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Message Integrity

• We want parties to securely communicate over insecure
channels.

• Is is enough to encrypt the messages?
• What if the messages were modified in transit?
• What about authenticity?
• There is clearly a difference between secrecy and Integrity,

therefore different cryptographic tools should be used to
achieve both of them.
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What about perfect secrecy

• Recall that OTP is a perfectly secure encryption scheme.
• Does it ensure any level of message integrity?
• From a given ciphertext, you can produce a new valid

ciphertext, by just flipping a single bit!
• This could change the amount of money that you want to

transfer from your account.
• Perfect secrecy is not violated here!
• But, perfect secrecy simply doesn’t imply message integrity!
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Message Authentication Code (MAC)

• Message authentication code is the tool to be used to ensure
message integrity.

• Informally speaking, the MAC’s goal is to prevent an adversary
from tampering with the messages.

• To prevent the adversary from impersonating, parties need to
share a secret key as in the encryption!
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MAC: Formal Definition

Definition
A MAC consists of the following three probabilistic polynomial-time
algorithms (KeyGen,Mac,Verify):
• KeyGen(1n): takes the security parameter n and outputs a key k

s.t. |k| ≥ n
• Mack(m ∈ {0, 1}∗): is a tagging algorithm, takes a key k and a

message m and outputs a tag t.
• Verifyk(m, t): a deterministic algorithm that outputs a bit b, 0 for

invalid and 1 for valid.
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MAC

• Correctness of MAC: ∀n,∀k← KeyGen(1n) and ∀m ∈ {0, 1}∗,
Verifyk(m,Mack(m)) = 1 holds.

• Fixed-length MAC: if it is just defined for messages
m ∈ {0, 1}`(n), we call the scheme a fixed-length MAC for
messages of length `(n).
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Security of MAC-Intuition

• Intuitively speaking, an adversary should not be able to
efficiently produce a valid tag on a new message that wasn’t
authenticated before.

• Taking into consideration that the adversary can see all the
messages/tags pairs, in our formal definition, we need to give
the adversary access to a tagging Oracle.
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Security of MAC- Formal Definition
Given S = (KeyGen,Mac,Verify), an adversary A, and a security
parameter n, we define the following experiment:

Experiment

MacUnforg
A,S

• Key generation: k← KeyGen(1n).
• Tag queries: the adversary A is given oracle access to Mack().

The set of all his queries is Q.
• Adversary’s output: the adversary A eventually outputs (m, t)
• Experiment’s output: if

Verifyk(m, t) = 1 ∧ m 6∈ Q

output 1, otherwise output 0.
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𝑸 = {𝒎𝟏, … , 𝒎𝒏} 

𝑪𝒐𝒎𝒑𝒖𝒕𝒆 𝒕′ ≔ 𝑴𝒂𝒄𝒌(𝒎) 
𝑻𝒆𝒔𝒕 𝒊𝒇 𝒕 = 𝒕′𝒂𝒏𝒅 𝒎 ∉ 𝑸 

𝒕𝟏, … , 𝒕𝒏 

(𝒎, 𝒕) 

𝑪𝒉𝒂𝒍𝒍𝒆𝒏𝒈𝒆𝒓 
 

𝑨𝒅𝒗𝒆𝒓𝒔𝒂𝒓𝒚 
 𝑨 

𝑀𝐴𝐶𝑢𝑛𝑓𝑜𝑟𝑔 Game  
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Security of MAC

A MAC scheme is said to be Existentially unforgeable under an
adaptive chosen-message attack if no efficient adversary can win
the previous game with non-negligible probability. Formally
speaking,

Definition
A message authentication code S = (KeyGen,Mac,Verify) is
secure if for all probabilistic polynomial-time adversary A, the
following holds

Pr[MacUnforg
A,S (n) = 1] ≤ negl(n) .
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MAC and Replay attacks

• An adversary cannot change the message without being
detected by the receiver if it has a valid tag.

• However, the adversary can replay and send the same
message again.

• The receiver cannot really detect this malicious behaviour.
• Therefore MAC doesn’t prevent replay attacks from happening.
• Common techniques to prevent replay attacks:
◦ Counters: users maintain synchronized state.
◦ Time-stamps: add the current time to the beginning of the

messages before authenticating them.
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Security of MAC- what is the difference here?
Given S = (KeyGen,Mac,Verify), an adversary A, and a security
parameter n, we define the following experiment:

Experiment

MacUnforg
A,S

• Key generation: k← KeyGen(1n).
• Tag queries: the adversary A is given oracle access to Mack().

