
Message Authentication Code

Ali El Kaafarani

1Mathematical Institute
2 PQShield Ltd.

1 of 43

Outline

1 CBC-MAC

2 Authenticated Encryption

3 Padding Oracle Attacks

4 Information Theoretic MACs

2 of 43

Basic CBC-MAC for fixed-length messages

Definition
Let F be a pseudorandom function. The basic CBC-MAC can be
defined as follows:
• Mac(k ∈ {0, 1}n,m): it takes a key k and a message m of length

n · L where L = `(n) and does the following;
◦ parses m as m1, · · · ,mL, where |mi| = n
◦ initializes t0 ← 0n, and for i = 1, · · · ,L Do

ti ← Fk(ti−1 ⊕ mi)

◦ outputs the tag tL.

• Verify(k ∈ {0, 1}n,m, t): if |m| = n · `(n) and t = Mac(k,m) output
1, output 0 otherwise.

3 of 43

CBC-MAC

! The previous construction is only secure for fixed-length
messages!
• There are ways to modify the construction to handle

arbitrary-length messages.
• For example, one can change the key generation to choose two

uniformly independent keys, k1, k2 ∈ {0, 1}n. The authentication
will be done in two steps. First, it computes
t1 ←CBC-MAC(m, k1), and then it outputs the final result as
t← Fk2(t1).

4 of 43

Differences between CBC-MAC and CBC-mode
encryption

There are two main differences:
• CBC-mode encryption has a random IV whereas CBC-MAC

has a fixed one (i.e. 0n) and they are only secure under these
conditions

• CBC-mode encryption outputs all the intermediate values ci as
parts of the ciphertext whereas CBC-MAC only outputs the final
tag tL (and only secure in this case).

5 of 43

Outline

1 CBC-MAC

2 Authenticated Encryption

3 Padding Oracle Attacks

4 Information Theoretic MACs

6 of 43

Authenticated Encryption

• A way to achieve both secrecy and integrity at the same time.
• No standard terminology or definitions yet.
• CAESAR: Competition for Authenticated Encryption: Security,

Applicability, and Robustness.
http://competitions.cr.yp.to/caesar.html

• The level of secrecy that we want: CCA-secure
• The level of integrity: existential unforgeability under

chosen-message attacks.

7 of 43

http://competitions.cr.yp.to/caesar.html

Unforgeable Encryption

We define the unforgeable encryption experiment as follows:
• KeyGen(n): output a key k.
• Adversary’s capabilities: access to an encryption oracle

Enc(k, ·). All his queries will be stored in Q
• Adversary’s output: a ciphertext c.
• Winning conditions: compute m← Dec(k, c) and output 1 if the

following hold
◦ m 6= ⊥
◦ m 6∈ Q

Definition
A private key encryption scheme S is unforgeable if for all PPT
adversaries A, we have Pr[PrivKUnforg

A,S (n) = 1] ≤ negl(n)

8 of 43

Authenticated Encryption: A Definition

Definition
A private-key encryption scheme is an authenticated encryption
scheme is it is both CCA-secure and Unforgeable.

• Does any random combination of a secure encryption scheme
and a secure message authenticated code yield an
authenticated encryption scheme?

• The answer is NO!
• Lesson: you can’t just combine two secure cryptographic

modules/tools and expect the combination to be automatically
secure!

9 of 43

Authenticated Encryption: A Definition

Definition
A private-key encryption scheme is an authenticated encryption
scheme is it is both CCA-secure and Unforgeable.

• Does any random combination of a secure encryption scheme
and a secure message authenticated code yield an
authenticated encryption scheme?

• The answer is NO!

• Lesson: you can’t just combine two secure cryptographic
modules/tools and expect the combination to be automatically
secure!

9 of 43

Authenticated Encryption: A Definition

Definition
A private-key encryption scheme is an authenticated encryption
scheme is it is both CCA-secure and Unforgeable.

• Does any random combination of a secure encryption scheme
and a secure message authenticated code yield an
authenticated encryption scheme?

• The answer is NO!
• Lesson: you can’t just combine two secure cryptographic

modules/tools and expect the combination to be automatically
secure!

9 of 43

Authenticated Encryption: How to combine
MAC and ENC?

• Mac and Enc: compute them in parallel,

c← Enc(k1,m) and t← Mac(k2,m)

• Mac then Enc:

t← Mac(k2,m) then c← Enc(k1,m||t)

• Enc then Mac:

c← Enc(k1,m) then t← Mac(k2, c)

10 of 43

MAC and Encrypt

• This combination violates the secrecy of the scheme even if
Enc is secret. Why?

