
Discrete Logarithm Algorithms

Ali El Kaafarani

1Mathematical Institute
2 PQShield Ltd.

1 of 28

Outline

1 Generic discrete logarithm algorithms

2 Discrete logarithms over finite fields

2 of 28

Why Discrete Logarithm?

A graph of f (x) = 627x mod 941 for x = 1, 2, 3, . . .

3 of 28

Discrete logarithms

• Trivial if (G, ◦) = (Fp,+). Why?
• Recently broken if (G, ◦) = (F∗2n , ∗)

(more generally if characteristic is small)
• Believed to be hard for G = F∗p

and harder for (well-chosen) elliptic curve groups

4 of 28

Discrete logarithms

• Trivial if (G, ◦) = (Fp,+). Why?
• Recently broken if (G, ◦) = (F∗2n , ∗)

(more generally if characteristic is small)
• Believed to be hard for G = F∗p

and harder for (well-chosen) elliptic curve groups

4 of 28

Discrete logarithms

• Trivial if (G, ◦) = (Fp,+). Why?
• Recently broken if (G, ◦) = (F∗2n , ∗)

(more generally if characteristic is small)
• Believed to be hard for G = F∗p

and harder for (well-chosen) elliptic curve groups

4 of 28

Outline

1 Generic discrete logarithm algorithms

2 Discrete logarithms over finite fields

5 of 28

Outline

1 Generic discrete logarithm algorithms

2 Discrete logarithms over finite fields

6 of 28

Generic group model

• Algorithms do not exploit any special properties of the
encodings of the group elements, other than the fact that each
group element is encoded as a unique binary string.

• For instance, the attacker just receives bitstrings instead of Zn

elements (n itself is often hidden but the size of n cannot be
hidden).

• Operations on group elements are performed using an oracle
that provides access to the group operations.

• Some attacks are generic: they work for any group.
• This includes exhaustive search, BSGS, Pollard’s rho
• There exist much better attacks for finite fields.
• Still no better attack for (well-chosen) elliptic curves.

7 of 28

Exhaustive search

• Given g, h ∈ G do the following
1: k← 1; h′ ← g
2: if h′ = h then
3: return k
4: else
5: k← k + 1; h′ ← h′g
6: Go to Step 2
7: end if

• Generic algorithm
• Time complexity |G| in the worst case, |G|/2 on average
• Can we do better?

8 of 28

Pohlig-Hellman

• They observed that Dlog in a group G is as hard as the Dlog in
the largest subgroup of prime order in G.

• This applies in any arbitrary finite abelian group.
• Assume |G| = N = n1n2 and let g a generator of G.
• h = gk implies hn1 = (gn1)k

where gn1 generates a subgroup of order n2.
• Assuming that we can solve DLP in that subgroup, this would

give us k mod n2.
• Repeating the same thing for each factor of N and using CRT

would give us k.

9 of 28

Pohlig-Hellman

• Let G = 〈g〉 of order N = #G =
∏̀
i=1

pei
i

• Given h = gx, we want to first find x mod pei
i and then use CRT

to recover it mod N.
• There is a group isomorphism φ : G→ Cpe1

1
× · · · × Cp

e`
`

.

• Define the projection map φpi : G→ Cpei
i

where φpi(g) = gN/pei
i .

φpi is a group homomorphism, i.e., if h = gx in G, then
φpi(h) = φpi(g)x in Cpei

i
.

• Solving the discrete logarithm in Cpei
i

reduces to solving ei

discrete logarithm in the group Cpi following an inductive
procedure.

• Given h′ = gx′ ∈ Cpei
i
, we write x′ = x0 + x1pi + · · ·+ xei−1pei−1

i

and then find x0, x1, . . . , xei−1 in turn.
10 of 28

Baby step, giant step (BSGS)

• Given a public cyclic group G = 〈g〉, now we can assume that G
has a prime order p.