The set of all his queries is Q.
• Adversary’s output: the adversary A eventually outputs (m, t)
• Experiment’s output: if

Verifyk(m, t) = 1 ∧ (m, t) 6∈ Q

output 1, otherwise output 0.
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Strongly Secure MAC

Informally speaking, if a MAC scheme is strongly secure, then
adversaries can’t produce tags on any message (including already
authenticated ones!).

Definition
A message authentication code S = (KeyGen,Mac,Verify) is
strongly secure if for all probabilistic polynomial-time adversary A,
the following holds

Pr[MacSt−Unforg
A,S (n) = 1] ≤ negl(n) .

If the Mac algorithm in S is deterministic, and the verification is
done by computing t′ = Mack(m) and testing whether or not t′ = t,
then Secure MACs are Strongly secure as well.
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MAC- Side Channel Attacks

• When giving the adversary access to a MAC oracle, he just
learns the output, not the time taken by the Oracle to perform
the task.

• This is not what happens in the real systems!
• If the MAC verification doesn’t use time independent string

comparison (in the case of deterministic MAC), then the
adversary can measure the difference in time taken to compare
j or j + 1 bytes!

• This is a realistic attack, Xbox 360 had this difference, i.e.
between rejection times, equal to 2.2 milliseconds.

• Attackers managed to exploit this!
• Conclusion: MAC verification should always compare all the

bytes.
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A fixed-Length MAC from a PRF

Definition
Given a pseudorandom function F, a fixed-length MAC for
messages of length n consists of the two following algorithms:
• Mac(k ∈ {0, 1}n,m ∈ {0, 1}n): it outputs the tag t← Fk(m).
• Verify(k ∈ {0, 1}n,m ∈ {0, 1}n, t ∈ {0, 1}n): it output 1 iff

t = Fk(m)

If |m| 6= |k|, then Mac outputs ⊥ and Verify outputs 0.
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A fixed-Length MAC from a PRF

Theorem
If F is a pseudorandom function, then the fixed-length MAC for
messages of length n is secure.

Intuition of the proof:
• Define D as a distinguisher that is given access to some

function and needs to tell whether this function is
pseudorandom or truly random.

• Let A be the adversary trying to attack MAC.
• D will emulate the MAC experiment for A and check if it

succeeds in producing a valid tag on a new message m.
• if A manages to produce a valid tag, D will guess that its oracle

is “pseudo-random”, otherwise it outputs “truly random”
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Note that in the “adaptive” setting, the messages m1, . . . ,mn will be
sent separately.
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A fixed-Length MAC from a PRF

Sketch Proof.
We first analyse the security of the MAC if we use a truly random
function f , and then we replace f by a psendorandom function Fk.
Let the first MAC system be S′ = (KeyGen′,Mac′,Verify′) and the
second MAC be S = (KeyGen,Mac,Verify). Since for any
message m 6∈ Q, the value t = f (m) is uniformly distributed in
{0, 1}n from the point of view of the adversary A (remember,
KeyGen′ samples f uniformly at random from Funcn), it is then
straight forward to deduce that

Pr[MacUnforg
A,S′ (n) = 1] ≤ 2−n.
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A fixed-Length MAC from a PRF

Sketch Proof.
We can distinguish between two cases:
• D’s oracle is a pseudo-random function: in this case, the view

of A that is run as a subroutine by D and its view in the
experiment MacUnforg

A,S (n) are distributed identically. Moreover, D

outputs 1 exactly when MacUnforg
A,S′ (n) outputs 1.