• Remember, MAC doesn’t provide any secrecy, and yet you are
sending the tag t in the clear!

• MAC can be deterministic (like most MACs used in practice)
• The scheme is not even CPA-secure in this case!

11 of 43

MAC and Encrypt

• This combination violates the secrecy of the scheme even if
Enc is secret. Why?

• Remember, MAC doesn’t provide any secrecy, and yet you are
sending the tag t in the clear!

• MAC can be deterministic (like most MACs used in practice)
• The scheme is not even CPA-secure in this case!

11 of 43

MAC then Encrypt

• This combination is not guaranteed to be an authenticated
encryption either!

• m||t has to be padded in a specific way to get a multiple of the
block length.

• The decryption may now fail for two different reasons: incorrect
padding or invalid tag! (Note that the padded part is not
protected under the tag scheme!)

• What if the attacker can distinguish between the two errors?
• Okay, we return a single error message in both cases (even

though it is not ideal!)
• What about the difference in time to return each of them?

(Some attacks on Secure Socket Layer (SSL) were based on
this idea!)

• Result: padding-oracle attack (in details soon)!
12 of 43

Encrypt then MAC

• The MAC should be strongly secure.
• This guarantees that the adversary can’t produce any new valid

ciphertext. (i.e. not obtained from the encryption oracle)
• This way, the adversary cannot benefit from the decryption

oracle of the CCA game.
• Therefore, CPA security of the encryption scheme S is enough.

• in this case: CPA-secure S + strongly secure MAC =⇒
CCA-security+integrity

13 of 43

Encrypt then MAC

• The MAC should be strongly secure.
• This guarantees that the adversary can’t produce any new valid

ciphertext. (i.e. not obtained from the encryption oracle)
• This way, the adversary cannot benefit from the decryption

oracle of the CCA game.
• Therefore, CPA security of the encryption scheme S is enough.
• in this case: CPA-secure S + strongly secure MAC =⇒

CCA-security+integrity

13 of 43

Encrypt then MAC: Generic construction

Given a private-key encryption scheme S = (Enc,Dec) and a
message authentication code MAC = (Mac,Verify), we define a
private-key encryption scheme S′ = (KeyGen′,Enc′,Dec′) as
follows:
• KeyGen′(n) : choose independent, uniform keys

kenc, kmac ∈ {0, 1}n.
• Enc′(kenc, kmac,m): compute c← Enc(kenc,m). Then compute

t← Mac(kmac, c). The ciphertext will then be (t, c).
• Dec′(c, t, kenc, kmac):
◦ if Verify(kmac, c, t) = 1 then output Dec(kenc, c)
◦ otherwise, output ⊥.

14 of 43

Authenticated Encryption: an Application and
Potential attacks

• It is used to offer secure communication sessions.
• It is not enough on its own to provide secure sessions, here are

some possible attacks:
• Re-ordering attack: change the order in which the message

were supposed to be delivered (force c2 to arrive before c1)
• Replay attack: to replay a previously sent valid ciphertext
• Reflection attack: to change the direction of the message and

resend to the sender instead of the receiver.
• Solutions: use counters for the first two problems, and different

encryption keys for different directions, i.e. KA→B 6= KB→A.

15 of 43

Outline

1 CBC-MAC

2 Authenticated Encryption

3 Padding Oracle Attacks

4 Information Theoretic MACs

16 of 43

A Padding Oracle Attack

• In CBC mode, messages have to be multiple of the block length
• if they are not, we pad them. PKCS#5 is a famous and

standardized approach.
• Assume that |m| = n and block length= L (both in bytes). Let

m = r · L + d. Therefore, b = L− d is the number of bytes that
need to be padded to the message.

• Exceptionally, if b = 0, we pad L bytes, therefore 1 ≤ b ≤ L.
• We append to the message the integer b represented in either

1-byte or two hexadecimal digits.
• if 1 byte is needed, we append 0x01 to the end of the message.

If 3 bytes are needed, we append 0x030303
• The padded message which is called encoded data, will then

be encrypted using CBC-mode encryption.
17 of 43

A Padding Oracle Attack

• Decryption in CBC mode: it first decrypts the ciphertext, it then
checks on the correctness of the padding, and finally checks on
the validity of the tag.

