Discrete Logarithm Algorithms

Ali El Kaafarani

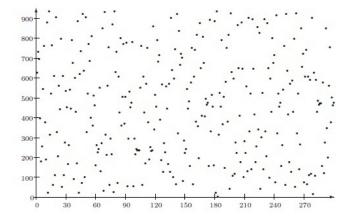
¹Mathematical Institute ² PQShield Ltd.

Outline

2 Discrete logarithms over finite fields

Why Discrete Logarithm?

A graph of $f(x) = 627^x \mod 941$ for x = 1, 2, 3, ...



Discrete logarithms

- Trivial if $(G, \circ) = (\mathbb{F}_p, +)$. Why?
- Recently broken if (G, ∘) = (𝔽^{*}_{2ⁿ}, *) (more generally if characteristic is small)
- Believed to be hard for $G = \mathbb{F}_p^*$ and harder for (well-chosen) elliptic curve groups

- Trivial if $(G, \circ) = (\mathbb{F}_p, +)$. Why?
- Recently broken if (G, ○) = (𝔽^{*}_{2ⁿ}, *) (more generally if characteristic is small)
- Believed to be hard for G = F^{*}_p and harder for (well-chosen) elliptic curve groups

- Trivial if $(G, \circ) = (\mathbb{F}_p, +)$. Why?
- Recently broken if (G, ∘) = (𝔽^{*}_{2ⁿ}, *) (more generally if characteristic is small)
- Believed to be hard for G = F^{*}_p and harder for (well-chosen) elliptic curve groups

Outline

Outline

2 Discrete logarithms over finite fields

Generic group model

- Algorithms do not exploit any special properties of the encodings of the group elements, other than the fact that each group element is encoded as a unique binary string.
- For instance, the attacker just receives bitstrings instead of Z_n elements (n itself is often hidden but the size of n cannot be hidden).
- Operations on group elements are performed using an oracle that provides access to the group operations.
- Some attacks are generic: they work for any group.
- This includes exhaustive search, BSGS, Pollard's rho
- There exist much better attacks for finite fields.
- Still no better attack for (well-chosen) elliptic curves.

Exhaustive search

- Given $g, h \in G$ do the following
 - 1: $k \leftarrow 1; h' \leftarrow g$
 - 2: if h' = h then
 - 3: **return** *k*
 - 4: **else**
 - 5: $k \leftarrow k+1; h' \leftarrow h'g$
 - 6: Go to Step 2
 - 7: **end if**
- Generic algorithm
- Time complexity |G| in the worst case, |G|/2 on average
- Can we do better?

Pohlig-Hellman

- They observed that Dlog in a group G is as hard as the Dlog in the largest subgroup of prime order in G.
- This applies in any arbitrary finite abelian group.
- Assume $|\mathbb{G}| = N = n_1 n_2$ and let *g* a generator of *G*.
- h = g^k implies hⁿ¹ = (gⁿ¹)^k
 where gⁿ¹ generates a subgroup of order n₂.
- Assuming that we can solve DLP in that subgroup, this would give us $k \mod n_2$.
- Repeating the same thing for each factor of *N* and using CRT would give us *k*.

Pohlig-Hellman

• Let
$$\mathbb{G} = \langle g \rangle$$
 of order $N = \#\mathbb{G} = \prod_{i=1}^{\ell} p_i^{e_i}$

• Given $h = g^x$, we want to first find $x \mod p_i^{e_i}$ and then use CRT to recover it mod *N*.

