Message Authentication Code

Ali El Kaafarani

¹Mathematical Institute ² PQShield Ltd.

Outline

1 Message Integrity

2 Message Authentication Code (MAC)

Message Integrity

- We want parties to securely communicate over insecure channels.
- Is is enough to encrypt the messages?
- What if the messages were modified in transit?
- What about authenticity?
- There is clearly a difference between secrecy and Integrity, therefore different cryptographic tools should be used to achieve both of them.

What about perfect secrecy

- Recall that OTP is a perfectly secure encryption scheme.
- Does it ensure any level of message integrity?
- From a given ciphertext, you can produce a new valid ciphertext, by just flipping a single bit!
- This could change the amount of money that you want to transfer from your account.
- Perfect secrecy is not violated here!
- But, perfect secrecy simply doesn't imply message integrity!

Outline

1 Message Integrity

2 Message Authentication Code (MAC)

Message Authentication Code (MAC)

- Message authentication code is the tool to be used to ensure message integrity.
- Informally speaking, the MAC's goal is to prevent an adversary from tampering with the messages.
- To prevent the adversary from impersonating, parties need to share a secret key as in the encryption!

MAC: Formal Definition

Definition

A MAC consists of the following three probabilistic polynomial-time algorithms (KeyGen, Mac, Verify):

- KeyGen(1ⁿ): takes the security parameter n and outputs a key k
 s.t. |k| ≥ n
- $Mac_k(m \in \{0,1\}^*)$: is a tagging algorithm, takes a key k and a message m and outputs a tag t.
- Verify_k(m,t): a deterministic algorithm that outputs a bit b, 0 for invalid and 1 for valid.

MAC

- Correctness of MAC: $\forall n, \forall k \leftarrow \text{KeyGen}(1^n) \text{ and } \forall m \in \{0, 1\}^*, \text{Verify}_k(m, \text{Mac}_k(m)) = 1 \text{ holds.}$
- Fixed-length MAC: if it is just defined for messages $m \in \{0,1\}^{\ell(n)}$, we call the scheme a *fixed-length MAC for messages of length* $\ell(n)$.

Security of MAC-Intuition

- Intuitively speaking, an adversary should not be able to efficiently produce a valid tag on a new message that wasn't authenticated before.
- Taking into consideration that the adversary can see all the messages/tags pairs, in our formal definition, we need to give the adversary access to a tagging Oracle.

Security of MAC- Formal Definition

Given S = (KeyGen, Mac, Verify), an adversary A, and a security parameter n, we define the following experiment:

Experiment

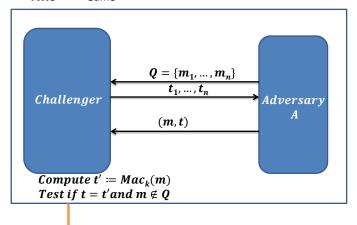
 $Mac_{A,S}^{Unforg}$

- Key generation: $k \leftarrow \text{KeyGen}(1^n)$.
- Tag queries: the adversary A is given oracle access to $Mac_k()$. The set of all his queries is Q.
- Adversary's output: the adversary A eventually outputs (m, t)
- Experiment's output: if

$$\mathsf{Verify}_k(m,t) = 1 \land m \not\in Q$$

output 1, otherwise output 0.

MACunforg Game



Security of MAC

A MAC scheme is said to be *Existentially unforgeable under an adaptive chosen-message attack* if no efficient adversary can win the previous game with non-negligible probability. Formally speaking,

Definition

A message authentication code S=(KeyGen, Mac, Verify) is secure if for all probabilistic polynomial-time adversary \mathcal{A} , the following holds

$$\Pr[\mathsf{Mac}^{\mathsf{Unforg}}_{\mathcal{A},S}(n)=1] \leq \mathsf{negl}(n)$$
.

MAC and Replay attacks

- An adversary cannot change the message without being detected by the receiver if it has a valid tag.
- However, the adversary can replay and send the same message again.
- The receiver cannot really detect this malicious behaviour.
- Therefore MAC doesn't prevent replay attacks from happening.
- Common techniques to prevent replay attacks:
 - Counters: users maintain synchronized state.
 - Time-stamps: add the current time to the beginning of the messages before authenticating them.

Security of MAC- what is the difference here?

