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Prime numbers

• Any integer n can be decomposed uniquely as a product of
prime numbers.

• There are infinitely many primes.
• Prime Number Theorem: the number of primes up to some

bound B is roughly equal to B/ log B.
• Bertrand’s postulate: For any n > 1, the fraction of the n-bit

integers that are prime is at least 1/3n.
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Primality testing

• Given an integer n, decide whether n is prime or not.
• There are deterministic algorithms for primality testing (see

AKS test).
• In practice, we use probabilistic algorithms (having a small

probability to return prime for composite numbers) that are
much faster.
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Generating Random Primes

You can generate primes by picking random numbers smaller than
B and checking whether they are prime: need about log B trials by
the prime number theorem. More formally,

Algorithm
Input: Length n, parameter t
For i = 1 to t:

p′ ← {0, 1}n−1

p := 1||p′
if Primality_test (p) = 1 return p

return fail
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Generating Random Primes

• Remember that for any n > 1, the fraction of the n-bit integers
that are prime is at least 1/3n.

• Now, set t = 3n2, then the probability of the previous algorithm
to not output a prime in t iteration is

(1− 1
3n

)t =
(
(1− 1

3n
)3n)n ≤ (e−1)n = e−n

• This probability is negligible in n if we have a number of
iterations that is polynomial in n.

• We still need to study the algorithms that test numbers
primality!
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Fermat test

• Observation: if n is prime then an−1 = 1 mod n for all a
(Fermat’s little theorem)

• Idea: choose random a and check whether an−1 = 1 mod n. If
not then n is composite.

• We define a witness that n is composite any a ∈ Z∗n, s.t.
an−1 6= 1 mod n.
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Fermat test

Algorithm

Input: Integer n and parameter 1t

for i = 1 to t
a← {1, · · · , n− 1}
if an−1 6= 1 mod n return “composite”

return “prime”

Theorem
If n has a witness that it is composite, then |{witnesses}n| ≥ |Z∗n|/2

However, try 561 or 41041.
Carmichael numbers: are composite and pass this test for all
0 < a < n, i.e. they don’t have any witnesses.
Solution?
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Testing Primality

• We have just seen that Carmichael numbers don’t have any
witnesses!

• We need to refine Fermat’s test.
• Let n− 1 = 2ku, where u is odd and k ≥ 1 (and therefore n is

odd).

• In Fermat’s test, we check if an−1 = a2ku = 1.
• What about au, a2u, · · · , a2k−1u?
• Strong witness: a ∈ Z∗n is a strong witness that n is composite

if
◦ au 6= ±1 mod n and
◦ a2iu 6= −1 for all i ∈ {1, · · · , k − 1}
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Testing Primality

• If n is prime, then n doesn’t have any strong witness that it is
composite. More formally,

Theorem
Let n be an odd number that is not a prime power, then we have
that at least half of the elements of Z∗n are strong witnesses that n
is composite.
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Miller-Rabin test

Algorithm

Input: Integer n > 2 and parameter 1t

If n is even, return “composite”
If n is a perfect power, return “composite” a

Write n− 1 = 2ku where u is odd and k ≥ 1
for j = 1 to t

a← {1, · · · , n− 1}
if au 6= ±1 mod n and a2iu 6= −1 mod n for i ∈ {1, · · · , k − 1}

return “composite”
return “prime”

aExercise: Show that this test can be done in polynomial time
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Miller-Rabin test

Theorem
If p is prime, then the Miller-Rabin test always outputs “prime. If p
is composite, the algorithm outputs “composite” except with
probability at most 2−t

(Exercise-1) Show that the Miller-Rabin algorithm runs in time
polynomial in |p| and t.
(Exercise-2) Compare its running time to the (deterministic) AKS’
running time.
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Public Key Cryptosystems

An asymmetric encryption scheme consists of the following
algorithms:

• KeyGen(1n): is a randomized algorithm that takes the security
parameters as input and returns a pair of keys (PK,SK), the
public key PK and its matching secret key SK, respectively.

• Enc(PK,m): A randomized algorithm that takes a public key PK,
a plaintext m and returns a ciphertext c.

• Dec(SK, c): A deterministic algorithm that takes the secret key
SK and a ciphertext c, and returns a message m ∈M∪⊥.

