Message Authentication Code

Ali El Kaafarani

¹Mathematical Institute ² PQShield Ltd.

Outline

- 2 Authenticated Encryption
- **3** Padding Oracle Attacks
- Information Theoretic MACs

Basic CBC-MAC for fixed-length messages

Definition

Let *F* be a pseudorandom function. The basic CBC-MAC can be defined as follows:

- Mac(k ∈ {0,1}ⁿ, m): it takes a key k and a message m of length n · L where L = ℓ(n) and does the following;
 - \circ parses *m* as m_1, \cdots, m_L , where $|m_i| = n$
 - initializes $t_0 \leftarrow 0^n$, and for $i = 1, \cdots, L$ Do

$$t_i \leftarrow F_k(t_{i-1} \oplus m_i)$$

- \circ outputs the tag t_L .
- Verify $(k \in \{0, 1\}^n, m, t)$: if $|m| = n \cdot \ell(n)$ and t = Mac(k, m) output 1, output 0 otherwise.

The previous construction is only secure for fixed-length messages!

- There are ways to modify the construction to handle arbitrary-length messages.
- For example, one can change the key generation to choose two uniformly independent keys, k₁, k₂ ∈ {0,1}ⁿ. The authentication will be done in two steps. First, it computes t₁ ←CBC-MAC(m, k₁), and then it outputs the final result as t ← F_{k₂}(t₁).

Differences between CBC-MAC and CBC-mode encryption

There are two main differences:

- CBC-mode encryption has a random IV whereas CBC-MAC has a fixed one (i.e. 0") and they are only secure under these conditions
- CBC-mode encryption outputs all the intermediate values c_i as parts of the ciphertext whereas CBC-MAC only outputs the final tag t_L (and only secure in this case).

Outline


```
2 Authenticated Encryption
```

- **3** Padding Oracle Attacks
- Information Theoretic MACs

Authenticated Encryption

- A way to achieve both secrecy and integrity at the same time.
- · No standard terminology or definitions yet.
- CAESAR: Competition for Authenticated Encryption: Security, Applicability, and Robustness. http://competitions.cr.yp.to/caesar.html
- The level of secrecy that we want: CCA-secure
- The level of integrity: existential unforgeability under chosen-message attacks.

Unforgeable Encryption

We define the unforgeable encryption experiment as follows:

- KeyGen(*n*): output a key *k*.
- Adversary's capabilities: access to an encryption oracle $Enc(k, \cdot)$. All his queries will be stored in *Q*
- Adversary's output: a ciphertext *c*.
- Winning conditions: compute $m \leftarrow \text{Dec}(k, c)$ and output 1 if the following hold
 - $\circ \ m \neq \bot$
 - $\circ \ m \not \in Q$

Definition

A private key encryption scheme *S* is unforgeable if for all PPT adversaries A, we have $\Pr[\mathsf{PrivK}_{A,S}^{Unforg}(n) = 1] \le \mathsf{negl}(n)$

Authenticated Encryption: A Definition

Definition

A private-key encryption scheme is an authenticated encryption scheme is it is both CCA-secure and Unforgeable.

 Does any *random* combination of a secure encryption scheme and a secure message authenticated code yield an authenticated encryption scheme?

Authenticated Encryption: A Definition

Definition

A private-key encryption scheme is an authenticated encryption scheme is it is both CCA-secure and Unforgeable.

- Does any *random* combination of a secure encryption scheme and a secure message authenticated code yield an authenticated encryption scheme?
- The answer is NO!

Authenticated Encryption: A Definition

Definition

A private-key encryption scheme is an authenticated encryption scheme is it is both CCA-secure and Unforgeable.

- Does any *random* combination of a secure encryption scheme and a secure message authenticated code yield an authenticated encryption scheme?
- The answer is NO!
- Lesson: you can't just combine two secure cryptographic modules/tools and expect the combination to be automatically secure!

Authenticated Encryption: How to combine MAC and ENC?

• Mac and Enc: compute them in parallel,

 $c \leftarrow \mathsf{Enc}(k_1, m) \text{ and } t \leftarrow \mathsf{Mac}(k_2, m)$

• Mac then Enc:

 $t \leftarrow \mathsf{Mac}(k_2, m)$ then $c \leftarrow \mathsf{Enc}(k_1, m || t)$

• Enc then Mac:

 $c \leftarrow \mathsf{Enc}(k_1, m)$ then $t \leftarrow \mathsf{Mac}(k_2, c)$

• This combination violates the secrecy of the scheme even if Enc is secret. Why?

- This combination violates the secrecy of the scheme even if Enc is secret. Why?
- Remember, MAC doesn't provide any secrecy, and yet you are sending the tag *t* in the clear!
- MAC can be deterministic (like most MACs used in practice)
- The scheme is not even CPA-secure in this case!

MAC then Encrypt

- This combination is not guaranteed to be an authenticated encryption either!
- *m*||*t* has to be padded in a specific way to get a multiple of the block length.
- The decryption may now fail for two different reasons: incorrect padding or invalid tag! (Note that the padded part is not protected under the tag scheme!)
- What if the attacker can distinguish between the two errors?
- Okay, we return a single error message in both cases (even though it is not ideal!)
- What about the difference in time to return each of them? (Some attacks on *Secure Socket Layer (SSL)* were based on this idea!)
- Result: padding-oracle attack (in details soon)!
 Details soon)!

