Message Authentication Code

Ali El Kaafarani

"Mathematical Institute
2 PQShield Ltd.
UNIVERSITY OF

OXFORD

Outline

@ cBc-MAC
Q Authenticated Encryption

9 Padding Oracle Attacks

0 Information Theoretic MACs

Basic CBC-MAC for fixed-length messages

Definition
Let F be a pseudorandom function. The basic CBC-MAC can be
defined as follows:

e Mac(k € {0,1}",m): it takes a key k and a message m of length
n- L where L = {(n) and does the following;

o parsesmasmy,--- ,my, where |m;| =n
o initializes ty < 0", and fori =1,--- ,L Do

I = Fk(l‘[,l b m,-)

o oulputs the tag t; .
e Verify(k € {0, 1}",m,1): if|m| = n- {(n) and t = Mac(k, m) output
1, output 0 otherwise.

-
CBC-MAC

AThe previous construction is only secure for fixed-length
messages!

e There are ways to modify the construction to handle
arbitrary-length messages.

e For example, one can change the key generation to choose two
uniformly independent keys, k;, k, € {0, 1}". The authentication
will be done in two steps. First, it computes
t1 <+ CBC-MAC(m, k;), and then it outputs the final result as
< sz (t]).

40f 43

Differences between CBC-MAC and CBC-mode
encryption

There are two main differences:

e CBC-mode encryption has a random IV whereas CBC-MAC
has a fixed one (i.e. 0") and they are only secure under these
conditions

e CBC-mode encryption outputs all the intermediate values ¢; as
parts of the ciphertext whereas CBC-MAC only outputs the final
tag #. (and only secure in this case).

Outline

9 Authenticated Encryption

Authenticated Encryption

¢ A way to achieve both secrecy and integrity at the same time.
¢ No standard terminology or definitions yet.

o CAESAR: Competition for Authenticated Encryption: Security,
Applicability, and Robustness.
http://competitions.cr.yp.to/caesar.html

e The level of secrecy that we want: CCA-secure

e The level of integrity: existential unforgeability under
chosen-message attacks.

http://competitions.cr.yp.to/caesar.html

Unforgeable Encryption

We define the unforgeable encryption experiment as follows:

e KeyGen(n): output a key k.

e Adversary’s capabilities: access to an encryption oracle
Enc(k, -). All his queries will be stored in Q0

e Adversary’s output: a ciphertext c.

e Winning conditions: compute m < Dec(k, c) and output 1 if the
following hold
om# L
om¢Q

Definition

A private key encryption scheme S is unforgeable if for all PPT
adversaries A, we have Pr[PrivKX’gO’g (n) = 1] < negl(n)

80f43

Authenticated Encryption: A Definition

Definition

A private-key encryption scheme is an authenticated encryption
scheme is it is both CCA-secure and Unforgeable.

e Does any random combination of a secure encryption scheme
and a secure message authenticated code yield an
authenticated encryption scheme?

Authenticated Encryption: A Definition

Definition

A private-key encryption scheme is an authenticated encryption
scheme is it is both CCA-secure and Unforgeable.

e Does any random combination of a secure encryption scheme
and a secure message authenticated code yield an
authenticated encryption scheme?

e The answer is NO!

Authenticated Encryption: A Definition

Definition

A private-key encryption scheme is an authenticated encryption
scheme is it is both CCA-secure and Unforgeable.

e Does any random combination of a secure encryption scheme
and a secure message authenticated code yield an
authenticated encryption scheme?

e The answer is NO!

e Lesson: you can't just combine two secure cryptographic
modules/tools and expect the combination to be automatically
secure!

90f43

Authenticated Encryption: How to combine
MAC and ENC?

e Mac and Enc: compute them in parallel,

¢ < Enc(k;,m) and t <— Mac(ky, m)

e Mac then Enc:

t < Mac(kp, m) then ¢ <— Enc(k;, m||r)

e Enc then Mac:

¢ < Enc(k;,m) then r + Mac(k,, ¢)

10 of 43

-
MAC and Encrypt

e This combination violates the secrecy of the scheme even if
Enc is secret. Why?

11 of 43

MAC and Encrypt

This combination violates the secrecy of the scheme even if
Enc is secret. Why?

Remember, MAC doesn’t provide any secrecy, and yet you are
sending the tag ¢ in the clear!

MAC can be deterministic (like most MACs used in practice)
The scheme is not even CPA-secure in this case!

11 of 43

N
MAC then Encrypt

This combination is not guaranteed to be an authenticated
encryption either!

m||t has to be padded in a specific way to get a multiple of the
block length.

The decryption may now fail for two different reasons: incorrect
padding or invalid tag! (Note that the padded part is not
protected under the tag scheme!)

What if the attacker can distinguish between the two errors?
Okay, we return a single error message in both cases (even
though it is not ideal!)