Given S = (KeyGen, Mac, Verify), an adversary A, and a security parameter n, we define the following experiment:

Experiment

$Mac_{A,S}^{Unforg}$

- Key generation: $k \leftarrow \text{KeyGen}(1^n)$.
- Tag queries: the adversary A is given oracle access to $Mac_k()$. The set of all his queries is Q.
- Adversary's output: the adversary A eventually outputs (m,t)
- Experiment's output: if

$$\mathsf{Verify}_k(m,t) = 1 \land (m,t) \not\in Q$$

output 1, otherwise output 0.

Strongly Secure MAC

Informally speaking, if a MAC scheme is strongly secure, then adversaries can't produce tags on any message (including already authenticated ones!).

Definition

A message authentication code S=(KeyGen, Mac, Verify) is strongly secure if for all probabilistic polynomial-time adversary \mathcal{A} , the following holds

$$\Pr[\mathsf{Mac}_{\mathcal{A},S}^{St-\mathsf{Unforg}}(n)=1] \leq \mathsf{negl}(n)$$
.

If the Mac algorithm in S is deterministic, and the verification is done by computing $t' = \mathsf{Mac}_k(m)$ and testing whether or not t' = t, then Secure MACs are Strongly secure as well.

- When giving the adversary access to a MAC oracle, he just learns the output, not the time taken by the Oracle to perform the task.
- This is not what happens in the real systems!
- If the MAC verification doesn't use time independent string comparison (in the case of deterministic MAC), then the adversary can measure the difference in time taken to compare j or j + 1 bytes!
- This is a realistic attack, Xbox 360 had this difference, i.e. between rejection times, equal to 2.2 milliseconds.
- Attackers managed to exploit this!
- Conclusion: MAC verification should always compare all the bytes.

- When giving the adversary access to a MAC oracle, he just learns the output, not the time taken by the Oracle to perform the task.
- This is not what happens in the real systems!
- If the MAC verification doesn't use time independent string comparison (in the case of deterministic MAC), then the adversary can measure the difference in time taken to compare j or j + 1 bytes!
- This is a realistic attack, Xbox 360 had this difference, i.e. between rejection times, equal to 2.2 milliseconds.
- Attackers managed to exploit this!
- Conclusion: MAC verification should always compare all the bytes.

- When giving the adversary access to a MAC oracle, he just learns the output, not the time taken by the Oracle to perform the task.
- This is not what happens in the real systems!
- If the MAC verification doesn't use time independent string comparison (in the case of deterministic MAC), then the adversary can measure the difference in time taken to compare j or j + 1 bytes!
- This is a realistic attack, Xbox 360 had this difference, i.e. between rejection times, equal to 2.2 milliseconds.
- Attackers managed to exploit this!
- Conclusion: MAC verification should always compare all the bytes.

- When giving the adversary access to a MAC oracle, he just learns the output, not the time taken by the Oracle to perform the task.
- This is not what happens in the real systems!
- If the MAC verification doesn't use time independent string comparison (in the case of deterministic MAC), then the adversary can measure the difference in time taken to compare j or j + 1 bytes!
- This is a realistic attack, Xbox 360 had this difference, i.e. between rejection times, equal to 2.2 milliseconds.
- Attackers managed to exploit this!
- Conclusion: MAC verification should always compare all the bytes.

- When giving the adversary access to a MAC oracle, he just learns the output, not the time taken by the Oracle to perform the task.
- This is not what happens in the real systems!
- If the MAC verification doesn't use time independent string comparison (in the case of deterministic MAC), then the adversary can measure the difference in time taken to compare j or j + 1 bytes!
- This is a realistic attack, Xbox 360 had this difference, i.e. between rejection times, equal to 2.2 milliseconds.
- Attackers managed to exploit this!
- Conclusion: MAC verification should always compare all the bytes.

- When giving the adversary access to a MAC oracle, he just learns the output, not the time taken by the Oracle to perform the task.
- This is not what happens in the real systems!
- If the MAC verification doesn't use time independent string comparison (in the case of deterministic MAC), then the adversary can measure the difference in time taken to compare j or j + 1 bytes!
- This is a realistic attack, Xbox 360 had this difference, i.e. between rejection times, equal to 2.2 milliseconds.
- · Attackers managed to exploit this!
- Conclusion: MAC verification should always compare all the bytes.

