Message Authentication Code

Ali El Kaafarani

"Mathematical Institute
2 PQShield Ltd.
UNIVERSITY OF

OXFORD

Outline

ﬂ Message Integrity

9 Message Authentication Code (MAC)

Message Integrity

e We want parties to securely communicate over insecure
channels.

e Is is enough to encrypt the messages?
e What if the messages were modified in transit?
e What about authenticity?

e There is clearly a difference between secrecy and Integrity,
therefore different cryptographic tools should be used to
achieve both of them.

What about perfect secrecy

e Recall that OTP is a perfectly secure encryption scheme.

e Does it ensure any level of message integrity?

e From a given ciphertext, you can produce a new valid
ciphertext, by just flipping a single bit!

¢ This could change the amount of money that you want to
transfer from your account.

e Perfect secrecy is not violated here!
e But, perfect secrecy simply doesn’t imply message integrity!

40f 43

Outline

9 Message Authentication Code (MAC)

Message Authentication Code (MAC)

e Message authentication code is the tool to be used to ensure
message integrity.

¢ Informally speaking, the MAC’s goal is to prevent an adversary
from tampering with the messages.

¢ To prevent the adversary from impersonating, parties need to
share a secret key as in the encryption!

S
MAC: Formal Definition

Definition

A MAC consists of the following three probabilistic polynomial-time

algorithms (KeyGen, Mac, Verify):

o KeyGen(1"): takes the security parameter n and outputs a key k
s.t k| >n

e Macy(m € {0,1}%): is a tagging algorithm, takes a key k and a
message m and outputs a tag t.

e Verify,(m,t): a deterministic algorithm that outputs a bit b, 0 for
invalid and 1 for valid.

7of 43

MAC

e Correctness of MAC: Vn, Vk < KeyGen(1") and Vm € {0, 1},
Verify, (m, Macy(m)) = 1 holds.

e Fixed-length MAC: if it is just defined for messages

m € {0,1}*™, we call the scheme a fixed-length MAC for
messages of length ¢(n).

Security of MAC-Intuition

e Intuitively speaking, an adversary should not be able to
efficiently produce a valid tag on a new message that wasn’t
authenticated before.

e Taking into consideration that the adversary can see all the
messages/tags pairs, in our formal definition, we need to give
the adversary access to a tagging Oracle.

N
Security of MAC- Formal Definition

Given S = (KeyGen, Mac, Verify), an adversary .4, and a security
parameter n, we define the following experiment:

Unforg
Mac

e Key generation: k <— KeyGen(1").

e Tag queries: the adversary A is given oracle access to Macy().
The set of all his queries is Q.

e Adversary’s output: the adversary A eventually outputs (m,t)
e Experiment’s output: if

Verify,(m,t) =1 Am & Q

output 1, otherwise output 0.

10 of 43

MAC*forg Game

Q={m,...m}

Challenger : g Adversary
A

Compute t' := Mac,(m)
Testift =tandm ¢ Q

!

110fa3 Yes >1/No >0

N
Security of MAC

A MAC scheme is said to be Existentially unforgeable under an
adaptive chosen-message attack if no efficient adversary can win
the previous game with non-negligible probability. Formally
speaking,

Definition

A message authentication code S = (KeyGen, Mac, Verify) is
secure if for all probabilistic polynomial-time adversary A, the
following holds

Pr[Macy"(n) = 1] < negl(n).

12 0f 43

MAC and Replay attacks

e An adversary cannot change the message without being
detected by the receiver if it has a valid tag.

However, the adversary can replay and send the same
message again.

The receiver cannot really detect this malicious behaviour.

Therefore MAC doesn’t prevent replay attacks from happening.
Common techniques to prevent replay attacks:
o Counters: users maintain synchronized state.

o Time-stamps: add the current time to the beginning of the
messages before authenticating them.

13 of 43

Security of MAC- what is the difference here?

Given S = (KeyGen, Mac, Verify), an adversary .4, and a security
parameter n, we define the following experiment:

Unforg
Mac

e Key generation: k <— KeyGen(1").

e Tag queries: the adversary A is given oracle access to Macy().
The set of all his queries is Q.

e Adversary’s output: the adversary A eventually outputs (m,t)
e Experiment’s output: if

Verify, (m,t) = 1 A (m,1) € Q

output 1, otherwise output 0.

