
Hash Functions

Ali El Kaafarani

1Mathematical Institute
2 PQShield Ltd.

1 of 34

Outline

1 Definition and Notions of Security

2 The Merkle-damgård Transform

3 MAC using Hash Functions

4 Cryptanalysis: Generic Attacks

2 of 34

Introduction

• Informally speaking, hash functions take a long input string and
output a shorter string called a digest.

• They are used almost everywhere in Cryptography.
• If you imagine that hash functions are truly random (modelled

as random oracle model), then proving the security of some
cryptographic schemes becomes achievable (e.g. RSA-OAEP).

• A debate/controversy over the soundness of the random oracle
model.

• Cryptographic hash functions are much harder to design than
those used to build hash tables in data structures.

3 of 34

Notions of Security-Collision Resistance

• Given a hash function H, it should be infeasible for any PPT
algorithm to find x 6= x′ s.t. H(x) = H(x′).

• Remember that the domain of H is larger than its range,
therefore collisions must exist.

• We want these collisions to be hard to find.
• Keyed hash functions take as input a key s and a string x.
• This time the key is not a secret, i.e. collision resistance should

hold even when this key is in the adversary’s hands.
• We denote a keyed hash function by Hs for a key s.

4 of 34

Keyed Hash Functions: a Definition

Definition
A keyed hash function consists of two PPT algorithms
(KeyGen,H) which can be defined as follows:
• KeyGen(1n) : it takes a security parameter n and outputs a key

s.
• H(s, x ∈ {0, 1}∗) : it takes a key s and a string x ∈ {0, 1}∗ and

outputs a string Hs(x) ∈ {0, 1}`(n)

5 of 34

Collision Resistance

Given a keyed hash function H, an adversary A, and a security
parameter n, we define the collision-finding experiment Hashcoll

A,H(n)
as follows:

• A key is generated by KeyGen and is given the adversary.
• Adversary’s output: two strings x and x′

• Experiment’s output: 1 iff x 6= x′ and Hs(x) = Hs(x′)

Definition
A hash function H is collision resistant if for all PPT adversaries A
we have

Pr[Hashcoll
A,H(n) = 1] ≤ negl(n)

6 of 34

Hash Functions in Practice

• They are unkeyed with fixed output i.e. H : {0, 1}∗ → {0, 1}`.
• Theoretically speaking, you can always find a collision using a

constant-time algorithm.
• However, they are computationally hard to find.
• This shouldn’t affect the security proofs as long as it shows that

the adversary who can break a cryptographic primitive that
uses a certain hash function can in practice find a collision!

7 of 34

Weaker Security Notions

• Second-preimage or target-collision resistant: Given s and a
uniform x, it is hard for any PPT adversary to find x′ s.t. x 6= x′

and yet Hs(x) = Hs(x′)
• Preimage resistance or one-wayness: Given s and a uniform y,

it is hard for any PPT adversary to find x s.t. Hs(x) = y

Note that: collision resistance⇒ second preimage resistance⇒
preimage resistance. (Check them!)

8 of 34

Outline

1 Definition and Notions of Security

2 The Merkle-damgård Transform

3 MAC using Hash Functions

4 Cryptanalysis: Generic Attacks

9 of 34

How to Design a Hash Function?

• First, consider a collision-resistant compression function
(handling only fixed-length inputs).

• Second, apply a domain extension method to deal with
arbitrary-length inputs.

• This should maintain the collision-resistance property.
• Merkle-damgård transform is a very famous approach for

domain extension.
• It has been used for MD5 and the SHA family.
• Theoretical implication of Merkle-damgård: if you can compress

by a single bit, then you can compress by an arbitrary amount
of bits!

10 of 34

The Merkle-damgård Transform

Given a fixed-length hash function h that takes inputs ∈ {0, 1}2n

and outputs digests ∈ {0, 1}n. We construct an arbitrary-length
hash function as follows:
• KeyGen : No Change to it.
• H : it takes a key s and a string x ∈ {0, 1}∗ of length L < 2n and

does the following:

◦ Set the number of blocks in x as B←
⌈

L
n

⌉
and pad with zeros to

get the following sequence of n-bit blocks, i.e. x1, · · · , xB. Set
xB+1 ← L, where L is encoded as an n-bit string.

