Integer Factorization Algorithms

Ali El Kaafarani

¹Mathematical Institute ² PQShield Ltd.

1 of 15

Outline

- Given a composite number *N*, compute its (unique) factorization $N = \prod p_i^{e_i}$ where p_i are prime numbers
- Equivalently: compute one non-trivial factor *p_i*
- We will assume N = pq, where p and q are primes

Trial Division

• How it works: try every prime number up to \sqrt{N} . Running time is, at worst, $O(\sqrt{N})$.

Pollard's rho

- It can be used to factor any arbitrary integer N = pq.
- Idea: find a good pair (x, y) such that $[x = y \mod p]$ but $[x \neq y \mod N]$.
- This implies that gcd(x y, N) = p and therefore a non-trivial factor of *N* is obtained by computing this gcd.
- Define some "pseudorandom" iteration function f (a standard choice would be $f(x) = x^2 + 1 \mod N$).
- Compute iterates x_i, x_{2i} and compute $gcd(x_i x_{2i}, N)$.
- By birthday's paradox, a pair (x_i = x_{2i}) s.t. [x_i = x_{2i} mod p] is expected to be found after O(p^{1/2}) trials on average.

Pollard's Rho

Algorithm

Given: Integer N, a product of two n-bit primes. $a := b \leftarrow \mathbb{Z}_N^*$ for i = 1 to $2^{n/2}$: a := f(a) b := f(f(b)) $p := \gcd(a - b, N)$ if $p \notin \{1, N\}$ return p.

Pollard's p-1 and Elliptic curve factorization methods

- Pollard's *p* − 1 is an effective method if *p* − 1 has only "small" prime factors.
- Elliptic curve factorization method generalizes previous method when neither p 1 nor q 1 are smooth.
- The group order #*E*(𝔽_{*p*}) of an elliptic curve can be smooth even when *p* − 1 is not!
- Choosing *strong primes* for RSA, i.e. p-1 and q-1 both have large prime factors, can help against Pollard's p-1, but not against Elliptic curve factorization method or Number Field Sieve.

- It runs in sub-exponential time, good choice for numbers up to about 300 bits long.
- Try to factor 8051.

- It runs in sub-exponential time, good choice for numbers up to about 300 bits long.
- Try to factor 8051. $8051 = 90^2 7^2$.

- It runs in sub-exponential time, good choice for numbers up to about 300 bits long.
- Try to factor 8051. $8051 = 90^2 7^2$. Difference of squares, $8051 = 83 \times 97$.
- Idea: find a, b for which $[a^2 = b^2 \mod N]$ and $[a \neq \pm b \mod N]$. gcd(a - b, N) gives one non trivial factor of N.

Quadratic Sieve Algorithm

- Fix some bound *B*, and let *F* = {*p*₁,...,*p_k*} the set of primes less than or equal to *B*.
- Search for integers $q_i = [x_i^2 \mod N]$, for $x = \lfloor \sqrt{N} \rfloor$, $\lfloor \sqrt{N} \rfloor + 1, \dots$ that are *B*-smooth and factor them.
- Find a subset of $\{q_i\}_i$ whose product is a square, i.e.

$$S \subset \{q_i\}_i, \quad \prod_{j \in S} q_j = \prod_{i=1}^k p_i^{\sum_{j \in S} e_{j,i}}$$

• This product is a square iff the exponent of each prime *p_i* is even.

Define the matrix of exponents as follows:

$$\begin{pmatrix} e_{1,1} & e_{1,2} & \dots & e_{1,k} \\ \vdots & \vdots & \ddots & \vdots \\ e_{\ell,1} & e_{\ell,2} & \dots & e_{\ell,k} \end{pmatrix}$$

 If ℓ = k + 1, then there exists a nonempty subset S of the rows that sum to the zero vector mod 2.

Quadratic Sieve Algorithm

• Take N = 377753. We can compute the following;

 $620^{2} \mod N = 17^{2} \cdot 23$ $621^{2} \mod N = 2^{4} \cdot 17 \cdot 29$ $645^{2} \mod N = 2^{7} \cdot 13 \cdot 23$ $655^{2} \mod N = 2^{3} \cdot 13 \cdot 17 \cdot 29$

 $[620 \cdot 621 \cdot 645 \cdot 655 \mod N]^2 = [2^7 \cdot 13 \cdot 17^2 \cdot 23 \cdot 29 \mod N]^2 \mod N$ $\Rightarrow 127194^2 = 45335^2 \mod N$ where $127194 \neq \pm 45335 \mod N$, compute gcd(127194 - 45335, 377753) = 751, a non trivial factor of N

Complexity Analysis of Quadratic Sieve

• Exercise. Hint: look at the complexity analysis of the index calculus in previous slides.

Bonus slide: Bilinear Maps (Pairings)

A *bilinear map* can be defined as a function that maps any pair of elements from two given groups (e.g. groups of points on an elliptic curve) to an element in another group (subgroup of a multiplicative group of a finite field, which is the case for the Tate Pairing).

Let $\mathbb{G}_1, \mathbb{G}_2$ and \mathbb{G}_T be three groups of the same prime order p, a *pairing* is an efficiently computable function $e : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$, satisfying that:

- $e(g_1^a, g_2^b) = e(g_1, g_2)^{ab}$, for all $g_1 \in \mathbb{G}_1, g_2 \in \mathbb{G}_2$ and all $a, b \in \mathbb{Z}_p$.
- 2 *Non-degeneracy*, which is, if g_1 is a generator of \mathbb{G}_1 , g_2 is a generator of \mathbb{G}_2 then $e(g_1, g_2)$ is a generator of \mathbb{G}_T .

Further Reading (1)

Andrew Granville.

Smooth numbers: computational number theory and beyond. *Algorithmic number theory: lattices, number fields, curves and cryptography*, 44:267–323, 2008.

Antoine Joux, Andrew Odlyzko, and Cécile Pierrot. The past, evolving present, and future of the discrete logarithm.

In Open Problems in Mathematics and Computational Science, pages 5–36. Springer, 2014.

Hendrik W Lenstra Jr. Factoring integers with elliptic curves. Annals of mathematics, pages 649–673, 1987.

Further Reading (2)

Carl Pomerance.

Smooth numbers and the quadratic sieve. *Algorithmic Number Theory, Cambridge, MSRI publication*, 44:69–82, 2008.

Carl Pomerance.

A tale of two sieves.

Biscuits of Number Theory, 85, 2008.

Victor Shoup.

Lower bounds for discrete logarithms and related problems. In *Advances in Cryptology—EUROCRYPT'97*, pages 256–266. Springer, 1997.