A fixed-Length MAC from a PRF

Definition

Given a pseudorandom function F, a fixed-length MAC for messages of length n consists of the two following algorithms:

- $Mac(k \in \{0,1\}^n, m \in \{0,1\}^n)$: it outputs the tag $t \leftarrow F_k(m)$.
- Verify $(k \in \{0,1\}^n, m \in \{0,1\}^n, t \in \{0,1\}^n)$: it output 1 iff $t = F_k(m)$

If $|m| \neq |k|$, then Mac outputs \perp and Verify outputs 0.

A fixed-Length MAC from a PRF

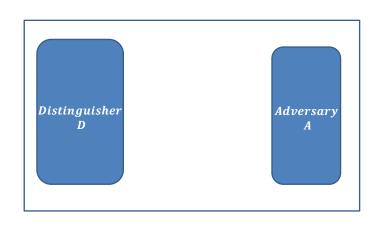
Theorem

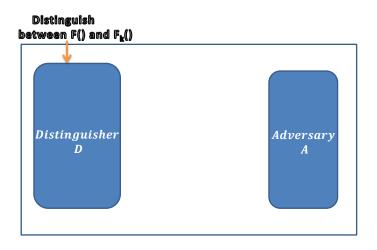
If F is a pseudorandom function, then the fixed-length MAC for messages of length n is secure.

Intuition of the proof:

- Define D as a distinguisher that is given access to some function and needs to tell whether this function is pseudorandom or truly random.
- Let A be the adversary trying to attack MAC.
- D will emulate the MAC experiment for A and check if it succeeds in producing a valid tag on a new message m.
- if A manages to produce a valid tag, D will guess that its oracle is "pseudo-random", otherwise it outputs "truly random"

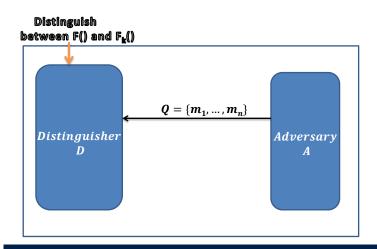
Oracle acccess to F or Fk

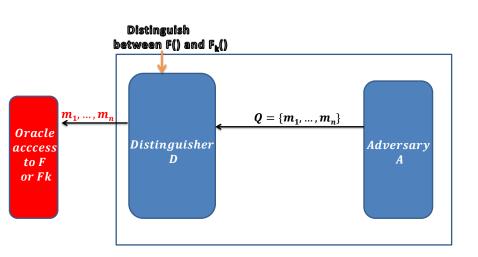


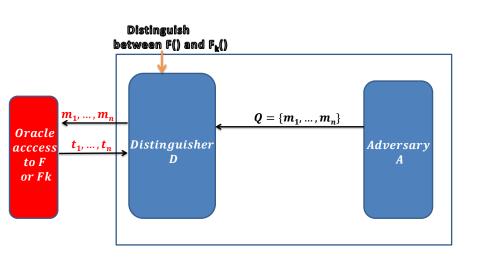


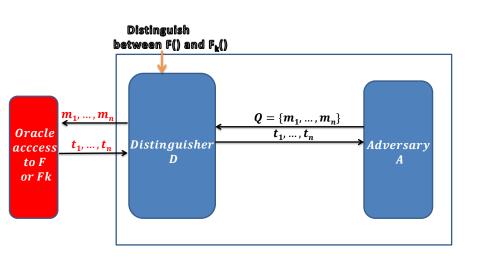
Note that in the "adaptive" setting, the messages m_1, \ldots, m_n will be sent separately.