◦ Set z0 ← 0n (also called IV)
◦ Compute zi ← hs(zi−1||xi), for i = 1, · · · ,B + 1.
◦ Output zB+1.

11 of 34

The Merkle-damgård Transform

[Katz-Lindell]

Theorem
If h is collision-resistant, then so is H.

12 of 34

The Merkle-damgård Transform

Proof.
We show that a collision in H would definitely lead to a collision in
h. Suppose that we have x 6= x′ of length L and L′ such that
Hs(x) = Hs(x′). We will try to find a collision in hs. We pad x and x′

to get x1, · · · , xB and x′1, · · · , x′B′ , and we distinguish between two
cases:
• L 6= L′: then zB||L 6= z′B′ ||L′, but since Hs(x) = Hs(x′), then

hs(zB||L) = hs(z′B′ ||L′) therefore a collision in hs is found.
• L = L′: in this case B = B′. One can compute both Hs(x) and

Hs(x′) and store all the intermediate values. Compare all the
inputs to hs, i.e. zi−1||xi and z′i−1||x′i). We know that x 6= x′ but
|x| = |x′| therefore there must exist an 1 ≤ j ≤ B, for which
xj 6= x′j. Output the pair zj−1||xj and z′j−1||x′j as a collusion in hs.

13 of 34

Outline

1 Definition and Notions of Security

2 The Merkle-damgård Transform

3 MAC using Hash Functions

4 Cryptanalysis: Generic Attacks

14 of 34

MAC using Hash Functions

• A different approach to construct a MAC for arbitrary-length
messages.

• The idea is simple and widely used in practice (e.g. HMAC).
• Firstly, use a collision resistant hash function H to hash an

arbitrary-long message down to a fixed-length Hs(m).
• Secondly, apply a fixed-length MAC to the digest of the hash

function.

15 of 34

Hash-and-MAC

Given a message authentication code Smac = (Mac,Verify) for
message of length `(n) and a hash function H with output length
`(n). We define a new MAC S′mac = (KeyGen′,Mac′,Verify′) for
arbitrary-length messages as follows:
• KeyGen′(1n): it takes an security parameter n, and output a

uniform key k ∈ {0, 1}n and it runs the key generator of the hash
function to get s. the final key will (k, s).

• Mac′(k, s,m ∈ {0, 1}∗): it outputs t← Mack(Hs(m)).
• Verify′(k, s,m ∈ {0, 1}∗, t): it outputs 1 iff Verifyk(Hs(m), t) = 1.

16 of 34

HMAC

• The idea is to build a secure MAC for arbitrary-length
messages directly from a hash function.

• What about defining Mack(m) = H(k||m)?

• It is NOT secure, why? (exercise)
• HMAC is a secure MAC that uses two layers of hashing.

17 of 34

HMAC

• The idea is to build a secure MAC for arbitrary-length
messages directly from a hash function.

• What about defining Mack(m) = H(k||m)?
• It is NOT secure, why? (exercise)
• HMAC is a secure MAC that uses two layers of hashing.

17 of 34

HMAC

18 of 34

HMAC
Given a compression function h with input length n + n′. Let H be a
hash function obtained from applying Merkle-Damgård transform
on h. Let opad and ipad be two fixed constants of length n′. We
define a MAC for arbitrary-length messages as follows:
• KeyGen(n): it runs the key generator of the hash function H to

get a key s. It also chooses a uniform k ∈ {0, 1}n′ . It outputs
(s, k)

• Mac(s, k,m ∈ {0, 1}∗): it outputs

t← Hs((k ⊕ opad)||Hs((k ⊕ ipad)||m)
)

• Verify(s, k,m ∈ {0, 1}∗, t): outputs 1 iff

t ?
= Hs((k ⊕ opad)||Hs((k ⊕ ipad)||m)

)
19 of 34

Analysis of HMAC

• HMAC can be viewed as an instantiation of the hash-and-MAC
technique.