Encrypt then MAC

- The MAC should be strongly secure.
- This guarantees that the adversary can't produce any *new* valid ciphertext. (i.e. not obtained from the encryption oracle)
- This way, the adversary cannot benefit from the decryption oracle of the CCA game.
- Therefore, CPA security of the encryption scheme *S* is enough.

Encrypt then MAC

- The MAC should be strongly secure.
- This guarantees that the adversary can't produce any *new* valid ciphertext. (i.e. not obtained from the encryption oracle)
- This way, the adversary cannot benefit from the decryption oracle of the CCA game.
- Therefore, CPA security of the encryption scheme *S* is enough.
- in this case: CPA-secure S + strongly secure MAC ⇒ CCA-security+integrity

Encrypt then MAC: Generic construction

Given a private-key encryption scheme S = (Enc, Dec) and a message authentication code MAC = (Mac, Verify), we define a private-key encryption scheme S' = (KeyGen', Enc', Dec') as follows:

- KeyGen'(*n*) : choose independent, uniform keys $k_{enc}, k_{mac} \in \{0, 1\}^n$.
- Enc'(k_{enc}, k_{mac}, m): compute c ← Enc(k_{enc}, m). Then compute t ← Mac(k_{mac}, c). The ciphertext will then be (t, c).
- $Dec'(c, t, k_{enc}, k_{mac})$:
 - \circ if Verify $(k_{mac}, c, t) = 1$ then output $Dec(k_{enc}, c)$
 - \circ otherwise, output \perp .

Authenticated Encryption: an Application and Potential attacks

- It is used to offer secure communication sessions.
- It is not enough on its own to provide secure sessions, here are some possible attacks:
- Re-ordering attack: change the order in which the message were supposed to be delivered (force c₂ to arrive before c₁)
- Replay attack: to replay a previously sent valid ciphertext
- Reflection attack: to change the direction of the message and resend to the sender instead of the receiver.
- Solutions: use *counters* for the first two problems, and different encryption keys for different directions, i.e. $K_{A \rightarrow B} \neq K_{B \rightarrow A}$.

Outline

2 Authenticated Encryption

- In CBC mode, messages have to be multiple of the block length
- if they are not, we pad them. PKCS#5 is a famous and standardized approach.
- Assume that |m| = n and block length= L (both in bytes). Let m = r ⋅ L + d. Therefore, b = L − d is the number of bytes that need to be padded to the message.
- Exceptionally, if b = 0, we pad *L* bytes, therefore $1 \le b \le L$.
- We append to the message the integer *b* represented in either 1-byte or two hexadecimal digits.
- if 1 byte is needed, we append 0x01 to the end of the message. If 3 bytes are needed, we append 0x030303
- The padded message which is called *encoded data*, will then be encrypted using CBC-mode encryption.

• Decryption in CBC mode: it first decrypts the ciphertext, it then checks on the correctness of the padding, and finally checks on the validity of the tag.

- Decryption in CBC mode: it first decrypts the ciphertext, it then checks on the correctness of the padding, and finally checks on the validity of the tag.
- You first read the values *b* of the last byte, and make sure it is the same value in the last *b* bytes.
- If the padding is correct, you drop the last *b* bytes and get the original plaintext, otherwise output "padding error".
- This is a great source of information to the adversary, you can think of it as a *limited* decryption oracle.
- Adversaries can send ciphertexts to the server and learn whether or not they are padded correctly!
- This way the adversary can recover the whole message for any ciphertext of his choice.

- We will take the example of a 3-block ciphertext, *IV*, *c*₁, *c*₂ that correspond to the message *m*₁, *m*₂ which is of course unknown to the attacker.
- By definition, $m_2 = F_k^{-1}(c_2) \oplus c_1$. The block m_2 should end with $\underbrace{0 \times b \cdots 0 \times b}_{k \text{ times}}$
- Key idea: if you let c'₁ = c₁ ⊕ Δ, for any string Δ, and you try to decrypt the new cipher text *IV*, c'₁, c₂ then you will get m'₁, m'₂, where m'₂ = m₂ ⊕ Δ.
- Exploiting this, the adversary can learn *b*, and consequently the length of the original plaintext.
- The attacker starts with modifying the first byte of c_1 and sends the modified ciphertext, IV, c'_1, c_2 to the receiver...

Step 1: find the length of the padded bytes *b*.

Second step, recover the plaintext byte by byte.

Outline

- 2 Authenticated Encryption
- 3 Padding Oracle Attacks

Information Theoretic MACs

- All the MACs we have talked about so far have computational security, i.e. the adversary's running time are *bounded*
- Can we build a MAC that is secure even in the presence of *unbounded* adversaries?
- Note that we cannot get a perfectly secure MACs. Why?