0

- There is a group isomorphism $\phi : \mathbb{G} \to C_{p_1^{e_1}} \times \cdots \times C_{p_{\ell}^{e_\ell}}$.
- Define the projection map $\phi_{p_i} : \mathbb{G} \to C_{p_i^{e_i}}$ where $\phi_{p_i}(g) = g^{N/p_i^{e_i}}$. ϕ_{p_i} is a group homomorphism, i.e., if $h = g^x$ in \mathbb{G} , then $\phi_{p_i}(h) = \phi_{p_i}(g)^x$ in $C_{p_i^{e_i}}$.
- Solving the discrete logarithm in $C_{p_i^{e_i}}$ reduces to solving e_i discrete logarithm in the group C_{p_i} following an inductive procedure.
- Given $h' = g^{x'} \in C_{p_i^{e_i}}$, we write $x' = x_0 + x_1 p_i + \dots + x_{e_i-1} p_i^{e_i-1}$ and then find $x_0, x_1, \dots, x_{e_i-1}$ in turn.

- Given a public cyclic group G = ⟨g⟩, now we can assume that G has a prime order p.
- Given $h \in \mathbb{G}$, find the value of k s.t. $h = g^k$.
- Let $N' = \lceil \sqrt{|\mathbb{G}|} \rceil$
- There exist $0 \le i, j < N'$ such that k = jN' + i

$$h = g^{jN'+i} \Leftrightarrow hg^{-jN'} = g^i$$

- Compute $L_B := \{g^i | i = 0, ..., N' 1\}$
- Compute $L_G := \{hg^{-jN'} | j = 0, \dots, N' 1\}$
- Attack requires time and memory each $\mathcal{O}\left(|\mathbb{G}|^{1/2}\right)$
- Can we do better in terms of space requirement and still obtain a time complexity of $\mathcal{O}\left(\sqrt{|\mathbb{G}|}\right)$

- Given a public cyclic group G = ⟨g⟩, now we can assume that G has a prime order p.
- Given $h \in \mathbb{G}$, find the value of k s.t. $h = g^k$.
- Let $N' = \lceil \sqrt{|\mathbb{G}|} \rceil$
- There exist $0 \le i, j < N'$ such that k = jN' + i

$$h = g^{jN'+i} \Leftrightarrow hg^{-jN'} = g^i$$

- Compute $L_B := \{g^i | i = 0, \dots, N' 1\}$
- Compute $L_G := \{hg^{-jN'} | j = 0, \dots, N' 1\}$
- Attack requires time and memory each $\mathcal{O}\left(|\mathbb{G}|^{1/2}\right)$
- Can we do better in terms of space requirement and still obtain a time complexity of $\mathcal{O}\left(\sqrt{|\mathbb{G}|}\right)$

- Given a public cyclic group G = ⟨g⟩, now we can assume that G has a prime order p.
- Given $h \in \mathbb{G}$, find the value of k s.t. $h = g^k$.
- Let $N' = \lceil \sqrt{|\mathbb{G}|} \rceil$
- There exist $0 \le i, j < N'$ such that k = jN' + i

$$h = g^{jN'+i} \Leftrightarrow hg^{-jN'} = g^i$$

- Compute $L_B := \{g^i | i = 0, ..., N' 1\}$
- Compute $L_G := \{hg^{-jN'} | j = 0, \dots, N' 1\}$
- Attack requires time and memory each $\mathcal{O}\left(|\mathbb{G}|^{1/2}\right)$
- Can we do better in terms of space requirement and still obtain a time complexity of $\mathcal{O}\left(\sqrt{|\mathbb{G}|}\right)$

- Given a public cyclic group G = ⟨g⟩, now we can assume that G has a prime order p.
- Given $h \in \mathbb{G}$, find the value of k s.t. $h = g^k$.
- Let $N' = \lceil \sqrt{|\mathbb{G}|} \rceil$
- There exist $0 \le i, j < N'$ such that k = jN' + i

$$h = g^{jN'+i} \Leftrightarrow hg^{-jN'} = g^i$$

- Compute $L_B := \{g^i | i = 0, ..., N' 1\}$
- Compute $L_G := \{hg^{-jN'} | j = 0, \dots, N' 1\}$
- Attack requires time and memory each $\mathcal{O}\left(|\mathbb{G}|^{1/2}\right)$
- Can we do better in terms of space requirement and still obtain a time complexity of $\mathcal{O}\left(\sqrt{|\mathbb{G}|}\right)$