• You first read the values b of the last byte, and make sure it is
the same value in the last b bytes.

• If the padding is correct, you drop the last b bytes and get the
original plaintext, otherwise output “padding error”.

• This is a great source of information to the adversary, you can
think of it as a limited decryption oracle.

• Adversaries can send ciphertexts to the server and learn
whether or not they are padded correctly!

• This way the adversary can recover the whole message for any
ciphertext of his choice.

•

18 of 43

A Padding Oracle Attack

• Decryption in CBC mode: it first decrypts the ciphertext, it then
checks on the correctness of the padding, and finally checks on
the validity of the tag.

• You first read the values b of the last byte, and make sure it is
the same value in the last b bytes.

• If the padding is correct, you drop the last b bytes and get the
original plaintext, otherwise output “padding error”.

• This is a great source of information to the adversary, you can
think of it as a limited decryption oracle.

• Adversaries can send ciphertexts to the server and learn
whether or not they are padded correctly!

• This way the adversary can recover the whole message for any
ciphertext of his choice.

•
18 of 43

A Padding Oracle Attack

• We will take the example of a 3-block ciphertext, IV, c1, c2 that
correspond to the message m1,m2 which is of course unknown
to the attacker.

• By definition, m2 = F−1
k (c2)⊕ c1. The block m2 should end with

0xb · · · 0xb︸ ︷︷ ︸
b times

• Key idea: if you let c′1 = c1 ⊕∆, for any string ∆, and you try to
decrypt the new cipher text IV, c′1, c2 then you will get m′1,m

′
2,

where m′2 = m2 ⊕∆.
• Exploiting this, the adversary can learn b, and consequently the

length of the original plaintext.
• The attacker starts with modifying the first byte of c1 and sends

the modified ciphertext, IV, c′1, c2 to the receiver...
19 of 43

A Padding Oracle Attack
Step 1: find the length of the padded bytes b.

c1 c2

m1 m2&pad

IV

F-1
k F-1

k

20 of 43

A Padding Oracle Attack

c1 c2

m1 m2&pad

IV

F-1
k F-1

k

21 of 43

A Padding Oracle Attack

c1 c2

m1 m2&pad

IV

F-1
k F-1

k

22 of 43

A Padding Oracle Attack

c1 c2

m1 m2&pad

IV

F-1
k F-1

k

23 of 43

Second step, recover the plaintext byte by byte.

c1 c2

m1 m2&pad

IV

F-1
k F-1

k

c

?

24 of 43

c1 c2

m1 m2&pad

IV

F-1
k F-1

k

c

? 5

25 of 43

c1 c2

m1 m2&pad

IV

F-1
k F-1

k

c

? 5 5 5 5

26 of 43

c1 c2

m1 m2&pad

IV

F-1
k F-1

k

1

? 5 5 5 5

…

27 of 43

c1 c2

m1 m2&pad

IV

F-1
k F-1

k

2

? 5 5 5 5

…

28 of 43

c1 c2

m1 m2&pad

IV

F-1
k F-1

k

n

? 5 5 5 5

…

5

No padding error , so
this byte is now 5!

29 of 43

c1 c2

m1 m2&pad

IV

F-1
k F-1

k

n

? 5 5 5 5

…

5

No padding error , so this byte is now 5!
Simple computation will lead to finding the byte ?

30 of 43

Outline

1 CBC-MAC

2 Authenticated Encryption

3 Padding Oracle Attacks

4 Information Theoretic MACs

31 of 43

Information Theoretic MACs

• All the MACs we have talked about so far have computational
security, i.e. the adversary’s running time are bounded

• Can we build a MAC that is secure even in the presence of
unbounded adversaries?

• Note that we cannot get a perfectly secure MACs. Why?

• Clearly because adversaries can guess a valid tag with
probability 1/2|t|, if t is the length of the scheme’s tags.

• Back to unbounded adversaries: is information theoretic MACs
achievable?

• Yes, BUT with a bound on the number of messages to be
authenticated!

32 of 43

Information Theoretic MACs

• All the MACs we have talked about so far have computational
security, i.e. the adversary’s running time are bounded

• Can we build a MAC that is secure even in the presence of
unbounded adversaries?

• Note that we cannot get a perfectly secure MACs. Why?
• Clearly because adversaries can guess a valid tag with

probability 1/2|t|, if t is the length of the scheme’s tags.
• Back to unbounded adversaries: is information theoretic MACs

achievable?
• Yes, BUT with a bound on the number of messages to be

authenticated!