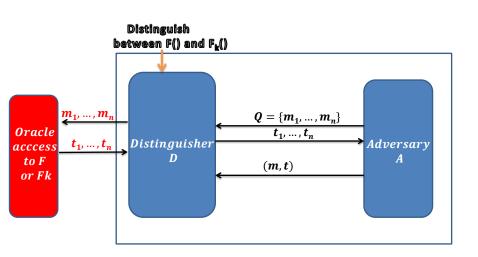
Oracle acccess to F or Fk

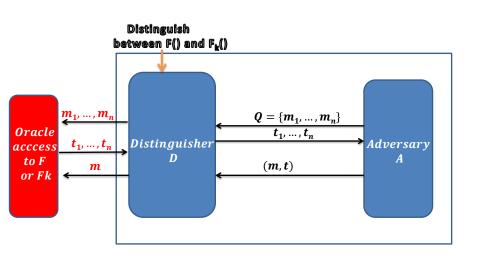


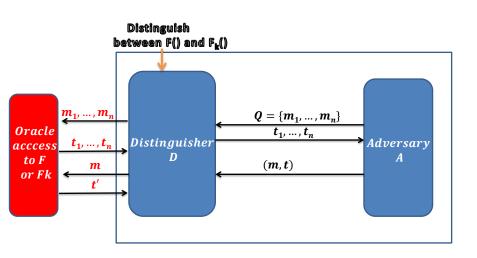


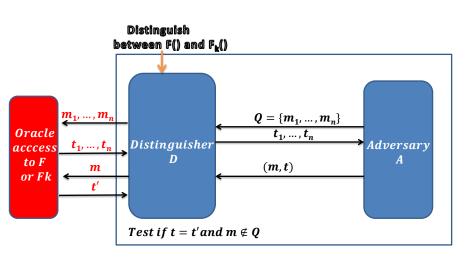


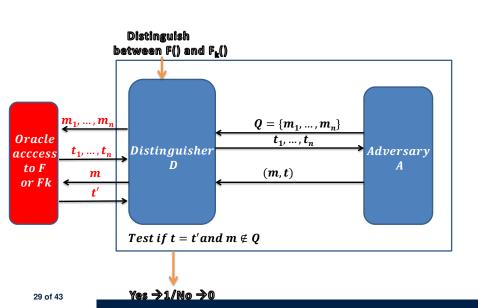












A fixed-Length MAC from a PRF

Sketch Proof.

We first analyse the security of the MAC if we use a truly random function f, and then we replace f by a psendorandom function F_k . Let the first MAC system be S' = (KeyGen', Mac', Verify') and the second MAC be S = (KeyGen, Mac, Verify). Since for any message $m \notin Q$, the value t = f(m) is uniformly distributed in $\{0,1\}^n$ from the point of view of the adversary A (remember, KeyGen' samples f uniformly at random from Func_n), it is then straight forward to deduce that

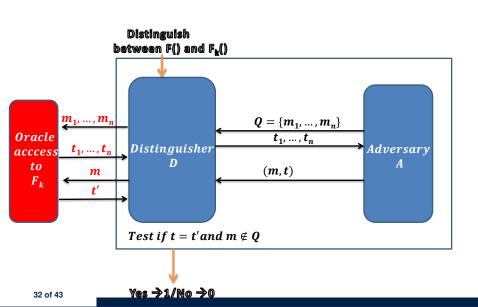
$$\Pr[\mathsf{Mac}_{\mathcal{A},S'}^{\mathsf{Unforg}}(n)=1] \leq 2^{-n}.$$

A fixed-Length MAC from a PRF

Sketch Proof.

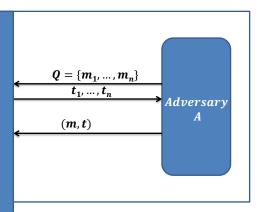
We can distinguish between two cases:

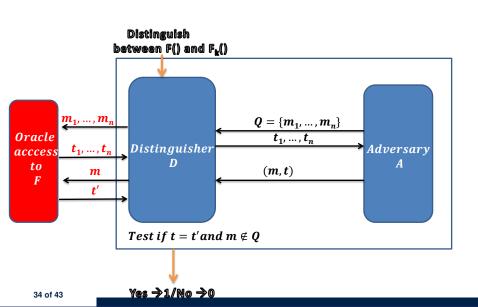
- D's oracle is a pseudo-random function: in this case, the view of $\mathcal A$ that is run as a subroutine by D and its view in the experiment $\operatorname{Mac}_{\mathcal A,S}^{\operatorname{Unforg}}(n)$ are distributed identically. Moreover, D outputs 1 exactly when $\operatorname{Mac}_{\mathcal A,S'}^{\operatorname{Unforg}}(n)$ outputs 1.
- D's oracle is a truly-random function: in this case, the view of A that is run as a subroutine by D and its view in the experiment Mac^{Unforg}_{A,S'}(n) are distributed identically. Moreover, D outputs 1 exactly when Mac^{Unforg}_{A,S'}(n) outputs 1.

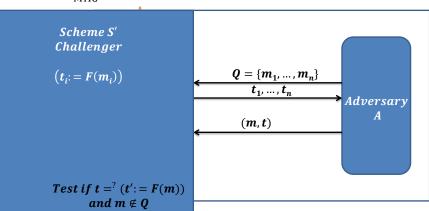


$$(\boldsymbol{t}_i = \boldsymbol{F}_k(\boldsymbol{m}_i))$$

Test if $t = (t' := F_k(m))$ and $m \notin Q$







Sketch Proof.

