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Prime numbers

Any integer n can be decomposed uniquely as a product of
prime numbers.

There are infinitely many primes.

Prime Number Theorem: the number of primes up to some
bound B is roughly equal to B/ log B.

Bertrand’s postulate: For any n > 1, the fraction of the n-bit
integers that are prime is at least 1/3n.




Primality testing

e Given an integer n, decide whether n is prime or not.

e There are deterministic algorithms for primality testing (see
AKS test).

e In practice, we use probabilistic algorithms (having a small
probability to return prime for composite numbers) that are
much faster.




Generating Random Primes

You can generate primes by picking random numbers smaller than
B and checking whether they are prime: need about log B trials by
the prime number theorem. More formally,

Input: Length n, parameter t
Fori=11tot:

p/ ya {07 l}nfl

p=1p’

if Primality test (p) = 1 return p
return fail
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Generating Random Primes

e Remember that for any n > 1, the fraction of the n-bit integers
that are prime is at least 1/3n.

 Now, set r = 312, then the probability of the previous algorithm
to not output a prime in ¢ iteration is

1 1

(=) = (=3 )) <) =e

e This probability is negligible in n if we have a number of
iterations that is polynomial in n.

e We still need to study the algorithms that test numbers
primality!
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Fermat test

e Observation: if n is prime then ¢"~! = 1 mod n for all a
(Fermat’s little theorem)
e |dea: choose random a and check whether a"~! = 1 mod n. If

not then n is composite.

e We define a witness that n is composite any a € Z,, s.t.
a1+ 1 mod n.




Fermat test

Input: Integer n and parameter 1’
fori=11tot

a<{1,--- ,n—1}

ifd"~' £ 1 mod n return “composite”
return ‘prime”

4

Ifn has a witness that it is composite, then |{witnesses},| > |Z,|/2 \




Fermat test

Input: Integer n and parameter 1’
fori=11tot

a<{1,--- ,n—1}

ifd"~' £ 1 mod n return “composite”
return ‘prime”

Ifn has a witness that it is composite, then |{witnesses},| > |Z,|/2 \

However, try 561 or 41041.
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Fermat test

Input: Integer n and parameter 1’
fori=11tot

a<{1,--- ,n—1}

ifd"~' £ 1 mod n return “composite”
return ‘prime”

Ifn has a witness that it is composite, then |{witnesses},| > |Z,|/2

However, try 561 or 41041.
Carmichael numbers: are composite and pass this test for all
0 < a < n, i.e. they don’t have any witnesses.
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Fermat test

Input: Integer n and parameter 1’
fori=11tot

a<{1,--- ,n—1}

ifd"~' £ 1 mod n return “composite”
return ‘prime”

Ifn has a witness that it is composite, then |{witnesses},| > |Z,|/2

However, try 561 or 41041.

Carmichael numbers: are composite and pass this test for all
0 < a < n, i.e. they don’t have any witnesses.

Solution?
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Testing Primality

e We have just seen that Carmichael numbers don’t have any
witnesses!

e We need to refine Fermat’s test.

e Letn — 1 = 2*u, where u is odd and k > 1 (and therefore n is
odd).
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Testing Primality

We have just seen that Carmichael numbers don’t have any
witnesses!

We need to refine Fermat’s test.

Let n — 1 = 2*u, where u is odd and k > 1 (and therefore n is
odd).

In Fermat’s test, we check if ¢! = ®* = 1.
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Testing Primality

We have just seen that Carmichael numbers don’t have any
witnesses!

We need to refine Fermat’s test.
Let n — 1 = 2*u, where u is odd and k > 1 (and therefore n is

odd).
e In Fermat’s test, we check if ¢! = ®* = 1.
e What about a*,a®,--- ,a* “?
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Testing Primality

e We have just seen that Carmichael numbers don’t have any
witnesses!

e We need to refine Fermat’s test.
e Letn — 1 = 2*u, where u is odd and k > 1 (and therefore n is

odd).
e In Fermat’s test, we check if ¢! = ®* = 1.
e What about a*,a®,--- ,a* “?