32 of 43

Information Theoretic MACs

As we want to put a bound on the number of the messages to be
authenticated, let’s start with most basic case, i.e. only one
message. Here is the one-time message authentication
experiment. Notice that here we drop the security parameter n, as
we are dealing with unbounded adversaries!
• KeyGen : returns a key k
• Single tag query: adversary A sends a message m′ and gets a

tag on it t′

• Adversary’s output: (m, t)
• Experiment’s output: 1 iff

Verify(k, t) = 1 and m 6= m′

33 of 43

Information Theoretic MACs

Definition
A message authentication code S is one-time ε-secure, if for all
adversaries A (including unbounded ones):

Pr[Mac1−time
A,S = 1] ≤ ε

34 of 43

Information Theoretic MACs

• We need to first define strongly universal functions (also called
pairwise-independent).

• Given a keyed function h : K ×M→ T , where h(k,m) is often
written as hk(m). Informally speaking, we say that h is strongly
universal if for any m 6= m′ and uniform key k, the images hk(m)
and hk(m′) are uniformly and independently distributed in T .

• Formally speaking, ∀m 6= m′, and ∀t, t′ ∈ T , we have

Pr[hk(m) = t ∧ hk(m′) = t′] = 1/|T |2

where the probability is taken over uniform choice of k ∈ K.

35 of 43

Information Theoretic MAC: a construction
from a strongly universal function

Given a strongly universal function h : K ×M→ T , we define a
messages authentication code MAC with message spaceM as
follows:
• KeyGen : output a uniformly chosen key k← K
• Mac(k,m): output the tag hk(m)

• Verify(k,m, t): if m 6∈ M output 0, otherwise output 1 iff
t = hk(m).

36 of 43

Information Theoretic MAC: a construction
from a strongly universal function

Theorem
Given a strongly universal function h : K ×M→ T . A Message
authentication code that is based on h with message spaceM is
a one-time 1/|T |-secure MAC.

37 of 43

Proof.
Let A be an adversary against the MAC scheme. He queries m′

and gets t′. He finally outputs the forgery (m, t). The probability
that (m, t) is a valid forgery is the following:

Pr[Mac1−time
A,S = 1] =

∑
t′

Pr[Mac1−time
A,S = 1 ∧ hk(m′) = t′]

=
∑

t′
Pr[hk(m) = t ∧ hk(m′) = t′]

=
∑

t′

1
|T |2

=
1
T

38 of 43

Strongly Universal Function: a Concrete
Construction

Example
Give Zp for some prime p. LetM = T = Zp, and let K = Zp × Zp.
we define a keyed function ha,b as

ha,b(m) = a · m + b mod p

Theorem
For any prime p, the function h is strongly universal.

39 of 43

Information Theoretic MAC: its limitations

Theorem

If S is a one-time 2−n-secure MAC with constant size keys, then
|k| ≥ 2n.

Proof.
Exercise.

40 of 43

Information Theoretic MAC: its limitations

Theorem

If S is a `-time 2−n-secure MAC with constant size keys, then
|k| ≥ (`+ 1)n.

Corollary
If the key-length of a given MAC is bounded, then it is not
information-theoretic secure when authenticating an unbounded
number of messages.

41 of 43

Further Reading (1)

I N.J. Al Fardan and K.G. Paterson.
Lucky thirteen: Breaking the TLS and DTLS record protocols.
In Security and Privacy (SP), 2013 IEEE Symposium on, pages
526–540, May 2013.

I J Lawrence Carter and Mark N Wegman.
Universal classes of hash functions.
In Proceedings of the ninth annual ACM symposium on Theory
of computing, pages 106–112. ACM, 1977.

I Jean Paul Degabriele and Kenneth G Paterson.
On the (in) security of IPsec in MAC-then-Encrypt
configurations.
In Proceedings of the 17th ACM conference on Computer and
communications security, pages 493–504. ACM, 2010.

42 of 43

Further Reading (2)

I Ted Krovetz and Phillip Rogaway.
The software performance of authenticated-encryption modes.
In Fast Software Encryption, pages 306–327. Springer, 2011.

I Douglas R. Stinson.
Universal hashing and authentication codes.
Designs, Codes and Cryptography, 4(3):369–380, 1994.

43 of 43

	CBC-MAC
	Authenticated Encryption
	Padding Oracle Attacks
	Information Theoretic MACs