What about the difference in time to return each of them?
(Some attacks on Secure Socket Layer (SSL) were based on
this ideal)

Result: padding-oracle attack (in details soon)!

12 0f 43

Encrypt then MAC

The MAC should be strongly secure.

This guarantees that the adversary can’t produce any new valid
ciphertext. (i.e. not obtained from the encryption oracle)

This way, the adversary cannot benefit from the decryption
oracle of the CCA game.

Therefore, CPA security of the encryption scheme S is enough.

13 0f 43

-
Encrypt then MAC

e The MAC should be strongly secure.

¢ This guarantees that the adversary can’t produce any new valid
ciphertext. (i.e. not obtained from the encryption oracle)

¢ This way, the adversary cannot benefit from the decryption
oracle of the CCA game.

e Therefore, CPA security of the encryption scheme S is enough.

e in this case: CPA-secure S + strongly secure MAC —
CCA-security+integrity

13 0f 43

Encrypt then MAC: Generic construction

Given a private-key encryption scheme S = (Enc, Dec) and a
message authentication code MAC = (Mac, Verify), we define a

private-key encryption scheme S’ = (KeyGen’, Enc’, Dec’) as
follows:

e KeyGen'(n) : choose independent, uniform keys
kenmkmac 6 {0’ 1}”

o Enc'(kene, kimac, m): compute ¢ < Enc(ke,., m). Then compute
t < Mac(kmqc, ¢). The ciphertext will then be (z, ¢).
® DeC/(C7 t? kEI’lC? kmac):

o if Verify(knac, ¢,) = 1 then output Dec(ken, ¢)
o otherwise, output L.

14 of 43

Authenticated Encryption: an Application and
Potential attacks

e |t is used to offer secure communication sessions.

e |t is not enough on its own to provide secure sessions, here are
some possible attacks:

e Re-ordering attack: change the order in which the message
were supposed to be delivered (force ¢, to arrive before c;)

e Replay attack: to replay a previously sent valid ciphertext

¢ Reflection attack: to change the direction of the message and
resend to the sender instead of the receiver.

e Solutions: use counters for the first two problems, and different
encryption keys for different directions, i.e. Kx_.p # Kp_4.

15 0f 43

Outline

Q Padding Oracle Attacks

16 of 43

-
A Padding Oracle Attack

In CBC mode, messages have to be multiple of the block length

e if they are not, we pad them. PKCS#5 is a famous and
standardized approach.

e Assume that |m| = n and block length= L (both in bytes). Let
m=r-L+d. Therefore, b = L — d is the number of bytes that
need to be padded to the message.

o Exceptionally, if » = 0, we pad L bytes, therefore 1 < b < L.

e We append to the message the integer b represented in either
1-byte or two hexadecimal digits.

e if 1 byte is needed, we append 0x01 to the end of the message.
If 3 bytes are needed, we append 0x030303

e The padded message which is called encoded data, will then
be encrypted using CBC-mode encryption.

17 of 43

-
A Padding Oracle Attack

e Decryption in CBC mode: it first decrypts the ciphertext, it then
checks on the correctness of the padding, and finally checks on
the validity of the tag.

18 of 43

-
A Padding Oracle Attack

Decryption in CBC mode: it first decrypts the ciphertext, it then
checks on the correctness of the padding, and finally checks on
the validity of the tag.

You first read the values b of the last byte, and make sure it is
the same value in the last b bytes.

If the padding is correct, you drop the last b bytes and get the
original plaintext, otherwise output “padding error”.

This is a great source of information to the adversary, you can
think of it as a limited decryption oracle.

Adversaries can send ciphertexts to the server and learn
whether or not they are padded correctly!

This way the adversary can recover the whole message for any
ciphertext of his choice.

18 of 43

-
A Padding Oracle Attack

¢ We will take the example of a 3-block ciphertext, IV, ¢1, ¢, that
correspond to the message my, m, which is of course unknown
to the attacker.

e By definition, my = F; ' (c2) ® c1. The block m, should end with
O0xb - - - Oxb
N———

b times

 Key idea: if you let ¢} = ¢; @ A, for any string A, and you try to
decrypt the new cipher text 1V, ¢}, c; then you will get m/, m},
where m = my @ A.

e Exploiting this, the adversary can learn b, and consequently the
length of the original plaintext.

e The attacker starts with modifying the first byte of ¢; and sends
the modified ciphertext, IV, ¢/, ¢, to the receiver...

19 of 43

A Padding Oracle Attack
Step 1: find the length of the padded bytes b.

20 of 43

A Padding Oracle Attack

21 0f 43

A Padding Oracle Attack

22 of 43

A Padding Oracle Attack

23 of 43

Second step, recover the plaintext byte by byte.

i

=

& ~ gl

—

24 of 43

T No padding error, so
this byte is now 5!