14 of 43

N
Strongly Secure MAC

Informally speaking, if a MAC scheme is strongly secure, then
adversaries can’t produce tags on any message (including already
authenticated ones!).

Definition
A message authentication code S = (KeyGen, Mac, Verify) is

strongly secure if for all probabilistic polynomial-time adversary A,
the following holds

Pr[Mac’ "9 (n) = 1] < negl(n).

If the Mac algorithm in S is deterministic, and the verification is
done by computing ¢ = Mac,(m) and testing whether or not ' = ¢,
then Secure MACs are Strongly secure as well.

150f 43

e
MAC- Side Channel Attacks

e When giving the adversary access to a MAC oracle, he just
learns the output, not the time taken by the Oracle to perform
the task.

16 of 43

e
MAC- Side Channel Attacks

e When giving the adversary access to a MAC oracle, he just
learns the output, not the time taken by the Oracle to perform
the task.

e This is not what happens in the real systems!

16 of 43

MAC- Side Channel Attacks

e When giving the adversary access to a MAC oracle, he just
learns the output, not the time taken by the Oracle to perform
the task.

e This is not what happens in the real systems!

e |If the MAC verification doesn’t use time independent string
comparison (in the case of deterministic MAC), then the
adversary can measure the difference in time taken to compare
jorj+1bytes!

16 of 43

MAC- Side Channel Attacks

e When giving the adversary access to a MAC oracle, he just
learns the output, not the time taken by the Oracle to perform
the task.

e This is not what happens in the real systems!

e |If the MAC verification doesn’t use time independent string
comparison (in the case of deterministic MAC), then the
adversary can measure the difference in time taken to compare
jorj+1bytes!

e This is a realistic attack, Xbox 360 had this difference, i.e.
between rejection times, equal to 2.2 milliseconds.

16 of 43

MAC- Side Channel Attacks

e When giving the adversary access to a MAC oracle, he just
learns the output, not the time taken by the Oracle to perform
the task.

¢ This is not what happens in the real systems!

e |If the MAC verification doesn’t use time independent string
comparison (in the case of deterministic MAC), then the
adversary can measure the difference in time taken to compare
jorj+1bytes!

e This is a realistic attack, Xbox 360 had this difference, i.e.
between rejection times, equal to 2.2 milliseconds.

e Attackers managed to exploit this!

16 of 43

e
MAC- Side Channel Attacks

e When giving the adversary access to a MAC oracle, he just
learns the output, not the time taken by the Oracle to perform
the task.

e This is not what happens in the real systems!

e |If the MAC verification doesn’t use time independent string
comparison (in the case of deterministic MAC), then the
adversary can measure the difference in time taken to compare
jorj+1bytes!

e This is a realistic attack, Xbox 360 had this difference, i.e.
between rejection times, equal to 2.2 milliseconds.

e Attackers managed to exploit this!
e Conclusion: MAC verification should always compare all the
bytes.

16 of 43

-
A fixed-Length MAC from a PRF

Definition

Given a pseudorandom function F, a fixed-length MAC for

messages of length n consists of the two following algorithms:

e Mac(k € {0,1}",m € {0,1}"): it outputs the tag t < Fy(m).

e Verify(k € {0,1}",m € {0,1}",1 € {0,1}"): it output 1 iff
t=F k(m)

If |m| # |k|, then Mac outputs L and Verify outputs 0.

17 of 43

-
A fixed-Length MAC from a PRF

If F is a pseudorandom function, then the fixed-length MAC for
messages of length n is secure.

Intuition of the proof:

e Define D as a distinguisher that is given access to some
function and needs to tell whether this function is
pseudorandom or truly random.

e Let A be the adversary trying to attack MAC.

e D will emulate the MAC experiment for A and check if it
succeeds in producing a valid tag on a new message m.

e if A manages to produce a valid tag, D will guess that its oracle
is “pseudo-random”, otherwise it outputs “truly random”

18 of 43

Distinguisher
D

Adversary

A

19 of 43

Distinguish
between F() and F,()

Distinguisher Adversary

D A

20 of 43

Note that in the “adaptive” setting, the messages m, ..., m, will be
sent separately.