- Given a public cyclic group G = ⟨g⟩, now we can assume that G has a prime order p.
- Given $h \in \mathbb{G}$, find the value of k s.t. $h = g^k$.
- Let $N' = \lceil \sqrt{|\mathbb{G}|} \rceil$
- There exist $0 \le i, j < N'$ such that k = jN' + i

$$h = g^{jN'+i} \Leftrightarrow hg^{-jN'} = g^i$$

- Compute $L_B := \{g^i | i = 0, ..., N' 1\}$
- Compute $L_G := \{hg^{-jN'} | j = 0, \dots, N' 1\}$
- Attack requires time and memory each $\mathcal{O}(|\mathbb{G}|^{1/2})$
- Can we do better in terms of space requirement and still obtain a time complexity of $\mathcal{O}\left(\sqrt{|\mathbb{G}|}\right)$

- Given a public cyclic group G = ⟨g⟩, now we can assume that G has a prime order p.
- Given $h \in \mathbb{G}$, find the value of k s.t. $h = g^k$.
- Let $N' = \lceil \sqrt{|\mathbb{G}|} \rceil$
- There exist $0 \le i, j < N'$ such that k = jN' + i

$$h = g^{jN'+i} \Leftrightarrow hg^{-jN'} = g^i$$

- Compute $L_B := \{g^i | i = 0, ..., N' 1\}$
- Compute $L_G := \{hg^{-jN'} | j = 0, \dots, N' 1\}$
- Attack requires time and memory each $\mathcal{O}\left(|\mathbb{G}|^{1/2}\right)$
- Can we do better in terms of space requirement and still obtain a time complexity of $\mathcal{O}\left(\sqrt{|\mathbb{G}|}\right)$

Pollard's Algorithms

- John Pollard, a famous name in factoring/Dlog algorithms in the 20th century.
- Known for (P-1) method, Rho-method, Number Field Sieve.
- The idea in the Rho method is to find a collision in a random mapping.
- Using the birthday paradox *naively* is no better than Baby-Step/Giant-Step method in terms of space/time requirements.
- Similar to the improved birthday paradox attack on hash functions, we can use Floyd's cycle finding algorithm, i.e. given (*x*_{*i*}, *x*_{2*i*}), we compute

$$(x_{i+1}, x_{2i+2}) = (f(x_i), f(f(x_{2i})))$$

• We stop when
$$x_{\ell} = x_{2\ell}$$

Pollard's rho

- Define the sets G_1, G_2, G_3 of about the same size such that $G = G_1 \cup G_2 \cup G_3$ and $G_i \cap G_j = \{\}$, assuming that $1 \notin G_2$.
- Over \mathbb{Z}_p^* , one can choose $G_1 = \{0, \dots, \lfloor p/3 \rfloor\},\$ $G_2 = \{\lfloor p/3 \rfloor + 1, \dots, \lfloor 2p/3 \rfloor\},\$ $G_3 = \{\lfloor 2p/3 \rfloor + 1, \dots, p-2\}$
- Define a random walk $f: G \rightarrow G$ such that

$$x_{i+1} = f(x_i) = \begin{cases} hx_i & x_i \in G_1 \\ x_i^2 & x_i \in G_2 \\ gx_i & x_i \in G_3 \end{cases}$$

Pollard's rho

- Given g, h = g^x, we start from x₀ := 1 and apply f recursively to get {x_i, x_{2i}}_i.
- By the way *f* is defined, we can keep track of (x_t, a_t, b_t) such that $x_t = g^{a_t} h^{b_t}$, where

$$a_{i+1} = \begin{cases} a_i & & \\ 2a_i \mod p & \\ a_i + 1 \mod p \end{cases}, b_{i+1} = \begin{cases} b_i + 1 \mod p & x_i \in G_1 \\ 2b_i \mod p & x_i \in G_2 \\ b_i & & x_i \in G_3 \end{cases}$$

- We stop when a collision is found, i.e. $x_{\ell} = x_{2\ell}$, therefore $x = \frac{a_{2\ell} a_{\ell}}{b_{\ell} b_{2\ell}} \mod p$.
- If *f* is "random enough", then we should find the Dlog in expected time $\mathcal{O}\left(\sqrt{|G|}\right)$.

