
Hash Functions

Ali El Kaafarani

1Mathematical Institute
2 PQShield Ltd.

1 of 31



Outline

1 The Random Oracle Model

2 Hash Functions: Constructions

2 of 31



Outline

1 The Random Oracle Model

2 Hash Functions: Constructions

3 of 31



The Random Oracle Model

• Sometimes it is NOT enough for a hash function to be collision
resistant/preimage resistant to be able to write a security proof
of some cryptosystems that use hash functions.

• Instead of using cryptosystems that have no proofs at all. They
“idealized” the cryptographic hash functions!

• Let us consider a hash function that is truly random.
• Additionally, assume that this random function is public, and

can answer hash queries to different parties, like a black box!
• If you don’t idealise your hash functions in your proofs, then

your cryptosystem is said to be secure in the standard model,
otherwise, it is only secure in the random oracle model.

• In the real world, you replace your ideal hash function by an
appropriate hash function.
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The Random Oracle Model

• What do we mean by appropriate hash functions?

• No clear definition!
• Concrete hash functions are deterministic and fixed, they

cannot behave like random functions!
• What does a proof in the random oracle buy us?
• Perhaps, the scheme doesn’t have “inherent design flaws”!
• Can we instantiate a random oracle using a trusted party?

There are some suggestions.
• Why is it widely used?
• So far, there have been no successful real-world attacks on

real-world schemes that are proven secure in the ROM.
Additionally, schemes that are proven secure in the ROM are
usually efficient.
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The Random Oracle Model: definitions and
proofs

• In ROM security proofs, the probability is taken over the
random choice of H, whereas in the real world, you instantiate
H by a deterministic function. Here the adversary doesn’t need
to query H, he can execute H himself, and even look and use
its code in course of his attack!

• Another strong property of the random-oracle model is that if x
has not been queried yet to H, then the value H(x) is still
considered uniform.

• Extractability: When A queries x to H, the challenger learns x.
• Programmability: The challenger sets the (uniformly

distributed) values of H(xi) to answer the adversary’s queries!
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Hash Functions: Additional Applications

• Fingerprinting: The digest H(x) of a file x (which could be a
virus) acts as a fingerprint/identifier of the file

• Deduplication: Particularly important in cloud storage, you send
a hash of the file to want to store (e.g. DropBox), they check if
the file already exists, in that case they don’t need to store it
again, a pointer to it would be enough.
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Hash Functions: Additional Applications

• Merkle Trees: Suppose you have n files x1, · · · , xn, assuming
that n is a power 2. Instead of hashing them all, i.e.
H(x1, · · · , xn), Ralph Merkle proposes a solution that works as
follows:
◦ Compute h1,2 ← H(x1, x2), · · · , hn−1,n ← H(xn−1, xn).
◦ Compute

h1,2,3,4 ← H(h1,2, h3,4), · · · , hn−3,n−2,n−1,n ← H(hn−3,n−2, hn−1,n)
◦ Iterate, finally compute h1,··· ,n.

• Merkle Tree can be thought of as an alternative to Merkle
Damgård transform to extend the domain of collision-resistant
hash functions.

• Its drawback: it is not collision-resistant if n is not fixed!
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Hash Functions: Additional Applications
Password Hashing:

• A hash of the password is usually stored instead of the
password itself.

• What if the password is chosen from a small space?
• Is it enough to have a preimage resistance hash function H?
• ONLY if you are sampling your password uniformly from a large

space, i.e. {0, 1}n with suitable n.
• In practice: if your password is a random combination of 8

alphanumeric characters, say the space is S = 628 ≈ 247.6.
• There is an attack (that does some preprocessing) which only

uses time and space N2/3 ≈ 232.
• There are mechanisms that can be used to mitigate this threat

(adding a long random salt, etc.).
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Commitment Schemes

• A commitment scheme allows a party to commit to a value v by
producing a commitment on it.

• The commitment keeps that value hidden, i.e. it reveals nothing
about v. This property is called hiding.

• The party cannot change it later on, i.e. it cannot open to two
different values v1, v2. This property is called binding.

• Think of it as a sealed envelope!
• It is a very important cryptographic tool.
• It can be built using hash functions!
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Commitments Schemes

Definition
A commitment scheme consists of two algorithms KeyGen and
Commit as follows
• KeyGen(n) : it outputs public parameters p
• Commit(p,m ∈ {0, 1}n, r ∈ {0, 1}n) : it takes the public

parameters, a message m and a random value r, it outputs
com(m)

The sender can at anytime reveal the message m to the receiver
by sending (m, r). The receiver can easily verify the correctness of
the sender’s claim by testing Commit(p,m, r) ?

= com(m)

Informally speaking, a commitment scheme is secure if it is both
binding and hiding.
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Commitments Schemes

• Suppose that we have a hash function that is modelled as a
random oracle, we can define a commitment scheme where
Commit← H(m||r)

• Binding: follows from the fact that the hash function is
collision-resistant.

• Hiding: follows from the fact that r is chosen uniformly from
{0, 1}n.