• Given h ∈ G, find the value of k s.t. h = gk.
• Let N′ = d

√
|G|e

• There exist 0 ≤ i, j < N′ such that k = jN′ + i

h = gjN′+i ⇔ hg−jN′
= gi

• Compute LB := {gi|i = 0, . . . ,N′ − 1}
• Compute LG := {hg−jN′ |j = 0, . . . ,N′ − 1}
• Attack requires time and memory each O

(
|G|1/2

)
• Can we do better in terms of space requirement and still obtain

a time complexity of O
(√
|G|
)

11 of 28

Baby step, giant step (BSGS)

• Given a public cyclic group G = 〈g〉, now we can assume that G
has a prime order p.

• Given h ∈ G, find the value of k s.t. h = gk.
• Let N′ = d

√
|G|e

• There exist 0 ≤ i, j < N′ such that k = jN′ + i

h = gjN′+i ⇔ hg−jN′
= gi

• Compute LB := {gi|i = 0, . . . ,N′ − 1}
• Compute LG := {hg−jN′ |j = 0, . . . ,N′ − 1}
• Attack requires time and memory each O

(
|G|1/2

)
• Can we do better in terms of space requirement and still obtain

a time complexity of O
(√
|G|
)

11 of 28

Baby step, giant step (BSGS)

• Given a public cyclic group G = 〈g〉, now we can assume that G
has a prime order p.

• Given h ∈ G, find the value of k s.t. h = gk.
• Let N′ = d

√
|G|e

• There exist 0 ≤ i, j < N′ such that k = jN′ + i

h = gjN′+i ⇔ hg−jN′
= gi

• Compute LB := {gi|i = 0, . . . ,N′ − 1}
• Compute LG := {hg−jN′ |j = 0, . . . ,N′ − 1}
• Attack requires time and memory each O

(
|G|1/2

)
• Can we do better in terms of space requirement and still obtain

a time complexity of O
(√
|G|
)

11 of 28

Baby step, giant step (BSGS)

• Given a public cyclic group G = 〈g〉, now we can assume that G
has a prime order p.

• Given h ∈ G, find the value of k s.t. h = gk.
• Let N′ = d

√
|G|e

• There exist 0 ≤ i, j < N′ such that k = jN′ + i

h = gjN′+i ⇔ hg−jN′
= gi

• Compute LB := {gi|i = 0, . . . ,N′ − 1}
• Compute LG := {hg−jN′ |j = 0, . . . ,N′ − 1}
• Attack requires time and memory each O

(
|G|1/2

)
• Can we do better in terms of space requirement and still obtain

a time complexity of O
(√
|G|
)

11 of 28

Baby step, giant step (BSGS)

• Given a public cyclic group G = 〈g〉, now we can assume that G
has a prime order p.

• Given h ∈ G, find the value of k s.t. h = gk.
• Let N′ = d

√
|G|e

• There exist 0 ≤ i, j < N′ such that k = jN′ + i

h = gjN′+i ⇔ hg−jN′
= gi

• Compute LB := {gi|i = 0, . . . ,N′ − 1}
• Compute LG := {hg−jN′ |j = 0, . . . ,N′ − 1}
• Attack requires time and memory each O

(
|G|1/2

)
• Can we do better in terms of space requirement and still obtain

a time complexity of O
(√
|G|
)

11 of 28

Baby step, giant step (BSGS)

• Given a public cyclic group G = 〈g〉, now we can assume that G
has a prime order p.

• Given h ∈ G, find the value of k s.t. h = gk.
• Let N′ = d

√
|G|e

• There exist 0 ≤ i, j < N′ such that k = jN′ + i

h = gjN′+i ⇔ hg−jN′
= gi

• Compute LB := {gi|i = 0, . . . ,N′ − 1}
• Compute LG := {hg−jN′ |j = 0, . . . ,N′ − 1}
• Attack requires time and memory each O

(
|G|1/2

)
• Can we do better in terms of space requirement and still obtain

a time complexity of O
(√
|G|
)

11 of 28

Pollard’s Algorithms

• John Pollard, a famous name in factoring/Dlog algorithms in the
20th century.

