Hash Functions

Ali El Kaafarani

¹Mathematical Institute ² PQShield Ltd.

Outline

Definition and Notions of Security

- 2 The Merkle-damgård Transform
- MAC using Hash Functions
- Cryptanalysis: Generic Attacks

Introduction

- Informally speaking, hash functions take a long input string and output a shorter string called a *digest*.
- They are used almost everywhere in Cryptography.
- If you *imagine* that hash functions are truly random (modelled as *random oracle model*), then proving the security of some cryptographic schemes becomes achievable (e.g. RSA-OAEP).
- A debate/controversy over the soundness of the random oracle model.
- Cryptographic hash functions are much harder to design than those used to build *hash tables* in data structures.

Notions of Security-Collision Resistance

- Given a hash function *H*, it should be infeasible for any PPT algorithm to find *x* ≠ *x*′ s.t. *H*(*x*) = *H*(*x*′).
- Remember that the domain of *H* is larger than its range, therefore collisions must exist.
- · We want these collisions to be hard to find.
- Keyed hash functions take as input a key *s* and a string *x*.
- This time the key is not a secret, i.e. collision resistance should hold even when this key is in the adversary's hands.
- We denote a keyed hash function by *H^s* for a key *s*.

Keyed Hash Functions: a Definition

Definition

A keyed hash function consists of two PPT algorithms (KeyGen, *H*) which can be defined as follows:

- KeyGen(1^{*n*}) : *it takes a security parameter n and outputs a key s*.
- *H*(*s*, *x* ∈ {0,1}*) : *it takes a key s and a string x* ∈ {0,1}* *and outputs a string H^s*(*x*) ∈ {0,1}^{ℓ(n)}

Collision Resistance

Given a keyed hash function *H*, an adversary A, and a security parameter *n*, we define the collision-finding experiment $\text{Hash}_{A,H}^{coll}(n)$ as follows:

- A key is generated by KeyGen and is given the adversary.
- Adversary's output: two strings x and x'
- Experiment's output: 1 iff $x \neq x'$ and $H^{s}(x) = H^{s}(x')$

Definition

A hash function H is collision resistant if for all PPT adversaries A we have

$$\Pr[\mathsf{Hash}^{coll}_{\mathsf{A},H}(n) = 1] \le \mathsf{negl}(n)$$

- They are *unkeyed* with fixed output i.e. $H: \{0,1\}^* \to \{0,1\}^{\ell}$.
- Theoretically speaking, you can always find a collision using a constant-time algorithm.
- However, they are computationally hard to find.
- This shouldn't affect the security proofs as long as it shows that the adversary who can break a cryptographic primitive that uses a certain hash function can *in practice* find a collision!

- Second-preimage or target-collision resistant: Given s and a uniform x, it is hard for any PPT adversary to find x' s.t. x ≠ x' and yet H^s(x) = H^s(x')
- *Preimage resistance* or *one-wayness*: Given *s* and a uniform *y*, it is hard for any PPT adversary to find *x* s.t. $H^{s}(x) = y$

Note that: collision resistance \Rightarrow second preimage resistance \Rightarrow preimage resistance. (Check them!)

Outline

Definition and Notions of Security

2 The Merkle-damgård Transform

- 3 MAC using Hash Functions
- 4 Cryptanalysis: Generic Attacks

How to Design a Hash Function?

- First, consider a collision-resistant compression function (handling only fixed-length inputs).
- Second, apply a domain extension method to deal with arbitrary-length inputs.
- This should maintain the collision-resistance property.
- Merkle-damgård transform is a very famous approach for domain extension.
- It has been used for MD5 and the SHA family.
- Theoretical implication of Merkle-damgård: if you can compress by a single bit, then you can compress by an arbitrary amount of bits!

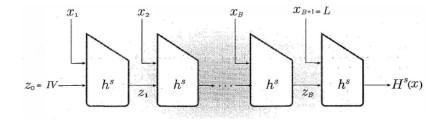
The Merkle-damgård Transform

Given a fixed-length hash function *h* that takes inputs $\in \{0, 1\}^{2n}$ and outputs digests $\in \{0, 1\}^n$. We construct an arbitrary-length hash function as follows:

- KeyGen : No Change to it.
- *H* : it takes a key *s* and a string *x* ∈ {0,1}* of length *L* < 2ⁿ and does the following:
 - Set the number of blocks in x as $B \leftarrow \left\lceil \frac{L}{n} \right\rceil$ and pad with zeros to get the following sequence of *n*-bit blocks, i.e. x_1, \dots, x_B . Set $x_{B+1} \leftarrow L$, where *L* is encoded as an *n*-bit string.
 - Set $z_0 \leftarrow 0^n$ (also called *IV*)
 - Compute $z_i \leftarrow h^s(z_{i-1}||x_i)$, for $i = 1, \cdots, B+1$.
 - Output z_{B+1} .