• The use of keys in the inner computation allows for hash
function with weaker assumptions to be used, namely hash
functions that are weakly collision resistant (in this case, the
adversary has access to a hash oracle to Hs

kin
(), where kin is a

secret value that replaces IV).
• The two keys in the inner and outer computations are treated

as independent and uniform keys given that k is uniform.
• For efficiency reasons, they used ipad and opad to derive two

keys from k.
• HMAC is very efficient and widely used in practice.

20 of 34

Outline

1 Definition and Notions of Security

2 The Merkle-damgård Transform

3 MAC using Hash Functions

4 Cryptanalysis: Generic Attacks

21 of 34

Generic attacks: The Birthday Attack

• Suppose there are q people in a room. What is the probability
that two people have the same birthday?

• How many people do we need to have a probability larger than
1/2 ?

• Answer is 23:

Pr[all distinct] = 1 · 364
365
· 363

365
· . . . · 365− 22

365
<

1
2

22 of 34

Generic attacks: The Birthday Attack

• Suppose there are q people in a room. What is the probability
that two people have the same birthday?

• How many people do we need to have a probability larger than
1/2 ?

• Answer is 23:

Pr[all distinct] = 1 · 364
365
· 363

365
· . . . · 365− 22

365
<

1
2

22 of 34

Generic attacks: The Birthday Attack

• Suppose you choose q elements randomly in a set of N
elements. What is the probability that two elements are equal?

• How large should q be with respect to N to have a probability
larger than 50% ?

• Answer is q = Θ(
√

N).
• Note: f (x) = Θ(g(x)) means “f grows asymptotically as fast as

g.
• Let us try to solve it in a formal way...

23 of 34

Generic attacks: The Birthday Attack

• Suppose you choose q elements randomly in a set of N
elements. What is the probability that two elements are equal?

• How large should q be with respect to N to have a probability
larger than 50% ?

• Answer is q = Θ(
√

N).
• Note: f (x) = Θ(g(x)) means “f grows asymptotically as fast as

g.

• Let us try to solve it in a formal way...

23 of 34

Generic attacks: The Birthday Attack

• Suppose you choose q elements randomly in a set of N
elements. What is the probability that two elements are equal?

• How large should q be with respect to N to have a probability
larger than 50% ?

• Answer is q = Θ(
√

N).
• Note: f (x) = Θ(g(x)) means “f grows asymptotically as fast as

g.
• Let us try to solve it in a formal way...

23 of 34

The Birthday Problem

• Assume that you are throwing q balls to N bins. Let Coll denote
the fact that two balls end up being in the same bin. We can
show that

1− e−q(q−1)/2N ≤ Pr[Coll] ≤ q(q− 1)/2N

• Upper bound: Let Colli denote that the i-th ball falls into an
already occupied bin, then Pr[Colli] ≤ (i− 1)/N as there are at
most i− 1 occupied bins.

• Now

Pr[Coll] = Pr[

q∨
i=1

Colli] ≤
q∑

i=1

Pr[Colli] ≤ 0/N+· · ·+(q−1)/N =
q(q− 1)

2N

24 of 34

The Birthday Problem
Lower bound: Let NoColli denote the event of not having any
collision after throwing the i-th ball. we have

Pr[NoColli|NoColli−1] = (N − (i− 1))/N (1)

which is the probability of not falling in any the the previous i− 1
balls with Pr[NoColl1] = 1.
One can write

Pr[C̄oll] = Pr[NoCollq] (2)

But

Pr[NoCollq] = Pr[NoCollq|NoCollq−1].Pr[NoCollq−1]

Eventually, we will have

Pr[NoCollq] =

q−1∏
i=1

Pr[NoColli+1|NoColli] (3)

25 of 34

The Birthday Problem

From equations (1), (2) and (3)

Pr[C̄oll] =

q−1∏
i=1

(
1− i

N

)
(4)