• D’s oracle is a truly-random function: in this case, the view of A
that is run as a subroutine by D and its view in the experiment
MacUnforg

A,S′ (n) are distributed identically. Moreover, D outputs 1

exactly when MacUnforg
A,S′ (n) outputs 1.
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 𝑨 

𝑶𝒓𝒂𝒄𝒍𝒆  
𝒂𝒄𝒄𝒄𝒆𝒔𝒔  

𝒕𝒐 𝑭  
𝒐𝒓 𝑭𝒌 

𝑻𝒆𝒔𝒕 𝒊𝒇 𝒕 =? (𝒕′: = 𝑭(𝒎)) 
𝒂𝒏𝒅 𝒎 ∉ 𝑸 

𝑺𝒄𝒉𝒆𝒎𝒆 𝑺′ 
𝑪𝒉𝒂𝒍𝒍𝒆𝒏𝒈𝒆𝒓 

 
 𝒕𝒊: = 𝑭 𝒎𝒊   

𝑀𝐴𝐶𝑢𝑛𝑓𝑜𝑟𝑔 
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Sketch Proof.
As a result, we have that

Pr[MacUnforg
A,S′ (n) = 1] = Pr[Df ()(n) = 1] (1)

and
Pr[MacUnforg

A,S (n) = 1] = Pr[DFk()(n) = 1] (2)
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Sketch Proof.
If Fk is a pseudo-random function, using (1) and (2) we can
deduce

|Pr[MacUnforg
A,S′ (n) = 1]− Pr[MacUnforg

A,S (n) = 1]| ≤ negl(n) (3)

together with (1), we have

Pr[MacUnforg
A,S (n) = 1] ≤ 2−n + negl(n) .
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From fixed length MAC to general MAC for
arbitrary-length messages.

• If the PRF has a larger domain, MAC is secure for longer
messages.

• Furthermore, if the PRF can take arbitrary-length input, then
the previous MAC is secure for arbitrary-length messages.

• Our problem is with existing pseudo-random functions used in
practice.

• They are block ciphers that can just take short fixed-length
inputs!

• Question: How to build a MAC for arbitrary-length messages?
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A general MAC from a fixed-length one

Potential attacks:
• Block re-ordering attack: the attacker changes the order of

blocks, if (t1, t2) is a valid tag on (m1,m2) where m1 6= m2, then
(t2, t1) is a valid tag on (m2,m1) as m2,m1 is a different message!
Solution: authenticate a block index with each block.

• Truncation attack: the attacker removes blocks from the end of
the message and their corresponding blocks from the tag.
Solution: authenticate the message length with each block

• Mix-and-match attack: the attacker has valid tags (t1, t2, t3) and
(t′1, t′2, t′3) on the messages (m1,m2,m3) and (m′1,m′2,m′3). He
outputs (t1, t′2, t3) on the message (m1,m′2,m3).
Solution: authenticate a random message identifier along with
each block.

39 of 43



A general MAC from a fixed-length one

Potential attacks:
• Block re-ordering attack: the attacker changes the order of

blocks, if (t1, t2) is a valid tag on (m1,m2) where m1 6= m2, then
(t2, t1) is a valid tag on (m2,m1) as m2,m1 is a different message!
Solution: authenticate a block index with each block.

• Truncation attack: the attacker removes blocks from the end of
the message and their corresponding blocks from the tag.
Solution: authenticate the message length with each block

• Mix-and-match attack: the attacker has valid tags (t1, t2, t3) and
(t′1, t′2, t′3) on the messages (m1,m2,m3) and (m′1,m′2,m′3). He
outputs (t1, t′2, t3) on the message (m1,m′2,m3).
Solution: authenticate a random message identifier along with
each block.

39 of 43



A general MAC from a fixed-length one

Potential attacks:
• Block re-ordering attack: the attacker changes the order of

blocks, if (t1, t2) is a valid tag on (m1,m2) where m1 6= m2, then
(t2, t1) is a valid tag on (m2,m1) as m2,m1 is a different message!
Solution: authenticate a block index with each block.

• Truncation attack: the attacker removes blocks from the end of
the message and their corresponding blocks from the tag.
Solution: authenticate the message length with each block

• Mix-and-match attack: the attacker has valid tags (t1, t2, t3) and
(t′1, t′2, t′3) on the messages (m1,m2,m3) and (m′1,m′2,m′3). He
outputs (t1, t′2, t3) on the message (m1,m′2,m3).
Solution: authenticate a random message identifier along with
each block.

39 of 43



A general MAC from a fixed-length one

Potential attacks:
• Block re-ordering attack: the attacker changes the order of

blocks, if (t1, t2) is a valid tag on (m1,m2) where m1 6= m2, then
(t2, t1) is a valid tag on (m2,m1) as m2,m1 is a different message!
Solution: authenticate a block index with each block.