• There are other commitment schemes that don’t assume the
existence of a random oracle, i.e. they are proven secure in the
standard model.
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Hash Functions From Block Ciphers

• We construct hash functions in two steps.
• First, we construct a compression function h which is a

fixed-length hash function.
• To allow for arbitrary-length inputs, we apply some techniques,

e.g. Merkle-Damgård tranform, to extend h.
• We can use a special block cipher to build a collision-resistant

compression function.
• Davies-Meyer method is the most common one.
• Given a block cipher with n-bit key and `-bit block, we can build

the compression function h as follows:

h : {0, 1}n+` → {0, 1}`

h(k, x)← Fk(x)⊕ x
14 of 31



Hash Functions From Block Ciphers

• Assuming that the F is a strong pseudo-random permutation is
NOT enough to prove collision resistance of h.

• We need to rely on something similar to the random oracle
model’s idea.

• We have to model F as an ideal cipher.
• This means having a public oracle for computing a random

keyed permutation F : {0, 1}n × {0, 1}` → {0, 1}` and its inverse
F−1.

• Similar to the random oracle model, to compute F(k, x) or
F−1(k, x), you can only do that by querying the oracle.
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MD5
• Designed in 1991. It has 128-bit output length.
• Totally broken, collisions can be found in less than a minute on

a PC!

Figure: One MD5 operation (From wikipedia)
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MD5

• MD5 consists of 64 operations.
• They are grouped in four rounds, each of 16 operations.
• We have 4 non-linear functions, F,G,H, I;
• One function is used in each round.
• Mi denotes a 32-bit block of the message input.
• Ki denotes a 32-bit constant, different for each operation.
• ≪s denotes a left bit rotation by s places; s varies for each

operation.
• Addition is done modulo 232 (You basically ignore the bit

number 33).
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MD5

It uses 4 functions that each takes as input three 32-bit words and
generate as output one 32-bit word:

F(B,C,D) = (B ∧ C) ∨ (¬B ∧ D)

G(B,C,D) = (B ∧ D) ∨ (C ∧ ¬D)

H(B,C,D) = B⊕ C ⊕ D

I(B,C,D) = C ⊕ (B ∨ ¬D)
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MD5

From Cryptool software.
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Secure Hash Algorithms: SHA-1 and SHA-2

• A family of cryptographic hash functions standardized by NIST.
• First, they all use Davies-Meyer construction to build a

compression function from a block cipher.
• The block cipher were specifically designed for this purpose.
• The block cipher SHACAL-1 with 160-bit block length for SHA1.
• The block cipher SHACAL-2 with 256-bit block legnth for SHA2.
• The key length is 512-bit in both of them.
• Second, they extend using Merkle-Damgård to handle arbitrary

input-length.
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SHA-1

• SHA-1 was introduced in 1995.
• It has 160-bit output length and it consists of 80 rounds.
• In theory, collisions can be found significantly better that the

birthday attack, i.e. much less 280 hash functions evaluations.
• In practice, no collisions of this type. But highly recommended

to move to SHA-2 (or perhaps to SHA-3). SHAttered- Move
now to SHA-2!

• Very recent attack (see references at the last slide).
• Example that shows the steps of SHA-1:
http://www.metamorphosite.com/
one-way-hash-encryption-sha1-data-software
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SHA-1

Figure: From wikipedia
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SHA-2: SHA-256

• Similar to MD5 and SHA-1.
• First, given a message M s.t. |M| = `. Append it with 1, then

448− (`+ 1) zeros, and finally with the number ` written in
binary.

• Now the padded message is a multiple of 512 bits.
• Parse it into N blocks of size 512 bits, i.e. M(1), · · · ,M(N).
• Fix the initial hash values H0

1 , · · · ,H
(0)
8 with the fractional parts

of the square roots of the first eight primes.
• Compute H(i) = H(i−1) + C(M(i),H(i−1)) where C is the

compression function and addition is word-wise mod 232.
• Output H(N) as the hash of the message M.
• For detailed description see: http://www.iwar.org.uk/
comsec/resources/cipher/sha256-384-512.pdf
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SHA-2
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SHA-256

The logical functions are as follows:
• Ch(E,F,G) = (E ∧ F)⊕ (¬E ∧ G)

• Ma(A,B,C) = (A ∧ B)⊕ (A ∧ C)⊕ (B ∧ C)

• Σ0(A) = (A ≫ 2)⊕ (A ≫ 13)⊕ (A ≫ 22)
• Σ1(E) = (E ≫ 6)⊕ (E ≫ 11)⊕ (E ≫ 25)

The constant words, K0, · · · ,K63 are the first 32 bits of the
fractional parts of the cube roots of the first sixty-four primes.
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SHA-256

• 24-round-SHA-256 is broken.
• Variants of SHA-256 without σ0, σ1, Σ0, Σ1 have been broken as

well.
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SHA-3 (Keccak)

• In 2012, Keccak was announced as the winner of the NIST
competition (was called SHA-3) to design a new cryptographic
hash function.

• All candidates were of 256- and 512-bit output length.
• Its structure is different from SHA-1 and SHA-2.
• it uses an unkeyed permutation with 1600-bit block length!
• For instance, Davies-Meyer construction uses a keyed

permutation
• it doesn’t use Merkle-Damgård to extend the compression

function to deal with arbitrary-length input.
• Sponge construction is the new approach that it uses instead of

Merkle-Damgård.
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Keccak- Sponge Function

Complete description:
http://sponge.noekeon.org/CSF-0.1.pdf
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