The Merkle-damgård Transform

[Katz-Lindell]



Theorem

If h is collision-resistant, then so is H.

12 of 34

The Merkle-damgård Transform

Proof.

We show that a collision in *H* would definitely lead to a collision in *h*. Suppose that we have $x \neq x'$ of length *L* and *L'* such that $H^{s}(x) = H^{s}(x')$. We will try to find a collision in h^{s} . We pad *x* and *x'* to get x_1, \dots, x_B and $x'_1, \dots, x'_{B'}$, and we distinguish between two cases:

- $L \neq L'$: then $z_B || L \neq z'_{B'} || L'$, but since $H^s(x) = H^s(x')$, then $h^s(z_B || L) = h^s(z'_{B'} || L')$ therefore a collision in h^s is found.
- L = L': in this case B = B'. One can compute both $H^s(x)$ and $H^s(x')$ and store all the intermediate values. Compare all the inputs to h^s , i.e. $z_{i-1}||x_i|$ and $z'_{i-1}||x'_i|$. We know that $x \neq x'$ but |x| = |x'| therefore there must exist an $1 \le j \le B$, for which $x_j \neq x'_j$. Output the pair $z_{j-1}||x_j|$ and $z'_{j-1}||x'_j|$ as a collusion in h^s .

Outline

2 The Merkle-damgård Transform

4 Cryptanalysis: Generic Attacks

- A different approach to construct a MAC for arbitrary-length messages.
- The idea is simple and widely used in practice (e.g. HMAC).
- Firstly, use a collision resistant hash function *H* to hash an arbitrary-long message down to a fixed-length *H*^s(*m*).
- Secondly, apply a fixed-length MAC to the digest of the hash function.

Hash-and-MAC

Given a message authentication code $S_{mac} = (Mac, Verify)$ for message of length $\ell(n)$ and a hash function H with output length $\ell(n)$. We define a new MAC $S'_{mac} = (KeyGen', Mac', Verify')$ for arbitrary-length messages as follows:

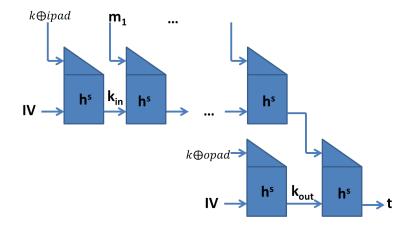
- KeyGen'(1ⁿ): it takes an security parameter *n*, and output a uniform key k ∈ {0,1}ⁿ and it runs the key generator of the hash function to get *s*. the final key will (k, s).
- $Mac'(k, s, m \in \{0, 1\}^*)$: it outputs $t \leftarrow Mac_k(H^s(m))$.
- Verify' $(k, s, m \in \{0, 1\}^*, t)$: it outputs 1 iff Verify $_k(H^s(m), t) = 1$.

- The idea is to build a secure MAC for arbitrary-length messages **directly** from a hash function.
- What about defining $Mac_k(m) = H(k||m)$?

HMAC

- The idea is to build a secure MAC for arbitrary-length messages **directly** from a hash function.
- What about defining $Mac_k(m) = H(k||m)$?
- It is NOT secure, why? (exercise)
- HMAC is a secure MAC that uses two layers of hashing.