Correctness:

∀m ∈M,Pr[(SK,PK)← KeyGen(n) : Dec(Enc(PK,m),SK) = m] = 1
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CPA Indistinguishability Experiment PubKcpa
A,E

Challenger Ch Adversary A
PK,SK← KeyGen(n)

m0,m1,|m0|=|m1|←−−−−−−−−−
b← {0, 1}

c=Enc(PK,mb)−−−−−−−−→ Outputs his guess b′

Definition
An encryption scheme is CPA-secure if for all efficient A the
following holds:

Advcpa
A,E(n) = Pr[PubKcpa

A,E(n) = 1]− 1/2 = negl(n)

Where PubKcpa
A,E(n) = 1 if b′ = b, and 0 otherwise.
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CCA Indistinguishability Experiment PubKcca
A,E

Challenger Ch Adversary A
PK,SK = KeyGen(n) Access to the oracle Dec(SK, ·)

m0,m1,|m0|=|m1|←−−−−−−−−−
b← {0, 1}

c=Enc(PK,mb)−−−−−−−−→ Access to the oracle Dec(SK, ·)c

Outputs his guess b′

Definition
An encryption scheme is CCA-secure if for all efficient A the
following holds:

Advcca
A,E(n) = Pr[PubKcca

A,E(n) = 1]− 1/2 = negl(n)
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Dealing with arbitrary-length messages

Theorem
If a public-key encryption scheme is CPA-secure, then it also has
indistinguishable multiple encryptions, where the adversary is
allowed to send two lists of messages to be challenged on instead
of sending a pair of messages.

• As a consequence, any CPA-secure public-key encryption
scheme for fixed-length messages (down to one bit!) can be
used as a public key-encryption scheme for arbitrary-length
messages.
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Hybrid Encryption

• A better approach to deal with arbitrary-length messages.
• We will use a private-key encryption scheme along with a

public-key encryption scheme.
• Remember that private-key encryption scheme are significantly

faster than public ones.
• We call this approach the key-encapsulation mechanism and

data-encapsulation mechanism (KEM/DEM).
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KEM

An key-encapsulation mechanism scheme (KEM) consists of the
following PPT algorithms:

• KeyGen(1n): takes the security parameter as input and returns
a pair of keys (PK,SK), the public key PK and its matching
secret key SK, respectively, each of length n.

• Encaps(PK, 1n): it returns a ciphertext c and a key k ∈ {0, 1}`(n).
• Decaps(SK, c): A deterministic algorithm that takes a secret

key SK and a ciphertext c, and returns a key k or ⊥.
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Hybrid Encryption

An hybrid encryption scheme consists of a KEM scheme and a
private-key encryption scheme:

• KeyGenhy(1n): is a randomized algorithm that takes the security
parameters as input and returns a pair of keys (PK,SK).

• Enchy(PK,m ∈ {0, 1}∗): takes a public key PK, a plaintext m and
does the following:
◦ compute (c, k)← Encaps(PK, 1n).
◦ compute c′ ← Enc(k,m).
◦ output the ciphertext (c, c′).

• Dechy(SK, (c, c′)): takes a secret key SK and a ciphertext (c, c′)
and does the following:
◦ k← Decaps(SK, c).
◦ output m← Dec(k, c′).
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Hybrid Encryption: Efficiency

• Fix n. Let α =cost(Encaps(1n)) and β =cost(Enc(1 bit)). Then

cost(Enchy(1 bit)) =
α+ β · |m|
|m|

=
α

|m|
+ β

• For sufficiently large m, cost(Enchy(1 bit))→ β. In other words,
cost(Enchy(1 bit)) ≈ cost(Enc(1 bit)), which is the cost of
encrypting one bit using a private-key encryption scheme!
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Security of KEM

Intuitively speaking, for a KEM to be CPA secure, we require the
encapsulated key to be indistinguishable from a uniform key that is
independent of the ciphertext.

