
Integer Factorization Algorithms

Ali El Kaafarani

1Mathematical Institute
2 PQShield Ltd.

1 of 15



Outline

1 Factorization algorithms

2 of 15



Integer factorization

• Given a composite number N, compute its (unique)
factorization N =

∏
pei

i where pi are prime numbers

• Equivalently: compute one non-trivial factor pi

• We will assume N = pq, where p and q are primes

3 of 15



Trial Division

• How it works: try every prime number up to
√

N. Running time
is, at worst, O(

√
N).

4 of 15



Pollard’s rho

• It can be used to factor any arbitrary integer N = pq.
• Idea: find a good pair (x, y) such that [x = y mod p] but
[x 6= y mod N].

• This implies that gcd(x− y,N) = p and therefore a non-trivial
factor of N is obtained by computing this gcd.

• Define some “pseudorandom” iteration function f (a standard
choice would be f (x) = x2 + 1 mod N).

• Compute iterates xi, x2i and compute gcd(xi − x2i,N).
• By birthday’s paradox, a pair (xi = x2i) s.t. [xi = x2i mod p] is

expected to be found after O(p1/2) trials on average.

5 of 15



Pollard’s Rho

Algorithm
Given: Integer N, a product of two n-bit primes.
a := b← Z∗N
for i = 1 to 2n/2:

a := f (a)
b := f (f (b))
p := gcd(a− b,N)
if p 6∈ {1,N} return p.

6 of 15



Pollard’s p− 1 and Elliptic curve factorization
methods

• Pollard’s p− 1 is an effective method if p− 1 has only “small”
prime factors.

• Elliptic curve factorization method generalizes previous method
when neither p− 1 nor q− 1 are smooth.

• The group order #E(Fp) of an elliptic curve can be smooth
even when p− 1 is not!

• Choosing strong primes for RSA, i.e. p− 1 and q− 1 both have
large prime factors, can help against Pollard’s p− 1, but not
against Elliptic curve factorization method or Number Field
Sieve.

7 of 15



Quadratic Sieve Algorithm

• It runs in sub-exponential time, good choice for numbers up to
about 300 bits long.

• Try to factor 8051.

8051 = 902 − 72. Difference of squares,
8051 = 83× 97.

• Idea: find a, b for which [a2 = b2 mod N] and [a 6= ±b mod N].
gcd(a− b,N) gives one non trivial factor of N.

8 of 15



Quadratic Sieve Algorithm

• It runs in sub-exponential time, good choice for numbers up to
about 300 bits long.

• Try to factor 8051. 8051 = 902 − 72.

Difference of squares,
8051 = 83× 97.

• Idea: find a, b for which [a2 = b2 mod N] and [a 6= ±b mod N].
gcd(a− b,N) gives one non trivial factor of N.

8 of 15



Quadratic Sieve Algorithm

• It runs in sub-exponential time, good choice for numbers up to
about 300 bits long.

• Try to factor 8051. 8051 = 902 − 72. Difference of squares,
8051 = 83× 97.

• Idea: find a, b for which [a2 = b2 mod N] and [a 6= ±b mod N].
gcd(a− b,N) gives one non trivial factor of N.

8 of 15



Quadratic Sieve Algorithm

• Fix some bound B, and let F = {p1, . . . , pk} the set of primes
less than or equal to B.

• Search for integers qi = [x2
i mod N], for

x =
⌈√

N
⌉
,
⌈√

N
⌉
+ 1, . . . that are B-smooth and factor them.

• Find a subset of {qi}i whose product is a square, i.e.

S ⊂ {qi}i,
∏
j∈S

qj =

k∏
i=1

p
∑

j∈S ej,i

i

• This product is a square iff the exponent of each prime pi is
even.

9 of 15



Quadratic Sieve Algorithm

• Define the matrix of exponents as follows:e1,1 e1,2 . . . e1,k
...

...
. . .

...
e`,1 e`,2 . . . e`,k


• If ` = k + 1, then there exists a nonempty subset S of the rows

that sum to the zero vector mod 2.

10 of 15



Quadratic Sieve Algorithm

• Take N = 377753. We can compute the following;

6202 mod N = 172 · 23

6212 mod N = 24 · 17 · 29

6452 mod N = 27 · 13 · 23

6552 mod N = 23 · 13 · 17 · 29

[620 · 621 · 645 · 655 mod N]2 = [27 · 13 · 172 · 23 · 29 mod N]2 mod N

⇒ 1271942 = 453352 mod N

where 127194 6= ±45335 mod N,

compute gcd(127194− 45335, 377753) = 751, a non trivial factor of N

11 of 15



Complexity Analysis of Quadratic Sieve

• Exercise. Hint: look at the complexity analysis of the index
calculus in previous slides.

12 of 15



Bonus slide: Bilinear Maps (Pairings)

A bilinear map can be defined as a function that maps any pair of
elements from two given groups (e.g. groups of points on an
elliptic curve) to an element in another group (subgroup of a
multiplicative group of a finite field, which is the case for the Tate
Pairing).
Let G1,G2 and GT be three groups of the same prime order p, a
pairing is an efficiently computable function e : G1 ×G2 → GT ,
satisfying that:
1 e(ga

1, gb
2) = e(g1, g2)

ab, for all g1 ∈ G1, g2 ∈ G2 and all a, b ∈ Zp.
2 Non-degeneracy, which is, if g1 is a generator of G1, g2 is a

generator of G2 then e(g1, g2) is a generator of GT .

13 of 15



Further Reading (1)

Andrew Granville.
Smooth numbers: computational number theory and beyond.
Algorithmic number theory: lattices, number fields, curves and
cryptography, 44:267–323, 2008.

Antoine Joux, Andrew Odlyzko, and Cécile Pierrot.
The past, evolving present, and future of the discrete
logarithm.
In Open Problems in Mathematics and Computational
Science, pages 5–36. Springer, 2014.

Hendrik W Lenstra Jr.
Factoring integers with elliptic curves.
Annals of mathematics, pages 649–673, 1987.

14 of 15



Further Reading (2)

Carl Pomerance.
Smooth numbers and the quadratic sieve.
Algorithmic Number Theory, Cambridge, MSRI publication,
44:69–82, 2008.

Carl Pomerance.
A tale of two sieves.
Biscuits of Number Theory, 85, 2008.

Victor Shoup.
Lower bounds for discrete logarithms and related problems.
In Advances in Cryptology—EUROCRYPT’97, pages
256–266. Springer, 1997.

15 of 15


	Factorization algorithms