As a result, we have that

$$\Pr[\mathsf{Mac}_{\mathcal{A},S'}^{\mathsf{Unforg}}(n) = 1] = \Pr[D^{f()}(n) = 1] \tag{1}$$

and

$$\Pr[\mathsf{Mac}_{\mathcal{A},S}^{\mathsf{Unforg}}(n) = 1] = \Pr[D^{F_k()}(n) = 1] \tag{2}$$

Sketch Proof.

If F_k is a pseudo-random function, using (1) and (2) we can deduce

$$|\Pr[\mathsf{Mac}^{\mathsf{Unforg}}_{\mathcal{A},\mathcal{S}'}(n)=1] - \Pr[\mathsf{Mac}^{\mathsf{Unforg}}_{\mathcal{A},\mathcal{S}}(n)=1]| \le \mathsf{negl}(n)$$
 (3)

together with (1), we have

$$\Pr[\mathsf{Mac}^{\mathsf{Unforg}}_{\mathcal{A},S}(n)=1] \leq 2^{-n} + \mathsf{negl}(n)$$
.

From fixed length MAC to general MAC for arbitrary-length messages.

- If the PRF has a larger domain, MAC is secure for longer messages.
- Furthermore, if the PRF can take arbitrary-length input, then the previous MAC is secure for arbitrary-length messages.
- Our problem is with existing pseudo-random functions used in practice.
- They are block ciphers that can just take short fixed-length inputs!
- Question: How to build a MAC for arbitrary-length messages?

- Block re-ordering attack: the attacker changes the order of blocks, if (t_1, t_2) is a valid tag on (m_1, m_2) where $m_1 \neq m_2$, then (t_2, t_1) is a valid tag on (m_2, m_1) as m_2, m_1 is a different message! Solution: authenticate a block index with each block.
- Truncation attack: the attacker removes blocks from the end of the message and their corresponding blocks from the tag.
 Solution: authenticate the message length with each block
- Mix-and-match attack: the attacker has valid tags (t_1, t_2, t_3) and (t'_1, t'_2, t'_3) on the messages (m_1, m_2, m_3) and (m'_1, m'_2, m'_3) . He outputs (t_1, t'_2, t_3) on the message (m_1, m'_2, m_3) . Solution: authenticate a *random message identifier* along with each block.

- Block re-ordering attack: the attacker changes the order of blocks, if (t_1, t_2) is a valid tag on (m_1, m_2) where $m_1 \neq m_2$, then (t_2, t_1) is a valid tag on (m_2, m_1) as m_2, m_1 is a different message! Solution: authenticate a block index with each block.
- Truncation attack: the attacker removes blocks from the end of the message and their corresponding blocks from the tag.
 Solution: authenticate the message length with each block
- Mix-and-match attack: the attacker has valid tags (t_1, t_2, t_3) and (t'_1, t'_2, t'_3) on the messages (m_1, m_2, m_3) and (m'_1, m'_2, m'_3) . He outputs (t_1, t'_2, t_3) on the message (m_1, m'_2, m_3) . Solution: authenticate a *random message identifier* along with each block.

- Block re-ordering attack: the attacker changes the order of blocks, if (t_1, t_2) is a valid tag on (m_1, m_2) where $m_1 \neq m_2$, then (t_2, t_1) is a valid tag on (m_2, m_1) as m_2, m_1 is a different message! Solution: authenticate a block index with each block.
- Truncation attack: the attacker removes blocks from the end of the message and their corresponding blocks from the tag.
 Solution: authenticate the message length with each block
- Mix-and-match attack: the attacker has valid tags (t_1, t_2, t_3) and (t'_1, t'_2, t'_3) on the messages (m_1, m_2, m_3) and (m'_1, m'_2, m'_3) . He outputs (t_1, t'_2, t_3) on the message (m_1, m'_2, m_3) . Solution: authenticate a *random message identifier* along with each block.

- Block re-ordering attack: the attacker changes the order of blocks, if (t_1, t_2) is a valid tag on (m_1, m_2) where $m_1 \neq m_2$, then (t_2, t_1) is a valid tag on (m_2, m_1) as m_2, m_1 is a different message! Solution: authenticate a block index with each block.
- Truncation attack: the attacker removes blocks from the end of the message and their corresponding blocks from the tag.
 Solution: authenticate the message length with each block
- Mix-and-match attack: the attacker has valid tags (t_1, t_2, t_3) and (t'_1, t'_2, t'_3) on the messages (m_1, m_2, m_3) and (m'_1, m'_2, m'_3) . He outputs (t_1, t'_2, t_3) on the message (m_1, m'_2, m_3) . Solution: authenticate a *random message identifier* along with each block.