HMAC



18 of 34

HMAC

Given a compression function *h* with input length n + n'. Let *H* be a hash function obtained from applying Merkle-Damgård transform on *h*. Let opad and ipad be two fixed constants of length n'. We define a MAC for arbitrary-length messages as follows:

- KeyGen(*n*): it runs the key generator of the hash function *H* to get a key *s*. It also chooses a uniform $k \in \{0, 1\}^{n'}$. It outputs (s, k)
- $Mac(s, k, m \in \{0, 1\}^*)$: it outputs

 $t \leftarrow H^{s}((k \oplus \text{opad})||H^{s}((k \oplus \text{ipad})||m))$

• Verify $(s, k, m \in \{0, 1\}^*, t)$: outputs 1 iff

 $t \stackrel{?}{=} H^{s}((k \oplus \text{opad})||H^{s}((k \oplus \text{ipad})||m))$

Analysis of HMAC

- HMAC can be viewed as an instantiation of the hash-and-MAC technique.
- The use of keys in the inner computation allows for hash function with weaker assumptions to be used, namely hash functions that are *weakly* collision resistant (in this case, the adversary has access to a hash oracle to $H_{k_{in}}^{s}()$, where k_{in} is a secret value that replaces *IV*).
- The two keys in the inner and outer computations are treated as independent and uniform keys given that *k* is uniform.
- For efficiency reasons, they used ipad and opad to derive two keys from *k*.
- HMAC is very efficient and widely used in practice.

Outline

- 2 The Merkle-damgård Transform
- MAC using Hash Functions
- 4 Cryptanalysis: Generic Attacks

- Suppose there are *q* people in a room. What is the probability that two people have the same birthday?
- How many people do we need to have a probability larger than 1/2 ?

- Suppose there are *q* people in a room. What is the probability that two people have the same birthday?
- How many people do we need to have a probability larger than 1/2 ?
- Answer is 23:

$$\Pr[\text{all distinct}] = 1 \cdot \frac{364}{365} \cdot \frac{363}{365} \cdot \dots \cdot \frac{365 - 22}{365} < \frac{1}{2}$$

- Suppose you choose *q* elements randomly in a set of *N* elements. What is the probability that two elements are equal?
- How large should *q* be with respect to *N* to have a probability larger than 50% ?

- Suppose you choose q elements randomly in a set of N elements. What is the probability that two elements are equal?
- How large should *q* be with respect to *N* to have a probability larger than 50% ?
- Answer is $q = \Theta(\sqrt{N})$.
- Note: $f(x) = \Theta(g(x))$ means "*f* grows asymptotically *as fast as g*.

- Suppose you choose q elements randomly in a set of N elements. What is the probability that two elements are equal?
- How large should *q* be with respect to *N* to have a probability larger than 50% ?
- Answer is $q = \Theta(\sqrt{N})$.
- Note: $f(x) = \Theta(g(x))$ means "*f* grows asymptotically *as fast as g*.
- Let us try to solve it in a formal way ...

The Birthday Problem

• Assume that you are throwing *q* balls to *N* bins. Let Coll denote the fact that two balls end up being in the same bin. We can show that

$$1 - e^{-q(q-1)/2N} \le \Pr[\mathsf{Coll}] \le q(q-1)/2N$$

- Upper bound: Let Coll_i denote that the *i*-th ball falls into an already occupied bin, then $\Pr[\text{Coll}_i] \leq (i-1)/N$ as there are at most i 1 occupied bins.
- Now

$$\Pr[\mathsf{Coll}] = \Pr[\bigvee_{i=1}^{q} \mathsf{Coll}_i] \le \sum_{i=1}^{q} \Pr[\mathsf{Coll}_i] \le 0/N + \dots + (q-1)/N = \frac{q(q-1)}{2N}$$

The Birthday Problem

Lower bound: Let $NoColl_i$ denote the event of not having any collision after throwing the *i*-th ball. we have

$$\Pr[\mathsf{NoColl}_i|\mathsf{NoColl}_{i-1}] = (N - (i-1))/N \tag{1}$$

which is the probability of not falling in any the the previous i - 1 balls with $\Pr[\text{NoColl}_1] = 1$. One can write

$$\Pr[\mathsf{Coll}] = \Pr[\mathsf{NoColl}_q] \tag{2}$$

But

 $\Pr[\mathsf{NoColl}_q] = \Pr[\mathsf{NoColl}_q | \mathsf{NoColl}_{q-1}]. \Pr[\mathsf{NoColl}_{q-1}]$

Eventually, we will have

$$\Pr[\mathsf{NoColl}_q] = \prod_{i=1}^{q-1} \Pr[\mathsf{NoColl}_{i+1} | \mathsf{NoColl}_i]$$
(3)

25 of 34

The Birthday Problem

From equations (1), (2) and (3)

$$\Pr[\bar{\text{Coll}}] = \prod_{i=1}^{q-1} \left(1 - \frac{i}{N}\right)$$
(4)