• Known for (P− 1) method, Rho-method, Number Field Sieve.
• The idea in the Rho method is to find a collision in a random

mapping.
• Using the birthday paradox naively is no better than

Baby-Step/Giant-Step method in terms of space/time
requirements.

• Similar to the improved birthday paradox attack on hash
functions, we can use Floyd’s cycle finding algorithm, i.e. given
(xi, x2i), we compute

(xi+1, x2i+2) = (f (xi), f (f (x2i)))

• We stop when x` = x2`
12 of 28

Pollard’s rho

• Define the sets G1,G2,G3 of about the same size such that
G = G1 ∪ G2 ∪ G3 and Gi ∩ Gj = {}, assuming that 1 6∈ G2.

• Over Z∗p, one can choose
G1 = {0, . . . , bp/3c},
G2 = {bp/3c+ 1, . . . , b2p/3c}, G3 = {b2p/3c+ 1, . . . , p− 2}

• Define a random walk f : G→ G such that

xi+1 = f (xi) =

hxi xi ∈ G1

x2
i xi ∈ G2

gxi xi ∈ G3

13 of 28

Pollard’s rho

• Given g, h = gx, we start from x0 := 1 and apply f recursively to
get {xi, x2i}i.

• By the way f is defined, we can keep track of (xt, at, bt) such
that xt = gat hbt , where

ai+1 =

ai

2ai mod p
ai + 1 mod p

, bi+1 =

bi + 1 mod p xi ∈ G1

2bi mod p xi ∈ G2

bi xi ∈ G3

• We stop when a collision is found, i.e. x` = x2`, therefore

x =
a2` − a`
b` − b2`

mod p.

• If f is “random enough”, then we should find the Dlog in
expected time O

(√
|G|
)

.
14 of 28

Pollard’s rho

1: N ← d
√
|G|e

2: a1 = 0; b1 = 0; x1 = 1
3: (x2, a2, b2) = f (x1, a1, b1)
4: for k ∈ {2, . . . ,N} do
5: (x1, a1, b1) = f (x1, a1, b1)
6: (x2, a2, b2) = f (f (x2, a2, b2))
7: if x1 = x2 break;
8: end for
9: if b1 = b2 mod p then

10: return ⊥
11: else
12: return(a2 − a1)/(b1 − b2) mod p
13: end if

15 of 28

Pollard’s Rho: example

Example (Smart’s book)
Consider G = 〈g〉, a subgroup of F∗607 of order p = 101, with
g = 64. Given h = 122 = 64x. Solve for x.
We split G into three sets S1, S2, S3 as follows:

S1 = {x ∈ F∗607 : x ≤ 201}

S2 = {x ∈ F∗607 : 202 ≤ x ≤ 403}

S3 = {x ∈ F∗607 : 404 ≤ x ≤ 606}

16 of 28

Pollard’s Rho: example

Example

A collision is found when i = 14, this implies that g0h12 = g64h6, so
[12x = 64 + 6x mod 101] and therefore x = 78.

17 of 28

More from Pollard

• Pollard’s Lambda Method: similar to the Rho method in that it
uses deterministic random walk, but it is particularly designed
to the cases where we know that the Dlog lies in a particular
interval.

• Parallel Pollard’s Rho: designed to be able to use computing
resources of different sites across the internet.

18 of 28

Outline

1 Generic discrete logarithm algorithms

2 Discrete logarithms over finite fields

19 of 28

L notation

LQ(α; c) = exp(c(log Q)α(log log Q)1−α)

• Q is the size of the field
• α = 0⇒ LQ(α; c) = (log Q)c polynomial
• α = 1⇒ LQ(α; c) = Qc exponential

20 of 28

(simplified) Index Calculus for F∗p
• DLP: given g, h ∈ F∗p, find x such that h = gx

• Factor basis made of small primes

FB := {primes pi ≤ B} = {p1, . . . , pk}
• Relation search
◦ Compute gi := gai for random ai ∈ {1, . . . , p− 1}
◦ If all factors of gi are ≤ B, we have a relation

gai =
∏

pj∈F
pei,j

j (1)

• Linear algebra Once we have ` ≥ k linearly independent
equations similar to equations (1), we solve mod (p− 1) for
logg pi, i = 1, . . . , k.