Potential attacks:

- Block re-ordering attack: the attacker changes the order of blocks, if (t_1, t_2) is a valid tag on (m_1, m_2) where $m_1 \neq m_2$, then (t_2, t_1) is a valid tag on (m_2, m_1) as m_2, m_1 is a different message! Solution: authenticate a block index with each block.
- Truncation attack: the attacker removes blocks from the end of the message and their corresponding blocks from the tag.
 Solution: authenticate the message length with each block
- Mix-and-match attack: the attacker has valid tags (t_1, t_2, t_3) and (t'_1, t'_2, t'_3) on the messages (m_1, m_2, m_3) and (m'_1, m'_2, m'_3) . He outputs (t_1, t'_2, t_3) on the message (m_1, m'_2, m_3) .

Solution: authenticate a *random message identifier* along with each block.

- Block re-ordering attack: the attacker changes the order of blocks, if (t_1, t_2) is a valid tag on (m_1, m_2) where $m_1 \neq m_2$, then (t_2, t_1) is a valid tag on (m_2, m_1) as m_2, m_1 is a different message! Solution: authenticate a block index with each block.
- Truncation attack: the attacker removes blocks from the end of the message and their corresponding blocks from the tag.
 Solution: authenticate the message length with each block
- Mix-and-match attack: the attacker has valid tags (t_1, t_2, t_3) and (t'_1, t'_2, t'_3) on the messages (m_1, m_2, m_3) and (m'_1, m'_2, m'_3) . He outputs (t_1, t'_2, t_3) on the message (m_1, m'_2, m_3) . Solution: authenticate a *random message identifier* along with each block.

Definition

Let $S_1 = (\text{KeyGen}_1, \text{Mac}_1, \text{Verify}_1)$ be a fixed-length MAC for messages of length n, we define a MAC S for arbitrary-length messages as follows:

- $Mac(k \in \{0,1\}^n, m \in \{0,1\}^*)$:
 - it takes a key k and a messge m, where $|m| = \ell < 2^{n/4}$.
 - o it then parses m into d blocks of length n/4, i.e. m_1, \dots, m_d .
 - \circ if the last block is not of size n/4, we pad it with 0s
 - \circ it uniformly chooses $r \in \{0,1\}^{n/4}$
 - ∘ For $i = 1, \dots, d$, compute $t_i \leftarrow \mathsf{Mac}_1(k, r||\ell||i||m_i)$, where i, ℓ are encoded as strings of length n/4.
 - \circ Output $t = (r, t_1, \cdots, t_d)$.
- Verify $(k, m, (r, t_1, \dots, t_{d'}))$: parse m into d blocks, then output 1 iff $\text{Verify}_1(k, r||\ell||i||m_i, t_i) = 1$ for $1 \le i \le d$ and d' = d.

Theorem

If S_1 is a secure fixed-length MAC for messages of length n, then S as defined above is a secure MAC for arbitrary-length messages.

Proof.

Exercise. hint: show that the aforementioned attacks are the only possible ones!

Another way to build a secure MAC for arbitrary-length messages is to use hash functions, which will be covered soon!

Further Reading (1)

- N.J. Al Fardan and K.G. Paterson. Lucky thirteen: Breaking the TLS and DTLS record protocols. In Security and Privacy (SP), 2013 IEEE Symposium on, pages 526–540, May 2013.
- J Lawrence Carter and Mark N Wegman.
 Universal classes of hash functions.
 In Proceedings of the ninth annual ACM symposium on Theory of computing, pages 106–112. ACM, 1977.
- Jean Paul Degabriele and Kenneth G Paterson. On the (in) security of IPsec in MAC-then-Encrypt configurations.
 - In Proceedings of the 17th ACM conference on Computer and communications security, pages 493–504. ACM, 2010.

Further Reading (2)

- Ted Krovetz and Phillip Rogaway. The software performance of authenticated-encryption modes. In Fast Software Encryption, pages 306–327. Springer, 2011.
- Douglas R. Stinson.
 Universal hashing and authentication codes.
 Designs, Codes and Cryptography, 4(3):369–380, 1994.