n)$$

Where $\operatorname{Priv} K_{\mathcal{A}, E}^{\operatorname{cpa}}(n) = 1$ if b' = b, and 0 otherwise. Note: CPA-secure \Rightarrow CPA secure for multiple encryptions. CCA Indistinguishability Experiment $\text{PrivK}_{A,E}^{\text{cca}}$

Definition

An encryption scheme is CCA-secure if for all efficient A the following holds:

 $\mathsf{Adv}_{\mathcal{A},E}^{\mathsf{cca}}(n) = \Pr[\mathsf{PrivK}_{\mathcal{A},E}^{\mathsf{cca}}(n) = 1] - 1/2 = \mathsf{negl}(n)$

26 of 37

Outline

2 More Security Definitions: CPA and CCA

3 Pseudo-Random Functions/Permutations

Pseudo-Random Functions

- A generalization of the notion of pseudo-random generators.
- We now consider a "random-looking" function.
- It is the pseudo-randomness of a distribution on functions.
- We are interested in *keyed functions*, i.e. $F: \{0,1\}^* \times \{0,1\}^* \rightarrow \{0,1\}^*$.
- Once we choose k, we fix it, and then use $F_k : \{0,1\}^* \to \{0,1\}^*$.
- *F* is *length-preserving* if the lengths of the key, input, output are equal.
- *F* is pseudo-random if the function *F_k*, for a uniform key *k*, is indistinguishable from a function chosen uniformally at random from the set of all functions with the same domain and range.

Pseudo-Random Functions

Definition

Let Func[X, Y] be the set of all functions from X to Y. A function $F: K \times X \rightarrow Y$ is a secure Pseudo-Random Function (PRF) if F is efficiently computable and for all PPT distinguishers A

 $\mathsf{Adv}_{F,\mathcal{A}}^{\mathrm{prf}}(n) = |\Pr[\mathcal{A}^{F()}(n) = 1] - \Pr[\mathcal{A}^{F_k()}(n) = 1]| < \mathsf{negl}(n)$

where $F \in Func[X, Y]$, $k \in K$, and A has access to the function in question, *i.e.* either F() and $F_k()$.

Note that $|Func[X, Y]| = |X|^{|Y|}$.

A pseudo-random function $F : K \times X \rightarrow Y$ is an efficient pseudo-random permutation if the following hold:

- *F* is injective and |X| = |Y|.
- *F* is deterministic and efficiently computable.
- F^{-1} is efficiently computable.

In practice: $F : \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$, where;

- 3DES: *n* = 64 bits, *k* = 168 bits
- AES: *n* = 128 bits, *k* = 128, 192, 256 bits

A pseudo-random function $F : K \times X \rightarrow Y$ is an efficient pseudo-random permutation if the following hold:

- *F* is injective and |X| = |Y|.
- *F* is deterministic and efficiently computable.
- F^{-1} is efficiently computable.

In practice: $F : \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$, where;

- 3DES: n = 64 bits, k = 168 bits
- AES: *n* = 128 bits, *k* = 128, 192, 256 bits

Encryption using PRP

Let $F : \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a pseudo-random permutation. We define the following encryption scheme E = (KeyGen, Enc, Dec):

- KeyGen : it takes *n* and outputs a key $k \in \{0, 1\}^n$.
- Enc: it takes a key k ∈ {0,1}ⁿ and message m, it picks a random r ← {0,1}ⁿ, and outputs

$$(c_0,c_1) \leftarrow (r,F_k(r)\oplus m).$$

• Dec: it takes a key k and a ciphertext $c = (c_0, c_1)$ and outputs

 $m \leftarrow (F_k(c_0) \oplus c_1).$

Theorem

If *F* is a pseudo-random permutation then the encryption scheme *E* is CPA-secure.

Proof.

We will first prove that a version E' of this encryption scheme would be indeed CPA-secure if the function F was truly random, and then show that if E was insecure then we can distinguish Ffrom a truly random function.

For E', there are two cases:

- *r_c* didn't appear in any of the encryption queries, and therefore the probability to win the game in this case is exactly 1/2.
- *r_c* appeared in *at least* one of the queries. Assuming that the adversary is restricted to *q*(*n*) queries, then the probability of this event is at most *q*(*n*)/2^{*n*}.

Thus $\Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A}, E'}(n) = 1] \le 1/2 + q(n)/2^n$.

Proof.

F is a PRP \Rightarrow

$$\left| \Pr[\mathcal{A}^{F()}(n) = 1] - \Pr[\mathcal{A}^{F_k()}(n) = 1] \right| < \mathsf{negl}(n)$$

One can easily see that $\Pr[\mathsf{PrivK}_{\mathcal{A},E'}^{\mathsf{cpa}}(n) = 1] = \Pr[\mathcal{A}^{F()}(n) = 1]$ and $\Pr[\mathsf{PrivK}_{\mathcal{A},E}^{\mathsf{cpa}}(n) = 1] = \Pr[\mathcal{A}^{F_k()}(n) = 1]$. Thus

$$\Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A}, E}(n) = 1] - \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A}, E'}(n) = 1] \big| \le \mathsf{negl}(n)$$

Therefore

$$\Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},E}(n) = 1] \le 1/2 + q(n)/2^n + \mathsf{negl}(n) \,.$$

Strong Pseudo-Random Permutations

Definition

Let Perm_n be the set of all permutations from $\{0,1\}^n$ to $\{0,1\}^n$. Let $f: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be an efficient length-preserving, keyed permutation. f is a strong pseudo-random permutation if for all probabilistic polynomial-time distinguishers D, there exists a negligible function negl such that

$$|\Pr[D^{f()f^{-1}()}(n) = 1] - \Pr[D^{f_k()f_k^{-1}()}(n) = 1]| < \mathsf{negl}(n)$$

where $f \in_R \text{Perm}_n$, $k \in_R \{0, 1\}^k$, and *D* has access to the functions in question, i.e. either $f(), f^{-1}()$ and $f_k(), f_k^{-1}()$.

Notes:

- Strong PRP \Rightarrow PRP
- $|\operatorname{Perm}_n| = 2^n!$

Further Reading (1)

- Nadhem J AlFardan, Daniel J Bernstein, Kenneth G Paterson, Bertram Poettering, and Jacob CN Schuldt.
 On the security of RC4 in TLS.
 In USENIX Security, pages 305–320, 2013.
- Boaz Barak and Shai Halevi.

A model and architecture for pseudo-random generation with applications to/dev/random.

In *Proceedings of the 12th ACM conference on Computer and communications security*, pages 203–212. ACM, 2005.

Daniel J Bernstein.

The Salsa20 Family of Stream Ciphers.

In *New stream cipher designs*, pages 84–97. Springer, 2008.

Further Reading (2)

- Lenore Blum, Manuel Blum, and Mike Shub.
 A simple unpredictable pseudo-random number generator. SIAM Journal on computing, 15(2):364–383, 1986.
- Christian Cachin. Entropy measures and unconditional security in cryptography. PhD thesis, SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH, 1997.
- Scott Fluhrer, Itsik Mantin, and Adi Shamir.
 Weaknesses in the key scheduling algorithm of RC4.
 In Selected areas in cryptography, pages 1–24. Springer, 2001.

Further Reading (3)

- Christina Garman, Kenneth G Paterson, and Thyla van der Merwe.
 Attacks only get better: Password recovery attacks against RC4 in TLS.
 2015.
- Itsik Mantin and Adi Shamir.
 A practical attack on broadcast RC4.
 In *Fast Software Encryption*, pages 152–164. Springer, 2002.