- All the MACs we have talked about so far have computational security, i.e. the adversary's running time are *bounded*
- Can we build a MAC that is secure even in the presence of *unbounded* adversaries?
- Note that we cannot get a perfectly secure MACs. Why?
- Clearly because adversaries can guess a valid tag with probability $1/2^{|t|}$, if *t* is the length of the scheme's tags.
- Back to unbounded adversaries: is information theoretic MACs achievable?
- Yes, BUT with a bound on the number of messages to be authenticated!

As we want to put a bound on the number of the messages to be authenticated, let's start with most basic case, i.e. *only one message*. Here is the one-time message authentication experiment. Notice that here we drop the security parameter *n*, as we are dealing with unbounded adversaries!

- KeyGen : returns a key k
- Single tag query: adversary *A* sends a message *m'* and gets a tag on it *t'*
- Adversary's output: (*m*, *t*)
- Experiment's output: 1 iff

Verify
$$(k, t) = 1$$
 and $m \neq m'$

Definition

A message authentication code *S* is one-time ϵ -secure, if for all adversaries *A* (including unbounded ones):

 $\Pr[\mathsf{Mac}_{\mathcal{A},S}^{1-time} = 1] \le \epsilon$

- We need to first define strongly universal functions (also called pairwise-independent).
- Given a keyed function h : K × M → T, where h(k, m) is often written as h_k(m). Informally speaking, we say that h is strongly universal if for any m ≠ m' and uniform key k, the images h_k(m) and h_k(m') are uniformly and independently distributed in T.
- Formally speaking, $\forall m \neq m'$, and $\forall t, t' \in \mathcal{T}$, we have

$$\Pr[h_k(m) = t \wedge h_k(m') = t'] = 1/|\mathcal{T}|^2$$

where the probability is taken over uniform choice of $k \in K$.

Information Theoretic MAC: a construction from a strongly universal function

Given a strongly universal function $h : \mathcal{K} \times \mathcal{M} \to \mathcal{T}$, we define a messages authentication code MAC with message space \mathcal{M} as follows:

- KeyGen : output a uniformly chosen key $k \leftarrow \mathcal{K}$
- Mac(k, m): output the tag $h_k(m)$
- Verify(k, m, t): if $m \notin M$ output 0, otherwise output 1 iff $t = h_k(m)$.

Information Theoretic MAC: a construction from a strongly universal function

Theorem

Given a strongly universal function $h : \mathcal{K} \times \mathcal{M} \to \mathcal{T}$. A Message authentication code that is based on h with message space \mathcal{M} is a one-time $1/|\mathcal{T}|$ -secure MAC.

Proof.

Let A be an adversary against the MAC scheme. He queries m' and gets t'. He finally outputs the forgery (m, t). The probability that (m, t) is a valid forgery is the following:

$$\Pr[\mathsf{Mac}_{\mathcal{A},S}^{1-time} = 1] = \sum_{t'} \Pr[\mathsf{Mac}_{\mathcal{A},S}^{1-time} = 1 \land h_k(m') = t']$$
$$= \sum_{t'} \Pr[h_k(m) = t \land h_k(m') = t']$$
$$= \sum_{t'} \frac{1}{|\mathcal{T}|^2}$$
$$= \frac{1}{\mathcal{T}}$$

Strongly Universal Function: a Concrete Construction

Example

Give \mathbb{Z}_p for some prime p. Let $\mathcal{M} = \mathcal{T} = \mathbb{Z}_p$, and let $\mathcal{K} = \mathbb{Z}_p \times \mathbb{Z}_p$. we define a keyed function $h_{a,b}$ as

$$h_{a,b}(m) = a \cdot m + b \mod p$$

Theorem

For any prime *p*, the function *h* is strongly universal.

Information Theoretic MAC: its limitations

Theorem

If *S* is a one-time 2^{-n} -secure MAC with constant size keys, then $|k| \ge 2n$.

Proof.

Exercise.

Information Theoretic MAC: its limitations

Theorem

If *S* is a ℓ -time 2^{-n} -secure MAC with constant size keys, then $|k| \ge (\ell + 1)n$.

Corollary

If the key-length of a given MAC is bounded, then it is not information-theoretic secure when authenticating an unbounded number of messages.

Further Reading (1)

- N.J. Al Fardan and K.G. Paterson. Lucky thirteen: Breaking the TLS and DTLS record protocols. In Security and Privacy (SP), 2013 IEEE Symposium on, pages 526–540, May 2013.
- J Lawrence Carter and Mark N Wegman. Universal classes of hash functions. In Proceedings of the ninth annual ACM symposium on Theory of computing, pages 106–112. ACM, 1977.
- Jean Paul Degabriele and Kenneth G Paterson. On the (in) security of IPsec in MAC-then-Encrypt configurations.

In *Proceedings of the 17th ACM conference on Computer and communications security*, pages 493–504. ACM, 2010.

Further Reading (2)

- Ted Krovetz and Phillip Rogaway.
 The software performance of authenticated-encryption modes.
 In Fast Software Encryption, pages 306–327. Springer, 2011.
- Douglas R. Stinson. Universal hashing and authentication codes. Designs, Codes and Cryptography, 4(3):369–380, 1994.