Experiment
• Run KeyGen(1n) to get (PK,SK), then run Encaps(PK, 1n) to

generate (c, k) where k ∈ {0, 1}n.
• Choose random b ∈ {0, 1}, if b = 0 set k̄ := k, otherwise choose

k̄ uniformly at random from {0, 1}n.
• Give the adversary A the tuple (PK, c, k̄), he should output a bit

b′.
• Experiment output: 1 if b′ = b and 0 otherwise.
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Security of the Hyprid Encryption Scheme

Theorem
The hybrid encryption scheme is a CPA-secure public-key
encryption scheme if KEM is CPA secure and the private-key
encryption scheme has indistinguishable encryptions in the
presence of an eavesdropper.
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Security of the Hyprid Encryption Scheme
Let k← Encaps(1n) and k′ ← {0, 1}n

 (𝑝𝑘, 𝐸𝑛𝑐𝑎𝑝𝑠 𝑝𝑘, 1𝑛 , 𝐸𝑛𝑐(𝑘′, 𝑚0))  (𝑝𝑘, 𝐸𝑛𝑐𝑎𝑝𝑠 𝑝𝑘, 1𝑛 , 𝐸𝑛𝑐(𝑘′, 𝑚1)) 
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Security of the Hyprid Encryption Scheme

 (𝑝𝑘, 𝐸𝑛𝑐𝑎𝑝𝑠 𝑝𝑘, 1𝑛 , 𝐸𝑛𝑐(𝑘′, 𝑚0))  (𝑝𝑘, 𝐸𝑛𝑐𝑎𝑝𝑠 𝑝𝑘, 1𝑛 , 𝐸𝑛𝑐(𝑘′, 𝑚1)) 

PrivEnc is secure 
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Security of the Hyprid Encryption Scheme

We need to prove the following:

Pr[PubKeav
Ahy,Shy(n) = 1] ≤ 1

2
+ negl(n)

Whereas, by definition of the security experiment, we have

Pr[PubKeav
Ahy,Shy(n) = 1] =

1
2

Pr[Ahy outputs 0|k̄ = k,m = m0]

+
1
2

Pr[Ahy outputs 1|k̄ = k,m = m1]
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Security of the Hyprid Encryption Scheme

𝑏 ← 0,1  
 0: 𝑘 ← 𝐸𝑛𝑐𝑎𝑝𝑠 𝑝𝑘, 1𝑛  

1: 𝑘′ ← {0,1}𝑛 

𝐴ℎ𝑦 𝐴1 
𝐾𝐸𝑀  

𝐶ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒𝑟 

(𝑝𝑘, 𝑐, 𝑘 ) 
(𝑚0, 𝑚1) 

𝑐′ = 𝐸𝑛𝑐(𝑘 ,𝑚0) (𝑐, 𝑐′) 

𝑏′ 𝑏′ 

𝐏𝐫 𝑨𝟏
′ 𝒔 𝒐𝒖𝒕𝒑𝒖𝒕 = 𝟎 𝒃 = 𝟎 = 𝐏𝐫 [𝑨𝒉𝒚′𝒔 𝒐𝒖𝒕𝒑𝒖𝒕 = 𝟎|𝒌 = 𝒌,𝒎 = 𝒎𝟎] 

𝐏𝐫 𝑨𝟏
′ 𝒔 𝒐𝒖𝒕𝒑𝒖𝒕 = 𝟏 𝒃 = 𝟏 = 𝐏𝐫 [𝑨𝒉𝒚′𝒔 𝒐𝒖𝒕𝒑𝒖𝒕 = 𝟏|𝒌 = 𝒌′,𝒎 = 𝒎𝟎] 33 of 44



Security of the Hyprid Encryption Scheme

𝐴ℎ𝑦 𝐴2 
𝐾𝐸𝑀  

𝐶ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒𝑟 

(𝑝𝑘, 𝑐, 𝑘 ) 
(𝑚0, 𝑚1) 

𝑐′ = 𝐸𝑛𝑐(𝑘 ,𝑚1) (𝑐, 𝑐′) 

𝑏′ 1 − 𝑏′ 

𝐏𝐫 𝑨𝟐′𝒔 𝒐𝒖𝒕𝒑𝒖𝒕 = 𝟎 𝒃 = 𝟎 = 𝐏𝐫 [𝑨𝒉𝒚′𝒔 𝒐𝒖𝒕𝒑𝒖𝒕 = 𝟏|𝒌 = 𝒌,𝒎 = 𝒎𝟏] 