Distingulsh
between F() and F,()

Q={m,...m}

Oracle

Distinguisher Adversary

D A

21 0f 43

Distinguish
between F() and F,()

Q={my... m,}

Distinguisher Adversary

D A

22 of 43

Distinguish
between F() and F,()

Q={my... m,}

Distinguisher Adversary

D A

23 of 43

Distinguish
between F() and F,()

Q={my... m,}

Distinguisher - g Adversary
D A

24 of 43

Distinguish
between F() and F,()

Distinguisher - g Adversary
D A

25 of 43

Distinguish
between F() and F,()

Distinguisher - g Adversary
D A

26 of 43

Distinguish
between F() and F,()

g Adversary
A

27 of 43

Distinguish
between F() and F,()

g Adversary
A

Testif t=t'and m & Q

28 of 43

Distinguish
between F() and F,()

g Adversary
A

Testif t=t'and m & Q

29 of 43

A fixed-Length MAC from a PRF

Sketch Proof.

We first analyse the security of the MAC if we use a truly random
function f, and then we replace f by a psendorandom function Fy.
Let the first MAC system be S’ = (KeyGen', Mac’, Verify') and the
second MAC be S = (KeyGen, Mac, Verify). Since for any
message m ¢ Q, the value t = f(m) is uniformly distributed in

{0, 1}" from the point of view of the adversary A (remember,
KeyGen' samples f uniformly at random from Func,), it is then
straight forward to deduce that

PriMacy % (n) = 1] < 27"

30 0f 43

A fixed-Length MAC from a PRF

Sketch Proof.
We can distinguish between two cases:

e D’s oracle is a pseudo-random function: in this case, the view

of A that is run as a subroutine by D and its view in the

experiment Macj?;°rg(n) are distributed identically. Moreover, D

outputs 1 exactly when Macy"s"®(n) outputs 1.

e D’s oracle is a truly-random function: in this case, the view of A

that is run as a subroutine by D and its view in the experiment
Macjt‘;?rg (n) are distributed identically. Moreover, D outputs 1

exactly when Macji‘;?rg (n) outputs 1.

310f43

Distinguish
between F() and F,()

g Adversary
A

Testif t=t'and m & Q

32 0f 43

MACunforg

Scheme S
Challenger
(t; = Fr(my)) e Q={my .. m,}
ty, . L, R
g Adversary
(m.) .

Distinguish
between F() and F,()

g Adversary
A

Testif t=t'and m & Q

MACunforg

Scheme S’
Challenger
(t; = F(my) Q={m,.,m,)
ty, . L, R
g Adversary
(m.) .

Sketch Proof.

As a result, we have that

Pr[Mac's®(n) = 1] = Pr[DO(n) = 1] (1)
and

Pr[Macy®"9(n) = 1] = Pr[D"0(n) = 1] 2)

v

36 of 43

Sketch Proof.

If Fy, is a pseudo-random function, using (1) and (2) we can
deduce

| Pr[Macy’¢"®(n) = 1] — Pr[Mac}ys"(n) = 1]| < negl(n) (3)
together with (1), we have

Pr[Mac’y§"(n) = 1] < 27" + negl(n).

37 of 43

From fixed length MAC to general MAC for
arbitrary-length messages.

e If the PRF has a larger domain, MAC is secure for longer
messages.

e Furthermore, if the PRF can take arbitrary-length input, then
the previous MAC is secure for arbitrary-length messages.

e Our problem is with existing pseudo-random functions used in
practice.

e They are block ciphers that can just take short fixed-length

inputs!

Question: How to build a MAC for arbitrary-length messages?

38 of 43

A general MAC from a fixed-length one

Potential attacks:

e Block re-ordering attack: the attacker changes the order of
blocks, if (¢, ;) is a valid tag on (m;, m,) where m; # m,, then
(t2,11) is a valid tag on (my, m;) as myp, m; is a different message!

39 0f 43

A general MAC from a fixed-length one

Potential attacks:

e Block re-ordering attack: the attacker changes the order of
blocks, if (¢, ;) is a valid tag on (m;, m,) where m; # m,, then
(t2,11) is a valid tag on (my, m;) as myp, m; is a different message!
Solution: authenticate a block index with each block.

A general MAC from a fixed-length one

Potential attacks:

e Block re-ordering attack: the attacker changes the order of
blocks, if (¢, ;) is a valid tag on (m;, m,) where m; # m,, then
(t2,11) is a valid tag on (my, m;) as myp, m; is a different message!
Solution: authenticate a block index with each block.

e Truncation attack: the attacker removes blocks from the end of
the message and their corresponding blocks from the tag.

