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Why Discrete Logarithm?

A graph of f (x) = 627x mod 941 for x = 1, 2, 3, . . .
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Discrete logarithms

• Trivial if (G, ◦) = (Fp,+). Why?
• Recently broken if (G, ◦) = (F∗2n , ∗)

(more generally if characteristic is small)
• Believed to be hard for G = F∗p

and harder for (well-chosen) elliptic curve groups
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Generic group model

• Algorithms do not exploit any special properties of the
encodings of the group elements, other than the fact that each
group element is encoded as a unique binary string.

• For instance, the attacker just receives bitstrings instead of Zn

elements (n itself is often hidden but the size of n cannot be
hidden).

• Operations on group elements are performed using an oracle
that provides access to the group operations.

• Some attacks are generic: they work for any group.
• This includes exhaustive search, BSGS, Pollard’s rho
• There exist much better attacks for finite fields.
• Still no better attack for (well-chosen) elliptic curves.
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Exhaustive search

• Given g, h ∈ G do the following
1: k← 1; h′ ← g
2: if h′ = h then
3: return k
4: else
5: k← k + 1; h′ ← h′g
6: Go to Step 2
7: end if

• Generic algorithm
• Time complexity |G| in the worst case, |G|/2 on average
• Can we do better?
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Pohlig-Hellman

• They observed that Dlog in a group G is as hard as the Dlog in
the largest subgroup of prime order in G.

• This applies in any arbitrary finite abelian group.
• Assume |G| = N = n1n2 and let g a generator of G.
• h = gk implies hn1 = (gn1)k

where gn1 generates a subgroup of order n2.
• Assuming that we can solve DLP in that subgroup, this would

give us k mod n2.
• Repeating the same thing for each factor of N and using CRT

would give us k.
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Pohlig-Hellman

• Let G = 〈g〉 of order N = #G =
∏̀
i=1

pei
i

• Given h = gx, we want to first find x mod pei
i and then use CRT

to recover it mod N.
• There is a group isomorphism φ : G→ Cpe1

1
× · · · × Cp

e`
`

.

• Define the projection map φpi : G→ Cpei
i

where φpi(g) = gN/pei
i .

φpi is a group homomorphism, i.e., if h = gx in G, then
φpi(h) = φpi(g)x in Cpei

i
.

• Solving the discrete logarithm in Cpei
i

reduces to solving ei

discrete logarithm in the group Cpi following an inductive
procedure.

• Given h′ = gx′ ∈ Cpei
i
, we write x′ = x0 + x1pi + · · ·+ xei−1pei−1

i

and then find x0, x1, . . . , xei−1 in turn.
10 of 28



Baby step, giant step (BSGS)

• Given a public cyclic group G = 〈g〉, now we can assume that G
has a prime order p.

• Given h ∈ G, find the value of k s.t. h = gk.
• Let N′ = d

√
|G|e

• There exist 0 ≤ i, j < N′ such that k = jN′ + i

h = gjN′+i ⇔ hg−jN′
= gi

• Compute LB := {gi|i = 0, . . . ,N′ − 1}
• Compute LG := {hg−jN′ |j = 0, . . . ,N′ − 1}
• Attack requires time and memory each O

(
|G|1/2

)
• Can we do better in terms of space requirement and still obtain

a time complexity of O
(√
|G|
)
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Pollard’s Algorithms

• John Pollard, a famous name in factoring/Dlog algorithms in the
20th century.

• Known for (P− 1) method, Rho-method, Number Field Sieve.
• The idea in the Rho method is to find a collision in a random

mapping.
• Using the birthday paradox naively is no better than

Baby-Step/Giant-Step method in terms of space/time
requirements.

• Similar to the improved birthday paradox attack on hash
functions, we can use Floyd’s cycle finding algorithm, i.e. given
(xi, x2i), we compute

(xi+1, x2i+2) = (f (xi), f (f (x2i)))

• We stop when x` = x2`
12 of 28



Pollard’s rho

• Define the sets G1,G2,G3 of about the same size such that
G = G1 ∪ G2 ∪ G3 and Gi ∩ Gj = {}, assuming that 1 6∈ G2.

• Over Z∗p, one can choose
G1 = {0, . . . , bp/3c},
G2 = {bp/3c+ 1, . . . , b2p/3c}, G3 = {b2p/3c+ 1, . . . , p− 2}

• Define a random walk f : G→ G such that

xi+1 = f (xi) =


hxi xi ∈ G1

x2
i xi ∈ G2

gxi xi ∈ G3
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Pollard’s rho

• Given g, h = gx, we start from x0 := 1 and apply f recursively to
get {xi, x2i}i.

• By the way f is defined, we can keep track of (xt, at, bt) such
that xt = gat hbt , where

ai+1 =


ai

2ai mod p
ai + 1 mod p

, bi+1 =


bi + 1 mod p xi ∈ G1

2bi mod p xi ∈ G2

bi xi ∈ G3

• We stop when a collision is found, i.e. x` = x2`, therefore

x =
a2` − a`
b` − b2`

mod p.