• Search for t such that [gt · h mod p] is B-smooth. Once found,
solve for logg h mod (p− 1).

21 of 28

Size of the factor basis

• By the prime number theorem,

|{primes pi ≤ B}| ≈ B
log B

• Fact: 30% of all numbers have no prime factors above their
square root. Surprisingly, a large proportion of numbers can be
built out of so few primes!

22 of 28

Complexity Analysis

• How to choose an optimal B: If B is large, then it is more likely
that the generated elements are B-smooth, but then testing that
they are B-smooth is more difficult now. Therefore, we need to
balance the cost!

• In order to choose an optimal B, we also need to know the
probability that a random integer that is smaller than N is
B-smooth.

• We will assume that the cost of generating relations dominates
the overall complexity of Algorithm, i.e. assume that the linear
algebra is negligible in terms of time complexity.

• We will simply use the trial-division to factor over FB.

23 of 28

Complexity Analysis

• A number is B-smooth if all its prime factors are smaller than B.
• Define Ψ(N,B) = #{B-smooth numbers ≤ N}.
• The probability that a positive integer m ≤ N is B-smooth is

approximately equal to
1
N
·Ψ(N,B).

• The Canfield-Erdos-Pomerance Theorem: Let u =
log N
log B

, we

have
1
N
·Ψ(N,B) = u−u+o(u). This is the Dickman-de Bruijn

function ρ, i.e. ρ(u) ≈ u−u.
• The expected number of random trials of choosing numbers in

[1; N] to find one that is B-smooth is ≈ uu

24 of 28

Complexity Analysis

• Let |FB| = k, the expected running time of the algorithm is

≈ (k + 1)︸ ︷︷ ︸
nb of relations

· uu︸︷︷︸
expected nb of trials

· k︸︷︷︸
nb of trial divisions

· M(log N)︸ ︷︷ ︸
time for a trial division

(2)

≈ B2 · uu drop the logarithmic factors,where k ≈ B
log B

(3)

= N2/u · uu (4)

• We want to minimize f (u) = N2/u · uu. If we set f ′(u) = 0, we
need a u s.t. u2 log u ≈ 2 log N.

• Let u = 2

√
log N

log log N
, we then get u2 log u = 2 log N + o(log N)

25 of 28

Complexity Analysis

• Back to our bound B:

B = N1/u

= exp(
1
u

log N)

= exp(
1
2

√
log N log log N)

= LN(1/2, 1/2)

• Note that uu = LN(1/2, 1), therefore B2uu = LN(1/2, 2).
• The cost of the linear algebra step is bounded by Õ(B3), i.e.

LN(1/2, 3/2).

26 of 28

Further Reading (1)

Andrew Granville.
Smooth numbers: computational number theory and beyond.
Algorithmic number theory: lattices, number fields, curves and
cryptography, 44:267–323, 2008.

Antoine Joux, Andrew Odlyzko, and Cécile Pierrot.
The past, evolving present, and future of the discrete
logarithm.
In Open Problems in Mathematics and Computational
Science, pages 5–36. Springer, 2014.

Carl Pomerance.
Smooth numbers and the quadratic sieve.
Algorithmic Number Theory, Cambridge, MSRI publication,
44:69–82, 2008.

27 of 28

Further Reading (2)

Carl Pomerance.
A tale of two sieves.
Biscuits of Number Theory, 85, 2008.

Victor Shoup.
Lower bounds for discrete logarithms and related problems.
In Advances in Cryptology—EUROCRYPT’97, pages
256–266. Springer, 1997.

28 of 28

	Introduction
	Generic discrete logarithm algorithms
	Discrete logarithms over finite fields