Pollard's rho

1:
$$N \leftarrow \lceil \sqrt{|G|} \rceil$$

2: $a_1 = 0; b_1 = 0; x_1 = 1$
3: $(x_2, a_2, b_2) = f(x_1, a_1, b_1)$
4: for $k \in \{2, ..., N\}$ do
5: $(x_1, a_1, b_1) = f(x_1, a_1, b_1)$
6: $(x_2, a_2, b_2) = f(f(x_2, a_2, b_2))$
7: if $x_1 = x_2$ break;
8: end for
9: if $b_1 = b_2 \mod p$ then
10: return \perp
11: else
12: return $(a_2 - a_1)/(b_1 - b_2) \mod p$
13: end if

Pollard's Rho: example

Example (Smart's book)

Consider $\mathbb{G} = \langle g \rangle$, a subgroup of \mathbb{F}_{607}^* of order p = 101, with g = 64. Given $h = 122 = 64^x$. Solve for *x*. We split \mathbb{G} into three sets S_1, S_2, S_3 as follows:

$$S_1 = \{ x \in \mathbb{F}_{607}^* : x \le 201 \}$$
$$S_2 = \{ x \in \mathbb{F}_{607}^* : 202 \le x \le 403 \}$$
$$S_3 = \{ x \in \mathbb{F}_{607}^* : 404 \le x \le 606 \}$$

Pollard's Rho: example

Example

i	x_i	a_i	b_i	x_{2i}	a_{2i}	b_{2i}
0	1	0	0	1	0	0
1	122	0	1	316	0	2
2	316	0	2	172	0	8
3	308	0	4	137	0	18
4	172	0	8	7	0	38
5	346	0	9	309	0	78
6	137	0	18	352	0	56
7	325	0	19	167	0	12
8	7	0	38	498	0	26
9	247	0	39	172	2	52
10	309	0	78	137	4	5
11	182	0	55	7	8	12
12	352	0	56	309	16	26
13	76	0	11	352	32	53
14	167	0	12	167	64	6

A collision is found when i = 14, this implies that $g^0h^{12} = g^{64}h^6$, so $[12x = 64 + 6x \mod 101]$ and therefore x = 78.

- Pollard's Lambda Method: similar to the Rho method in that it uses deterministic random walk, but it is particularly designed to the cases where we know that the Dlog lies in a particular interval.
- Parallel Pollard's Rho: designed to be able to use computing resources of different sites across the internet.

Outline

Generic discrete logarithm algorithms

L notation

$$L_Q(\alpha; c) = \exp(c(\log Q)^{\alpha}(\log \log Q)^{1-\alpha})$$

- Q is the size of the field
- $\alpha = 0 \Rightarrow L_Q(\alpha; c) = (\log Q)^c$ polynomial
- $\alpha = 1 \Rightarrow L_Q(\alpha; c) = Q^c$ exponential

(simplified) Index Calculus for \mathbb{F}_p^*

- DLP: given $g, h \in \mathbb{F}_p^*$, find x such that $h = g^x$
- Factor basis made of small primes

$$\mathcal{F}_B := \{ \mathsf{primes} \ p_i \leq B \} = \{ p_1, \dots, p_k \}$$

Relation search

- Compute $g_i := g^{a_i}$ for random $a_i \in \{1, \dots, p-1\}$
- If all factors of g_i are $\leq B$, we have a relation

$$g^{a_i} = \prod_{p_j \in \mathcal{F}} p_j^{e_{i,j}} \tag{1}$$

- Linear algebra Once we have $\ell \ge k$ linearly independent equations similar to equations (1), we solve $\mod (p-1)$ for $\log_g p_i, i = 1, \dots, k$.
- Search for t such that $[g^t \cdot h \mod p]$ is *B*-smooth. Once found, solve for $\log_g h \mod (p-1)$.