• If f is “random enough”, then we should find the Dlog in
expected time O

(√
|G|
)

.
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Pollard’s rho

1: N ← d
√
|G|e

2: a1 = 0; b1 = 0; x1 = 1
3: (x2, a2, b2) = f (x1, a1, b1)
4: for k ∈ {2, . . . ,N} do
5: (x1, a1, b1) = f (x1, a1, b1)
6: (x2, a2, b2) = f (f (x2, a2, b2))
7: if x1 = x2 break;
8: end for
9: if b1 = b2 mod p then

10: return ⊥
11: else
12: return(a2 − a1)/(b1 − b2) mod p
13: end if
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Pollard’s Rho: example

Example (Smart’s book)
Consider G = 〈g〉, a subgroup of F∗607 of order p = 101, with
g = 64. Given h = 122 = 64x. Solve for x.
We split G into three sets S1, S2, S3 as follows:

S1 = {x ∈ F∗607 : x ≤ 201}

S2 = {x ∈ F∗607 : 202 ≤ x ≤ 403}

S3 = {x ∈ F∗607 : 404 ≤ x ≤ 606}
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Pollard’s Rho: example

Example

A collision is found when i = 14, this implies that g0h12 = g64h6, so
[12x = 64 + 6x mod 101] and therefore x = 78.

17 of 28



More from Pollard

• Pollard’s Lambda Method: similar to the Rho method in that it
uses deterministic random walk, but it is particularly designed
to the cases where we know that the Dlog lies in a particular
interval.

• Parallel Pollard’s Rho: designed to be able to use computing
resources of different sites across the internet.
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1 Generic discrete logarithm algorithms

2 Discrete logarithms over finite fields
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L notation

LQ(α; c) = exp(c(log Q)α(log log Q)1−α)

• Q is the size of the field
• α = 0⇒ LQ(α; c) = (log Q)c polynomial
• α = 1⇒ LQ(α; c) = Qc exponential
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(simplified) Index Calculus for F∗p
• DLP: given g, h ∈ F∗p, find x such that h = gx

• Factor basis made of small primes

FB := {primes pi ≤ B} = {p1, . . . , pk}
• Relation search
◦ Compute gi := gai for random ai ∈ {1, . . . , p− 1}
◦ If all factors of gi are ≤ B, we have a relation

gai =
∏

pj∈F
pei,j

j (1)

• Linear algebra Once we have ` ≥ k linearly independent
equations similar to equations (1), we solve mod (p− 1) for
logg pi, i = 1, . . . , k.

• Search for t such that [gt · h mod p] is B-smooth. Once found,
solve for logg h mod (p− 1).
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Size of the factor basis

• By the prime number theorem,

|{primes pi ≤ B}| ≈ B
log B

• Fact: 30% of all numbers have no prime factors above their
square root. Surprisingly, a large proportion of numbers can be
built out of so few primes!
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Complexity Analysis

• How to choose an optimal B: If B is large, then it is more likely
that the generated elements are B-smooth, but then testing that
they are B-smooth is more difficult now. Therefore, we need to
balance the cost!

• In order to choose an optimal B, we also need to know the
probability that a random integer that is smaller than N is
B-smooth.

• We will assume that the cost of generating relations dominates
the overall complexity of Algorithm, i.e. assume that the linear
algebra is negligible in terms of time complexity.

• We will simply use the trial-division to factor over FB.
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Complexity Analysis

• A number is B-smooth if all its prime factors are smaller than B.
• Define Ψ(N,B) = #{B-smooth numbers ≤ N}.
• The probability that a positive integer m ≤ N is B-smooth is

approximately equal to
1
N
·Ψ(N,B).

• The Canfield-Erdos-Pomerance Theorem: Let u =
log N
log B

, we

have
1
N
·Ψ(N,B) = u−u+o(u). This is the Dickman-de Bruijn

function ρ, i.e. ρ(u) ≈ u−u.
• The expected number of random trials of choosing numbers in

[1; N] to find one that is B-smooth is ≈ uu
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Complexity Analysis

• Let |FB| = k, the expected running time of the algorithm is

≈ (k + 1)︸ ︷︷ ︸
nb of relations

· uu︸︷︷︸
expected nb of trials

· k︸︷︷︸
nb of trial divisions

· M(log N)︸ ︷︷ ︸
time for a trial division

(2)

≈ B2 · uu drop the logarithmic factors,where k ≈ B
log B

(3)

= N2/u · uu (4)

• We want to minimize f (u) = N2/u · uu. If we set f ′(u) = 0, we
need a u s.t. u2 log u ≈ 2 log N.

• Let u = 2

√
log N

log log N
, we then get u2 log u = 2 log N + o(log N)
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Complexity Analysis

• Back to our bound B:

B = N1/u

= exp(
1
u

log N)

= exp(
1
2

√
log N log log N)

= LN(1/2, 1/2)

• Note that uu = LN(1/2, 1), therefore B2uu = LN(1/2, 2).
• The cost of the linear algebra step is bounded by Õ(B3), i.e.

LN(1/2, 3/2).
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