But we have 1− x ≤ e−x for x ≤ 1, which is the case for i/N. Thus,

Pr[C̄oll] ≤ e−
∑q−1

i=1 (i/N) = e−q(q−1)/2N . (5)

Therefore
Pr[Coll] ≥ 1− e−q(q−1)/2N

26 of 34

Hash Functions: the Birthday Attack

• How does the birthday attack apply to hash functions?
• We had a probability ≈ 1/2 when q = Θ(N1/2).
• If we have a hash function with output length `, its range will be

of size 2`.
• Therefore, if we take q = Θ(2`/2), the probability of finding a

collision will be ≈ 1/2.
• In practice, to make finding collisions as difficult as exaustive

search over 128-bit keys, you need a hash function with output
length ≥ 256 bits.

• This is rather a necessary but not sufficient condition!
• This attack doesn’t work for preimage and second preimage

resistance!

27 of 34

A Better Birthday Attack

• The original birthday attack uses lots of memory storage. It has
to store O(q) = O

(
2`/2

)
values.

• Managing storage for 260 bytes is often more difficult that
executing 260 CPU instructions.

• Can we do better?

28 of 34

A Better Birthday Attack

• It is based on a cycle-finding algorithm of Floyd.
• We choose a random value x0.
• We compute xi ← H(xi−1) and x2i ← H(H(x2(i−1))) for

i = 1, 2, . . . , where xi = H(i)(x0).
• We compare xi and x2i after each iteration.
• If they are equal, then the collision happens somewhere in

x0, · · · , x2i−1.
• To find the collision, we try to find the smallest value of j for

which xj = xj+i. The collision will then be (xj−1, xj+i−1).
• The algorithm has same time complexity and success

probability as the general birthday attack, but only O(1)
memory, namely, storage of two hashes in each iteration!

29 of 34

A better Birthday Attack
Floyd’s cycle finding
idea:https://visualgo.net/bn/cyclefinding

30 of 34

https://visualgo.net/bn/cyclefinding

A Better Birthday Attack
We describe here a small-space birthday attack. We are given a
hash function H : {0, 1}∗ → {0, 1}`, and we need to find x, x′ s.t.
H(x) = H(x′).

x0←$ {0, 1}`+1

x′, x← x0

for i = 1, 2, · · · do
x← H(x) = H(i)(x0)

x′ ← H(H(x′)) = H(2i)(x0)

if x = x′ break
x′ ← x, x← x0

for j = 1 · · · , i
if H(x) = H(x′) return x, x′

else x← H(x) = H(j)(x0)

x′ ← H(x′) = H(i+j)(x0)
31 of 34

Further Reading (1)

I Mihir Bellare and Phillip Rogaway.
Random oracles are practical: A paradigm for designing
efficient protocols.
In Proceedings of the 1st ACM conference on Computer and
communications security, pages 62–73. ACM, 1993.

I Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles
Van Assche.
Keccak sponge function family main document.
Submission to NIST (Round 2), 3:30, 2009.

32 of 34

Further Reading (2)

I Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and
Prashant Puniya.
Merkle-damgård revisited: How to construct a hash function.
In Advances in Cryptology–CRYPTO 2005, pages 430–448.
Springer, 2005.

I Pierre Karpman, Thomas Peyrin, and Marc Stevens.
Practical free-start collision attacks on 76-step sha-1.
In Advances in Cryptology–CRYPTO 2015, pages 623–642.
Springer, 2015.

I Neal Koblitz and Alfred J Menezes.
The random oracle model: a twenty-year retrospective.
Designs, Codes and Cryptography, pages 1–24, 2015.

33 of 34

Further Reading (3)

I Alfred J Menezes, Paul C Van Oorschot, and Scott A Vanstone.
Handbook of applied cryptography.
CRC press, 1996.

I Marc Stevens.
New collision attacks on sha-1 based on optimal joint
local-collision analysis.
In Advances in Cryptology–EUROCRYPT 2013, pages
245–261. Springer, 2013.

34 of 34

	Definition and Notions of Security
	The Merkle-damgård Transform
	MAC using Hash Functions
	Cryptanalysis: Generic Attacks