e Strong witness: a € Z, is a strong witness that n is composite
if
© a"# +1 mod n and
o a*"# —1forallie{l,--- k—1}
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Testing Primality

e If nis prime, then n doesn’t have any strong witness that it is
composite. More formally,

Let n be an odd number that is not a prime power, then we have
that at least half of the elements of Z; are strong witnesses that n
is composite.
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Miller-Rabin test

Input: Integer n > 2 and parameter 1’
If n is even, return “‘composite”
If n is a perfect power, return “composite” 2
Write n — 1 = 2u where u is odd and k > 1
forj=1tot
a<{1l,--- ,n—1}
ifa" #+1 mod nanda®" # —1 mod n foric {1, -- ,k—1}
return “composite”
return ‘prime”

@Exercise: Show that this test can be done in polynomial time

12 of 44



Miller-Rabin test

If p is prime, then the Miller-Rabin test always outputs ‘prime. If p
is composite, the algorithm outputs “composite” except with
probability at most 2~!
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S
Miller-Rabin test

If p is prime, then the Miller-Rabin test always outputs ‘prime. If p
is composite, the algorithm outputs “composite” except with
probability at most 2~!

(Exercise-1) Show that the Miller-Rabin algorithm runs in time
polynomial in |p| and .
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Miller-Rabin test

If p is prime, then the Miller-Rabin test always outputs ‘prime. If p
is composite, the algorithm outputs “composite” except with
probability at most 2~!

(Exercise-1) Show that the Miller-Rabin algorithm runs in time
polynomial in |p| and .

(Exercise-2) Compare its running time to the (deterministic) AKS’
running time.
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ﬂ Public Key Encryption: security notions
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-
Public Key Cryptosystems

An asymmetric encryption scheme consists of the following
algorithms:

e KeyGen(1"): is a randomized algorithm that takes the security
parameters as input and returns a pair of keys (PK, SK), the
public key PK and its matching secret key SK, respectively.

e Enc(PK,m): A randomized algorithm that takes a public key PK,
a plaintext m and returns a ciphertext c.

e Dec(SK,¢): A deterministic algorithm that takes the secret key
SK and a ciphertext ¢, and returns a message m € M U 1.

Correctness:

Vm € M, Pr[(SK, PK) < KeyGen(n) : Dec(Enc(PK,m),SK) = m] =1
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CPA Indistinguishability Experiment PubK%;

Challenger Ch Adversary A
PK, SK «— KeyGen(n)

mo,m, |[mo|=|m |
—
b+« {0,1}

c=EnePm), Sutputs his guess b’

Definition

An encryption scheme is CPA-secure if for all efficient A the
following holds:

Advj’fE(n) = Pr[Pubef’%(n) =1]—1/2 =negl(n)

Where PubK%%(n) = 1if b’ = b, and 0 otherwise.
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CCA Indistinguishability Experiment PubK’%

Challenger Ch Adversary A
PK, SK = KeyGen(n) Access to the oracle Dec(SK, -)

mo,my, |mo|=|m|
<_

b+ {0,1}

=EnelPm), pccess to the oracle Dec(SK, )¢

Outputs his guess »’

Definition

An encryption scheme is CCA-secure if for all efficient A the
following holds:

AV (n) = Pr[PUbKS% (n) = 1] — 1/2 = negl(n)
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Dealing with arbitrary-length messages

If a public-key encryption scheme is CPA-secure, then it also has
indistinguishable multiple encryptions, where the adversary is
allowed to send two lists of messages to be challenged on instead
of sending a pair of messages.

¢ As a consequence, any CPA-secure public-key encryption
scheme for fixed-length messages (down to one bit!) can be
used as a public key-encryption scheme for arbitrary-length
messages.
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Hybrid Encryption

A better approach to deal with arbitrary-length messages.

We will use a private-key encryption scheme along with a
public-key encryption scheme.

Remember that private-key encryption scheme are significantly
faster than public ones.