29 of 43

No padding error, so this byteis now 5!
Simple computation will lead to finding the byte

300f43

Outline

0 Information Theoretic MACs

310f43

Information Theoretic MACs

¢ All the MACs we have talked about so far have computational
security, i.e. the adversary’s running time are bounded

e Can we build a MAC that is secure even in the presence of
unbounded adversaries?

* Note that we cannot get a perfectly secure MACs. Why?

32 0f 43

Information Theoretic MACs

¢ All the MACs we have talked about so far have computational
security, i.e. the adversary’s running time are bounded

e Can we build a MAC that is secure even in the presence of
unbounded adversaries?

* Note that we cannot get a perfectly secure MACs. Why?

e Clearly because adversaries can guess a valid tag with
probability 1/2'”, if ¢ is the length of the scheme’s tags.

e Back to unbounded adversaries: is information theoretic MACs
achievable?

e Yes, BUT with a bound on the number of messages to be
authenticated!

32 0f 43

Information Theoretic MACs

As we want to put a bound on the number of the messages to be
authenticated, let’s start with most basic case, i.e. only one
message. Here is the one-time message authentication
experiment. Notice that here we drop the security parameter n, as
we are dealing with unbounded adversaries!

e KeyGen : returns a key k

e Single tag query: adversary A sends a message m’ and gets a
tag on it

e Adversary’s output: (m, 1)

e Experiment’s output: 1 iff

Verify(k,t) = 1 and m # m’

Information Theoretic MACs

Definition

A message authentication code S is one-time e-secure, if for all
adversaries A (including unbounded ones):

Pr[MaCx_éime =1]<e

34 of 43

Information Theoretic MACs

e We need to first define strongly universal functions (also called
pairwise-independent).

e Given a keyed function z : L x M — T, where h(k,m) is often
written as i (m). Informally speaking, we say that % is strongly
universal if for any m # m’ and uniform key k, the images & (m)
and i (m') are uniformly and independently distributed in 7.

e Formally speaking, Vm # m’, and Vt,# € T, we have
Pr[hy(m) =t Abg(m') = 1) = 1/|T|?

where the probability is taken over uniform choice of k € K.

35 0f 43

Information Theoretic MAC: a construction
from a strongly universal function

Given a strongly universal function 4 : £ x M — T, we define a
messages authentication code MAC with message space M as
follows:
e KeyGen : output a uniformly chosen key k < K
e Mac(k,m): output the tag Ay (m)
e Verify(k,m,t): if m ¢ M output 0, otherwise output 1 iff

t= hk(m).

Information Theoretic MAC: a construction
from a strongly universal function

Given a strongly universal function h : K x M — T. A Message
authentication code that is based on h with message space M is
a one-time 1/|T|-secure MAC.

37 of 43

Let A be an adversary against the MAC scheme. He queries /'
and gets #. He finally outputs the forgery (m,t). The probability
that (m,) is a valid forgery is the following:

Pr(Mac!; ¢ = 1] = PrMac! "™ = 1 Ay (m') =1

38 of 43

Strongly Universal Function: a Concrete
Construction

Give Z, for some prime p. Let M =T =Z,, and let K = Z, x Z,.
we define a keyed function 4, as

hap(m) =a-m+b mod p

For any prime p, the function h is strongly universal. \

39 0f 43

Information Theoretic MAC: its limitations

If S is a one-time 27" -secure MAC with constant size keys, then
|k| > 2n.

Exercise.] \

40 of 43

Information Theoretic MAC: its limitations

Theorem

IfS is a ¢-time 27" -secure MAC with constant size keys, then
k| > (£+ 1)n.

| A

Corollary

If the key-length of a given MAC is bounded, then it is not
information-theoretic secure when authenticating an unbounded
number of messages.

41 of 43

-
Further Reading (1)

» N.J. Al Fardan and K.G. Paterson.
Lucky thirteen: Breaking the TLS and DTLS record protocols.
In Security and Privacy (SP), 2013 IEEE Symposium on, pages
526-540, May 2013.

» J Lawrence Carter and Mark N Wegman.
Universal classes of hash functions.
In Proceedings of the ninth annual ACM symposium on Theory
of computing, pages 106—112. ACM, 1977.

» Jean Paul Degabriele and Kenneth G Paterson.
On the (in) security of IPsec in MAC-then-Encrypt
configurations.
In Proceedings of the 17th ACM conference on Computer and
communications security, pages 493-504. ACM, 2010.

42 0f 43

Further Reading (2)

» Ted Krovetz and Phillip Rogaway.
The software performance of authenticated-encryption modes.
In Fast Software Encryption, pages 306—327. Springer, 2011.

» Douglas R. Stinson.
Universal hashing and authentication codes.
Designs, Codes and Cryptography, 4(3):369-380, 1994.

43 of 43

	CBC-MAC
	Authenticated Encryption
	Padding Oracle Attacks
	Information Theoretic MACs

