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Integer factorization

• Given a composite number N, compute its (unique)
factorization N =

∏
pei

i where pi are prime numbers

• Equivalently: compute one non-trivial factor pi

• We will assume N = pq, where p and q are primes
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Trial Division

• How it works: try every prime number up to
√

N. Running time
is, at worst, O(

√
N).
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Pollard’s rho

• It can be used to factor any arbitrary integer N = pq.
• Idea: find a good pair (x, y) such that [x = y mod p] but
[x 6= y mod N].

• This implies that gcd(x− y,N) = p and therefore a non-trivial
factor of N is obtained by computing this gcd.

• Define some “pseudorandom” iteration function f (a standard
choice would be f (x) = x2 + 1 mod N).

• Compute iterates xi, x2i and compute gcd(xi − x2i,N).
• By birthday’s paradox, a pair (xi = x2i) s.t. [xi = x2i mod p] is

expected to be found after O(p1/2) trials on average.
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Pollard’s Rho

Algorithm
Given: Integer N, a product of two n-bit primes.
a := b← Z∗N
for i = 1 to 2n/2:

a := f (a)
b := f (f (b))
p := gcd(a− b,N)
if p 6∈ {1,N} return p.
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Pollard’s p− 1 and Elliptic curve factorization
methods

• Pollard’s p− 1 is an effective method if p− 1 has only “small”
prime factors.

• Elliptic curve factorization method generalizes previous method
when neither p− 1 nor q− 1 are smooth.

• The group order #E(Fp) of an elliptic curve can be smooth
even when p− 1 is not!

• Choosing strong primes for RSA, i.e. p− 1 and q− 1 both have
large prime factors, can help against Pollard’s p− 1, but not
against Elliptic curve factorization method or Number Field
Sieve.
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Quadratic Sieve Algorithm

• It runs in sub-exponential time, good choice for numbers up to
about 300 bits long.

• Try to factor 8051.

8051 = 902 − 72. Difference of squares,
8051 = 83× 97.

• Idea: find a, b for which [a2 = b2 mod N] and [a 6= ±b mod N].
gcd(a− b,N) gives one non trivial factor of N.
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Quadratic Sieve Algorithm

• Fix some bound B, and let F = {p1, . . . , pk} the set of primes
less than or equal to B.

• Search for integers qi = [x2
i mod N], for

x =
⌈√

N
⌉
,
⌈√

N
⌉
+ 1, . . . that are B-smooth and factor them.

• Find a subset of {qi}i whose product is a square, i.e.

S ⊂ {qi}i,
∏
j∈S

qj =

k∏
i=1

p
∑

j∈S ej,i

i

• This product is a square iff the exponent of each prime pi is
even.
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Quadratic Sieve Algorithm

• Define the matrix of exponents as follows:e1,1 e1,2 . . . e1,k
...

...
. . .

...
e`,1 e`,2 . . . e`,k


• If ` = k + 1, then there exists a nonempty subset S of the rows

that sum to the zero vector mod 2.
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Quadratic Sieve Algorithm

• Take N = 377753. We can compute the following;

6202 mod N = 172 · 23

6212 mod N = 24 · 17 · 29

6452 mod N = 27 · 13 · 23

6552 mod N = 23 · 13 · 17 · 29

[620 · 621 · 645 · 655 mod N]2 = [27 · 13 · 172 · 23 · 29 mod N]2 mod N

⇒ 1271942 = 453352 mod N

where 127194 6= ±45335 mod N,

compute gcd(127194− 45335, 377753) = 751, a non trivial factor of N

11 of 15



Complexity Analysis of Quadratic Sieve

• Exercise. Hint: look at the complexity analysis of the index
calculus in previous slides.
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Bonus slide: Bilinear Maps (Pairings)

A bilinear map can be defined as a function that maps any pair of
elements from two given groups (e.g. groups of points on an
elliptic curve) to an element in another group (subgroup of a
multiplicative group of a finite field, which is the case for the Tate
Pairing).
Let G1,G2 and GT be three groups of the same prime order p, a
pairing is an efficiently computable function e : G1 ×G2 → GT ,
satisfying that:
1 e(ga

1, gb
2) = e(g1, g2)

ab, for all g1 ∈ G1, g2 ∈ G2 and all a, b ∈ Zp.
2 Non-degeneracy, which is, if g1 is a generator of G1, g2 is a

generator of G2 then e(g1, g2) is a generator of GT .
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