𝐏𝐫 𝑨𝟐′𝒔 𝒐𝒖𝒕𝒑𝒖𝒕 = 𝟏 𝒃 = 𝟏 = 𝐏𝐫 [𝑨𝒉𝒚′𝒔 𝒐𝒖𝒕𝒑𝒖𝒕 = 𝟎|𝒌 = 𝒌′,𝒎 = 𝒎𝟏] 

𝑏 ← 0,1  
 0: 𝑘 ← 𝐸𝑛𝑐𝑎𝑝𝑠 𝑝𝑘, 1𝑛  

1: 𝑘′ ← {0,1}𝑛 
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Security of the Hyprid Encryption Scheme

 
𝑏 ← 0,1  
𝑘′ ← 0,1 𝑛 

c′ ← 𝐸𝑛𝑐(𝑘′, 𝑚𝑏) 
 
 
 

𝐴ℎ𝑦 𝐴′ 
𝑃𝑟𝑖𝑣𝐾 

𝐶ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒𝑟 

(𝑚0, 𝑚1) 

𝑐 = 𝐸𝑛𝑐𝑎𝑝𝑠(𝑝𝑘, 1𝑛) 
(𝑐, 𝑐′) 

𝑏′ 𝑏′ 

(𝑚0, 𝑚1) 

𝑐′ 

𝐏𝐫 𝑨′ 𝒐𝒖𝒕𝒑𝒖𝒕 = 𝟎 𝒃 = 𝟎 = 𝐏𝐫 [𝑨𝒉𝒚′𝒔 𝒐𝒖𝒕𝒑𝒖𝒕 = 𝟎|𝒌 = 𝒌′,𝒎 = 𝒎𝟎] 
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Security of the Hyprid Encryption Scheme

Theorem
The hybrid encryption scheme is a CCA-secure public-key
encryption scheme if KEM is CCA secure and the private-key
encryption scheme is CCA-secure.
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RSA Encryption Scheme

• Designed by Rivest-Shamir-Adleman in 1977
• It is widely in use today. There is also the RSA digital signature

scheme.
• Security of both relies on the fact that integer factorization is a

hard computational problem.
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Pseudorandom Permutations from One Way
Functions

• Informally speaking, one-way functions are easy to compute,
hard to invert!

• We don’t know how to prove that one-way functions exist!
• Assuming the hardness of some problems, we can build

one-way functions.

Corollary
Let n > 1, and for e > 0 define fe : Z∗n → Z∗n by fe(x) = xe mod n. If
GCD(e, φ(n)) = 1, then fe is a permutation. The inverse of fe is fd
where d = e−1 mod φ(n)
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Chinese Remainder Theorem

• If n =

N∏
i=1

pei
i then the map

f : Zn →
N∏

i=1

Zpei
i

: x→ (x mod pe1
1 , . . . , x mod peN

N )

is a ring isomorphism
• In other words given all residue values, there exists a unique

value that corresponds to them modulo n
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Euler’s theorem

• Let n =

N∏
i=1

pei
i where the pi are distinct primes

• The Euler totient function φ(n) is the number of positive integers
less than or equal to n that are relatively prime to n, more
formally,

φ(n) =

N∏
i=1

(pi − 1)pei−1
i

• Then for all x ∈ Z∗n, we have

xφ(n) = 1 mod n

• If n = p a prime, then φ(n) = p− 1 and we recover Fermat’s little
theorem xp−1 = 1 mod p

• If n = pq like in RSA, then φ(n) = (p− 1)(q− 1)
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Plain RSA encryption algorithm

• Let p, q two distinct odd primes, and let n = pq
• Compute φ(n) = (p− 1)(q− 1), and choose e > 1 s.t.

gcd(e, φ(n)) = 1
• Public key is (n, e) and private key is (p, q)

• Given private key, can also compute d := e−1 mod φ(n)

• Encryption of m ∈ Z∗n: c = me mod n
• Decryption of c ∈ Z∗n: m′ = cd mod n
• Correctness follows from

m′ = (me)d = med mod φ(n) = m mod n

by Euler’s theorem
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RSA security

• Solving the factorization problem is sufficient and necessary to
reconstruct the private key

• Solving the factorization problem might not be necessary for
other goals, such as decrypting without the private key

• In fact, “Plain RSA” is insecure!
◦ What if m is not chosen uniformly from Z∗n?
◦ Plain RSA is deterministic!
◦ Therefore, it is not CPA-secure!
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