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Integer factorization

e Given a composite number N, compute its (unique)
factorization N = pr" where p; are prime numbers

e Equivalently: compute one non-trivial factor p;
e We will assume N = pq, where p and ¢ are primes




Trial Division

e How it works: try every prime number up to v/N. Running time
is, at worst, O(v/N).




Pollard’s rho

e |t can be used to factor any arbitrary integer N = pq.

e |dea: find a good pair (x,y) such that [x = y mod p| but
[x # y mod NJ.

e This implies that gcd(x — y, N) = p and therefore a non-trivial
factor of N is obtained by computing this gcd.

e Define some “pseudorandom” iteration function f (a standard
choice would be f(x) = x> + 1 mod N).

e Compute iterates x;, x,; and compute ged(x; — x2;, N).

e By birthday’s paradox, a pair (x; = x2;) S.t. [x; = xp; mod p] is
expected to be found after O(p'/?) trials on average.
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S
Pollard’s Rho

Given: Integer N, a product of two n-bit primes.

a:=b<+ 7y

fori=11to02"?:
a:= f(a)
b:=f(f(b))

p = ged(a —b,N)
ifp ¢ {1,N} returnp.




Pollard’s p — 1 and Elliptic curve factorization
methods

e Pollard’s p — 1 is an effective method if p — 1 has only “small”
prime factors.

e Elliptic curve factorization method generalizes previous method
when neither p — 1 nor ¢ — 1 are smooth.

e The group order #E(F,) of an elliptic curve can be smooth
even when p — 1 is not!

e Choosing strong primes for RSA, i.e. p — 1 and ¢ — 1 both have
large prime factors, can help against Pollard’s p — 1, but not
against Elliptic curve factorization method or Number Field
Sieve.
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Quadratic Sieve Algorithm

e |t runs in sub-exponential time, good choice for numbers up to
about 300 bits long.

e Try to factor 8051.




Quadratic Sieve Algorithm

e |t runs in sub-exponential time, good choice for numbers up to
about 300 bits long.

e Try to factor 8051. 8051 = 90% — 7.




Quadratic Sieve Algorithm

e |t runs in sub-exponential time, good choice for numbers up to
about 300 bits long.

e Try to factor 8051. 8051 = 90? — 72. Difference of squares,
8051 = 83 x 97.

e Idea: find a, b for which [¢* = b*> mod N] and [a # +b mod N].
ged(a — b, N) gives one non trivial factor of N.




Quadratic Sieve Algorithm

Fix some bound B, and let F = {p1, ..., px} the set of primes
less than or equal to B.
2

Search for integers ¢; = [x; mod NJ, for
x = {\/lﬂ , {\/Iﬂ +1,... that are B-smooth and factor them.

Find a subset of {¢;}; whose product is a square, i.e.

k

2 jes i

sciati [[a=]Ir""
i=1

JES

This product is a square iff the exponent of each prime p; is
even.



Quadratic Sieve Algorithm

¢ Define the matrix of exponents as follows:

el el ... ek

6571 6572 e&k

e |f £ =k + 1, then there exists a nonempty subset S of the rows
that sum to the zero vector mod 2.
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Quadratic Sieve Algorithm

e Take N = 377753. We can compute the following;

620° mod N = 172 - 23

621> mod N =2*.17-29
645> mod N =27 - 13- 23
655> mod N = 2% - 13-17-29

[620 - 621 - 645 - 655 mod NJ* = [27 - 13-17%-23 - 29 mod N]* mod N
= 127194% = 45335” mod N

where 127194 # +45335 mod N,

compute ged (127194 — 45335,377753) = 751, a non trivial factor of N
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Complexity Analysis of Quadratic Sieve

e Exercise. Hint: look at the complexity analysis of the index
calculus in previous slides.
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Bonus slide: Bilinear Maps (Pairings)

A bilinear map can be defined as a function that maps any pair of
elements from two given groups (e.g. groups of points on an
elliptic curve) to an element in another group (subgroup of a
multiplicative group of a finite field, which is the case for the Tate
Pairing).

Let G, G, and Gy be three groups of the same prime order p, a
pairing is an efficiently computable function e : G| x G, — Gr,
satisfying that:

Q c(g,85) =e(g1,8)®, forallg; € Gy,g2 € Goand all a,b € Z,.

© Non-degeneracy, which is, if g| is a generator of Gy, g» is a
generator of G, then e(gy, g2) is a generator of Gr.
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