We call this approach the key-encapsulation mechanism and
data-encapsulation mechanism (KEM/DEM).
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KEM

An key-encapsulation mechanism scheme (KEM) consists of the
following PPT algorithms:

e KeyGen(1"): takes the security parameter as input and returns
a pair of keys (PK, SK), the public key PK and its matching
secret key SK, respectively, each of length n.

e Encaps(PK, 1"): it returns a ciphertext ¢ and a key k € {0, 1},

e Decaps(SK, ¢): A deterministic algorithm that takes a secret
key SK and a ciphertext ¢, and returns a key k or L.
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Hybrid Encryption

An hybrid encryption scheme consists of a KEM scheme and a
private-key encryption scheme:

 KeyGen™(1"): is a randomized algorithm that takes the security
parameters as input and returns a pair of keys (PK, SK).
e Enc”(PK,m € {0,1}*): takes a public key PK, a plaintext m and
does the following:
o compute (c, k) + Encaps(PK, 1").
o compute ¢’ + Enc(k,m).
o output the ciphertext (c,c’).
e Dec™(SK, (¢, ')): takes a secret key SK and a ciphertext (c, ¢)
and does the following:
o k < Decaps(SK,c).
o output m + Dec(k, c").
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Hybrid Encryption: Efficiency

e Fix n. Let a =cost(Encaps(1")) and 5 =cost(Enc(1 bit)). Then

cost(Enc’ (1 bity) = S A Iml _ @ g
m| m|
e For sufficiently large m, cost(Enc™(1 bit)) — 3. In other words,
cost(Enc™(1 bit)) ~ cost(Enc(1 bit)), which is the cost of
encrypting one bit using a private-key encryption scheme!
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N
Security of KEM

Intuitively speaking, for a KEM to be CPA secure, we require the
encapsulated key to be indistinguishable from a uniform key that is
independent of the ciphertext.

e Run KeyGen(1") to get (PK, SK), then run Encaps(PK, 1") to
generate (c,k) where k € {0,1}".

e Choose random b € {0, 1}, ifb = 0 set k := k, otherwise choose
k uniformly at random from {0, 1}".

e Give the adversary A the tuple (PK, c, k), he should output a bit
b.
o Experiment output: 1 if b’ = b and 0 otherwise.
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Security of the Hyprid Encryption Scheme

The hybrid encryption scheme is a CPA-secure public-key
encryption scheme if KEM is CPA secure and the private-key
encryption scheme has indistinguishable encryptions in the

presence of an eavesdropper.
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Security of the Hyprid Encryption Scheme
Let k «+ Encaps(1") and k' + {0, 1}"

(pk, Encaps(pk, 1), Enc(k’, my)) (pk, Encaps(pk,1™), Enc(k',my))
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N
Security of the Hyprid Encryption Scheme

(pk, Encaps(pk, 1), Enc(k’, my)) (pk, Encaps(pk,1™), Enc(k',m,))
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Security of the Hyprid Encryption Scheme

KE@re

(pk, Encaps(pk, 1), Enc(k’, my)) (pk, Encaps(pk,1™), Enc(k',m,))
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Security of the Hyprid Encryption Scheme

(pk, Encaps(pk, 1™), Enc(k, my))

KE@re

(pk, Encaps(pk, 1), Enc(k’, my)) (pk, Encaps(pk,1™), Enc(k',m,))
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Security of the Hyprid Encryption Scheme

(pk, Encaps(pk, 1™), Enc(k, my))

KE@re KE@@

(pk, Encaps(pk, 1), Enc(k’, my)) (pk, Encaps(pk, 1™), Enc(k',my))
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Security of the Hyprid Encryption Scheme

(pk, Encaps(pk, 1™), Enc(k, my)) (pk, Encaps(pk, 1™), Enc(k, m;))

KE@re KE@@

(pk, Encaps(pk, 1), Enc(k’, my)) (pk, Encaps(pk,1™), Enc(k',m,))
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Security of the Hyprid Encryption Scheme

(pk, Encaps(pk, 1™), Enc(k, my)) ~ (pk, Encaps(pk, 1™), Enc(k, m;))

KE@re KE@@

(pk, Encaps(pk, 1), Enc(k’, my)) (pk, Encaps(pk,1™), Enc(k',m,))
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N
Security of the Hyprid Encryption Scheme

We need to prove the following:
1
Pr[PUubK% g, (n) = 1] < 5 + negl(n)