But we have $1 - x \le e^{-x}$ for $x \le 1$, which is the case for i/N. Thus,

$$\Pr[\bar{\text{Coll}}] \le e^{-\sum_{i=1}^{q-1} (i/N)} = e^{-q(q-1)/2N}.$$
(5)

Therefore

$$\Pr[\mathsf{Coll}] \ge 1 - e^{-q(q-1)/2N}$$

Hash Functions: the Birthday Attack

- How does the birthday attack apply to hash functions?
- We had a probability $\approx 1/2$ when $q = \Theta(N^{1/2})$.
- If we have a hash function with output length ℓ, its range will be of size 2^ℓ.
- Therefore, if we take $q = \Theta(2^{\ell/2})$, the probability of finding a collision will be $\approx 1/2$.
- In practice, to make finding collisions as difficult as exaustive search over 128-bit keys, you need a hash function with output length \geq 256 bits.
- This is rather a necessary but not sufficient condition!
- This attack doesn't work for preimage and second preimage resistance!

- The original birthday attack uses lots of memory storage. It has to store $\mathcal{O}(q) = \mathcal{O}\left(2^{\ell/2}\right)$ values.
- Managing storage for 2⁶⁰ bytes is often more difficult that executing 2⁶⁰ CPU instructions.
- Can we do better?

A Better Birthday Attack

- It is based on a cycle-finding algorithm of Floyd.
- We choose a random value *x*₀.
- We compute $x_i \leftarrow H(x_{i-1})$ and $x_{2i} \leftarrow H(H(x_{2(i-1)}))$ for $i = 1, 2, \ldots$, where $x_i = H^{(i)}(x_0)$.
- We compare *x_i* and *x_{2i}* after each iteration.
- If they are equal, then the collision happens somewhere in x_0, \dots, x_{2i-1} .
- To find the collision, we try to find the smallest value of *j* for which x_j = x_{j+i}. The collision will then be (x_{j-1}, x_{j+i-1}).
- The algorithm has same time complexity and success probability as the general birthday attack, but only $\mathcal{O}(1)$ memory, namely, storage of two hashes in each iteration!

A better Birthday Attack

Floyd's cycle finding

idea:https://visualgo.net/bn/cyclefinding



A Better Birthday Attack

We describe here a small-space birthday attack. We are given a hash function $H: \{0,1\}^* \to \{0,1\}^{\ell}$, and we need to find x, x' s.t. H(x) = H(x'). $x_0 \leftarrow \{0, 1\}^{\ell+1}$ $x', x \leftarrow x_0$ for $i = 1, 2, \dots$ do $x \leftarrow H(x) = H^{(i)}(x_0)$ $x' \leftarrow H(H(x')) = H^{(2i)}(x_0)$ if x = x' break $x' \leftarrow x, x \leftarrow x_0$ for $i = 1 \cdots i$ if H(x) = H(x') return x, x'else $x \leftarrow H(x) = H^{(j)}(x_0)$ $x' \leftarrow H(x') = H^{(i+j)}(x_0)$

31 of 34

Further Reading (1)

Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing efficient protocols.

In *Proceedings of the 1st ACM conference on Computer and communications security*, pages 62–73. ACM, 1993.

 Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
 Keccak sponge function family main document.
 Submission to NIST (Round 2), 3:30, 2009.

Further Reading (2)

- Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant Puniya.
 Merkle-damgård revisited: How to construct a hash function.
 In Advances in Cryptology–CRYPTO 2005, pages 430–448.
 Springer, 2005.
- Pierre Karpman, Thomas Peyrin, and Marc Stevens.
 Practical free-start collision attacks on 76-step sha-1.
 In Advances in Cryptology–CRYPTO 2015, pages 623–642.
 Springer, 2015.
- Neal Koblitz and Alfred J Menezes.
 The random oracle model: a twenty-year retrospective.
 Designs, Codes and Cryptography, pages 1–24, 2015.

Further Reading (3)

- Alfred J Menezes, Paul C Van Oorschot, and Scott A Vanstone. Handbook of applied cryptography. CRC press, 1996.
- Marc Stevens.

New collision attacks on sha-1 based on optimal joint local-collision analysis.

In *Advances in Cryptology–EUROCRYPT 2013*, pages 245–261. Springer, 2013.