• By the prime number theorem,

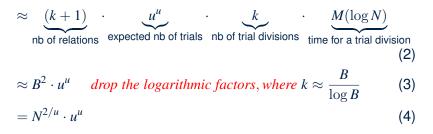
$$|\{\text{primes } p_i \leq B\}| \approx \frac{B}{\log B}$$

• Fact: 30% of all numbers have no prime factors above their square root. Surprisingly, a large proportion of numbers can be built out of so few primes!

- How to choose an optimal *B*: If *B* is large, then it is more likely that the generated elements are *B*-smooth, but then testing that they are *B*-smooth is more difficult now. Therefore, we need to balance the cost!
- In order to choose an optimal *B*, we also need to know the probability that a random integer that is smaller than *N* is *B*-smooth.
- We will assume that the cost of generating relations dominates the overall complexity of Algorithm, i.e. assume that the linear algebra is negligible in terms of time complexity.
- We will simply use the trial-division to factor over \mathcal{F}_B .

- A number is *B*-smooth if all its prime factors are smaller than *B*.
- Define $\Psi(N, B) = \#\{B \text{-smooth numbers} \le N\}$.
- The probability that a positive integer *m* ≤ *N* is *B*-smooth is approximately equal to ¹/_N · Ψ(N, B).
- The Canfield-Erdos-Pomerance Theorem: Let $u = \frac{\log N}{\log B}$, we have $\frac{1}{N} \cdot \Psi(N, B) = u^{-u+o(u)}$. This is the *Dickman-de Bruijn* function ρ , i.e. $\rho(u) \approx u^{-u}$.
- The expected number of random trials of choosing numbers in [1; N] to find one that is *B*-smooth is ≈ u^u

• Let $|\mathcal{F}_B| = k$, the expected running time of the algorithm is



We want to minimize f(u) = N^{2/u} · u^u. If we set f'(u) = 0, we need a u s.t. u² log u ≈ 2 log N.

• Let $u = 2\sqrt{\frac{\log N}{\log \log N}}$, we then get $u^2 \log u = 2\log N + o(\log N)$

• Back to our bound B:

$$B = N^{1/u}$$

= $exp(\frac{1}{u}\log N)$
= $exp(\frac{1}{2}\sqrt{\log N \log \log N)}$
= $L_N(1/2, 1/2)$

- Note that $u^u = L_N(1/2, 1)$, therefore $B^2 u^u = L_N(1/2, 2)$.
- The cost of the linear algebra step is bounded by $\tilde{O}(B^3)$, i.e. $L_N(1/2, 3/2)$.

Further Reading (1)

Andrew Granville.

Smooth numbers: computational number theory and beyond. *Algorithmic number theory: lattices, number fields, curves and cryptography*, 44:267–323, 2008.

Antoine Joux, Andrew Odlyzko, and Cécile Pierrot. The past, evolving present, and future of the discrete logarithm.

In Open Problems in Mathematics and Computational Science, pages 5–36. Springer, 2014.

Carl Pomerance.

Smooth numbers and the quadratic sieve.

Algorithmic Number Theory, Cambridge, MSRI publication, 44:69–82, 2008.

Further Reading (2)

Carl Pomerance.

A tale of two sieves.

Biscuits of Number Theory, 85, 2008.

Victor Shoup.
 Lower bounds for discrete logarithms and related problems.
 In Advances in Cryptology—EUROCRYPT'97, pages 256–266. Springer, 1997.