39 0f 43

A general MAC from a fixed-length one

Potential attacks:

e Block re-ordering attack: the attacker changes the order of
blocks, if (¢, ;) is a valid tag on (m;, m,) where m; # m,, then
(t2,11) is a valid tag on (my, m;) as myp, m; is a different message!
Solution: authenticate a block index with each block.

e Truncation attack: the attacker removes blocks from the end of
the message and their corresponding blocks from the tag.
Solution: authenticate the message length with each block

39 0f 43

A general MAC from a fixed-length one

Potential attacks:

e Block re-ordering attack: the attacker changes the order of
blocks, if (¢, ;) is a valid tag on (m;, m,) where m; # m,, then
(t2,11) is a valid tag on (my, m;) as myp, m; is a different message!
Solution: authenticate a block index with each block.

e Truncation attack: the attacker removes blocks from the end of
the message and their corresponding blocks from the tag.
Solution: authenticate the message length with each block

e Mix-and-match attack: the attacker has valid tags (1, 1,,#;) and
(11,15, 1y) on the messages (m;,my, m3) and (m}, mh, m5). He
outputs (t1,%,23) on the message (m;, mb,m3).

39 0f 43

A general MAC from a fixed-length one

Potential attacks:

e Block re-ordering attack: the attacker changes the order of
blocks, if (¢, ;) is a valid tag on (m;, m,) where m; # m,, then
(t2,11) is a valid tag on (my, m;) as myp, m; is a different message!
Solution: authenticate a block index with each block.

e Truncation attack: the attacker removes blocks from the end of
the message and their corresponding blocks from the tag.
Solution: authenticate the message length with each block

e Mix-and-match attack: the attacker has valid tags (1, 1,,#;) and
(11,15, 1y) on the messages (m;,my, m3) and (m}, mh, m5). He
outputs (11,15, 13) on the message (my, m5, m3).

Solution: authenticate a random message identifier along with
each block.

39 0f 43

A general MAC from a fixed-length one

Definition
Let S, = (KeyGen,,Mac,, Verify,) be a fixed-length MAC for
messages of length n, we define a MAC S for arbitrary-length
messages as follows:
e Mac(k € {0,1}",m € {0,1}"):
it takes a key k and a messge m, where |m| = ¢ < 2"/*.
it then parses m into d blocks of length n/4, i.e. my,--- ,m,.
if the last block is not of size n/4, we pad it with Os
it uniformly chooses r € {0,1}"/*
Fori=1,---,d, compute t; < Mac (k, r||¢||i||m;), where i, ¢ are
encoded as strings of length n/4.
o Outputt= (r,t1, - ,tq).
e Verify(k,m, (r,t1,--- ,ty)): parse m into d blocks, then output 1
iff Verify, (k, r||€||i||m;, ;) = 1 for1 <i<d andd =d.

O O O O O

40 of 43

A general MAC from a fixed-length one

Theorem
If Sy is a secure fixed-length MAC for messages of length n, then S
as defined above is a secure MAC for arbitrary-length messages.

i A

Exercise. hint: show that the aforementioned attacks are the only
possible ones!]

o’

Another way to build a secure MAC for arbitrary-length messages
is to use hash functions, which will be covered soon!

41 of 43

-
Further Reading (1)

» N.J. Al Fardan and K.G. Paterson.
Lucky thirteen: Breaking the TLS and DTLS record protocols.
In Security and Privacy (SP), 2013 IEEE Symposium on, pages
526-540, May 2013.

» J Lawrence Carter and Mark N Wegman.
Universal classes of hash functions.
In Proceedings of the ninth annual ACM symposium on Theory
of computing, pages 106—112. ACM, 1977.

» Jean Paul Degabriele and Kenneth G Paterson.
On the (in) security of IPsec in MAC-then-Encrypt
configurations.
In Proceedings of the 17th ACM conference on Computer and
communications security, pages 493-504. ACM, 2010.

42 0f 43

Further Reading (2)

» Ted Krovetz and Phillip Rogaway.
The software performance of authenticated-encryption modes.
In Fast Software Encryption, pages 306—327. Springer, 2011.

» Douglas R. Stinson.
Universal hashing and authentication codes.
Designs, Codes and Cryptography, 4(3):369-380, 1994.

43 of 43

	Message Integrity
	Message Authentication Code (MAC)