• Truncation attack: the attacker removes blocks from the end of
the message and their corresponding blocks from the tag.
Solution: authenticate the message length with each block

• Mix-and-match attack: the attacker has valid tags (t1, t2, t3) and
(t′1, t′2, t′3) on the messages (m1,m2,m3) and (m′1,m′2,m′3). He
outputs (t1, t′2, t3) on the message (m1,m′2,m3).
Solution: authenticate a random message identifier along with
each block.

39 of 43



A general MAC from a fixed-length one

Potential attacks:
• Block re-ordering attack: the attacker changes the order of

blocks, if (t1, t2) is a valid tag on (m1,m2) where m1 6= m2, then
(t2, t1) is a valid tag on (m2,m1) as m2,m1 is a different message!
Solution: authenticate a block index with each block.

• Truncation attack: the attacker removes blocks from the end of
the message and their corresponding blocks from the tag.
Solution: authenticate the message length with each block

• Mix-and-match attack: the attacker has valid tags (t1, t2, t3) and
(t′1, t′2, t′3) on the messages (m1,m2,m3) and (m′1,m′2,m′3). He
outputs (t1, t′2, t3) on the message (m1,m′2,m3).
Solution: authenticate a random message identifier along with
each block.

39 of 43



A general MAC from a fixed-length one

Potential attacks:
• Block re-ordering attack: the attacker changes the order of

blocks, if (t1, t2) is a valid tag on (m1,m2) where m1 6= m2, then
(t2, t1) is a valid tag on (m2,m1) as m2,m1 is a different message!
Solution: authenticate a block index with each block.

• Truncation attack: the attacker removes blocks from the end of
the message and their corresponding blocks from the tag.
Solution: authenticate the message length with each block

• Mix-and-match attack: the attacker has valid tags (t1, t2, t3) and
(t′1, t′2, t′3) on the messages (m1,m2,m3) and (m′1,m′2,m′3). He
outputs (t1, t′2, t3) on the message (m1,m′2,m3).
Solution: authenticate a random message identifier along with
each block.

39 of 43



A general MAC from a fixed-length one

Definition
Let S1 = (KeyGen1,Mac1,Verify1) be a fixed-length MAC for
messages of length n, we define a MAC S for arbitrary-length
messages as follows:
• Mac(k ∈ {0, 1}n,m ∈ {0, 1}∗):
◦ it takes a key k and a messge m, where |m| = ` < 2n/4.
◦ it then parses m into d blocks of length n/4, i.e. m1, · · · ,md.
◦ if the last block is not of size n/4, we pad it with 0s
◦ it uniformly chooses r ∈ {0, 1}n/4

◦ For i = 1, · · · , d, compute ti ← Mac1(k, r||`||i||mi), where i, ` are
encoded as strings of length n/4.

◦ Output t = (r, t1, · · · , td).

• Verify(k,m, (r, t1, · · · , td′)): parse m into d blocks, then output 1
iff Verify1(k, r||`||i||mi, ti) = 1 for 1 ≤ i ≤ d and d′ = d.
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A general MAC from a fixed-length one

Theorem
If S1 is a secure fixed-length MAC for messages of length n, then S
as defined above is a secure MAC for arbitrary-length messages.

Proof.
Exercise. hint: show that the aforementioned attacks are the only
possible ones!

Another way to build a secure MAC for arbitrary-length messages
is to use hash functions, which will be covered soon!

41 of 43



Further Reading (1)

I N.J. Al Fardan and K.G. Paterson.
Lucky thirteen: Breaking the TLS and DTLS record protocols.
In Security and Privacy (SP), 2013 IEEE Symposium on, pages
526–540, May 2013.

I J Lawrence Carter and Mark N Wegman.
Universal classes of hash functions.
In Proceedings of the ninth annual ACM symposium on Theory
of computing, pages 106–112. ACM, 1977.

I Jean Paul Degabriele and Kenneth G Paterson.
On the (in) security of IPsec in MAC-then-Encrypt
configurations.
In Proceedings of the 17th ACM conference on Computer and
communications security, pages 493–504. ACM, 2010.

42 of 43



Further Reading (2)

I Ted Krovetz and Phillip Rogaway.
The software performance of authenticated-encryption modes.
In Fast Software Encryption, pages 306–327. Springer, 2011.

I Douglas R. Stinson.
Universal hashing and authentication codes.
Designs, Codes and Cryptography, 4(3):369–380, 1994.

43 of 43


	Message Integrity
	Message Authentication Code (MAC)