Whereas, by definition of the security experiment, we have

—

Pr[PUbK‘{}, g (n) = 1] = 5 Pr[A™ outputs 0|k = k, m = m

\SR I NS

+ = Pr[A" outputs 1|k = k,m = m;]
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Securitv of the Hvprid Encrvption Scheme

33 0f44

KEM
Al Challenger

b < {0,1}

0: k « Encaps(pk, 1™)
1: k" < {0,1}"

Pr[A}s output = 0|b = 0] = Pr[Ahy’s output = 0|k = k,m = my]
Pr[A}s output = 1|b = 1] = Pr[Ahy's output = 1|k = k', m = my]




Securitv of the Hvprid Encrvption Scheme

KEM
Al A, Challenger

b < {0,1}
0: k « Encaps(pk, 1™)
1: k" « {0,1}"

Pr[A,’'s output = 0|b = 0] = Pr[A"y's output = 1|k = k,m = m,]

34 0f 44 Pr[A,'s output =1|b = 1] = Pr[Ahy's output = 0k = k', m = m,]




Securitv of the Hvprid Encrvption Scheme

PrivK
Challenger

b « {0,1}
k' < {0,1}"

c' « Enc(k’,myp)

Pr[A’ output = 0|b = 0] = Pr[A"l"’s output = 0k = k',m = my]

' - —1] = hy' —1lk=k m =
35 of 44 Pr[A’ output = 1|b = 1] = Pr[A"Y s output = 1|k = k', m = m,]



N
Security of the Hyprid Encryption Scheme

The hybrid encryption scheme is a CCA-secure public-key
encryption scheme if KEM is CCA secure and the private-key
encryption scheme is CCA-secure.

36 of 44



Outline

e RSA Encryption Scheme
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N
RSA Encryption Scheme

e Designed by Rivest-Shamir-Adleman in 1977

e |t is widely in use today. There is also the RSA digital signature
scheme.

e Security of both relies on the fact that integer factorization is a
hard computational problem.
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Pseudorandom Permutations from One Way
Functions

¢ Informally speaking, one-way functions are easy to compute,
hard to invert!

e We don’t know how to prove that one-way functions exist!

e Assuming the hardness of some problems, we can build
one-way functions.

Letn > 1, and fore > 0 definef, : Z, — 7Z; by f.(x) = x* mod n. If
GCD(e, p(n)) = 1, thenf, is a permutation. The inverse of f, is f,

whered = e~ mod ¢(n)
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Chinese Remainder Theorem

N
o Ifn=]]p{" then the map

i=1
N
f:Z, — HZP’{,- :x — (xmod p{',...,x mod py)
i=1
is a ring isomorphism
¢ In other words given all residue values, there exists a unique
value that corresponds to them modulo n
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Euler’s theorem

N
e Letn = | | p{" where the p; are distinct primes
1
i=1

e The Euler totient function ¢(n) is the number of positive integers
less than or equal to n that are relatively prime to n, more

formally,
N

o(n) =i — V)pi~!
i=1
e Then for all x € Z;, we have

x*™ — 1 mod n

e If n = p a prime, then ¢(n) = p — 1 and we recover Fermat’s little
theorem x*~! = 1 mod p
e |f n = pgq like in RSA, then ¢(n) = (p—1)(¢g— 1)
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Plain RSA encryption algorithm

e Let p, g two distinct odd primes, and let n = pg

e Compute ¢(n) = (p — 1)(¢ — 1), and choose e > 1 s.t.
ged(e, o(n)) = 1

Public key is (n,¢) and private key is (p, q)

Given private key, can also compute d := ¢~ mod ¢(n)
Encryption of m € Z;: ¢ = m° mod n

Decryption of ¢ € Z*: m’ = ¢ mod n
Correctness follows from

by Euler’'s theorem
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RSA security

e Solving the factorization problem is sufficient and necessary to
reconstruct the private key

¢ Solving the factorization problem might not be necessary for
other goals, such as decrypting without the private key
e In fact, “Plain RSA” is insecure!
o What if m is not chosen uniformly from Z?
o Plain RSA is deterministic!
o Therefore, it is not CPA-secure!
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