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Padded RSA: RSA#1 v1.5

• Idea: To encrypt a message m, first map it to an element
m̃ ∈ Z∗n.

• The sender can choose a uniform bit-string r ∈ {0, 1}`, and sets
m̃ = r||m (it is a reversible operation).

• The security of the padded scheme depends on the length of `.
The cost of a brute-force attack is O

(
2`
)

• For instance, `(n) = O(log n) is a bad choice, the scheme is not
secure in this case.

• This scheme is provably secure based on the RSA problem in
one case: ` is very large, and m is just a single bit!

• For other cases, no security proofs based on RSA problem,
BUT no known attacks are known either!
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RSA-OAEP

• It is a construction that is based on RSA problem and
CCA-secure using optimal asymmetric encryption padding
OAEP.

• Already standardized as a part of RSA PKCS#1 since version
2.0

• It uses three integer-valued functions `(n), k0(n), k1(n) with
k0(n), k1(n) = Θ(n). There is also a condition on
`(n) + k0(n) + k1(n), it has to be smaller than the minimum
bit-length of RSA moduli.

• We need two hash functions H and G that are modelled as
Random Oracles

• OAEP is therefore a two-round Feistel network. G and H are
the round functions.
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RSA-OAEP

Source: Wikipedia
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RSA-OAEP

Fix n and let ` = `(n), k0 = k0(n), k1 = k1(n). Given
H : {0, 1}`+k1 → {0, 1}k0 and G : {0, 1}k0 → {0, 1}`+k1 .
How to pad a message m ∈ {0, 1}`?
• Set m′ ← m||0k1

• Choose a random r ∈ {0, 1}k0

• Compute s← m′ ⊕ G(r) ∈ {0, 1}`+k1

• Compute t← r ⊕ H(s) ∈ {0, 1}k0

• Finally, set m̃← s||t.
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RSA-OAEP

How does it work?
• KeyGen(n) : output the public key (n, e) and private key (p, q).
• Enc(m,N, e) : pad m to get m̃. The ciphertext will be c← m̃e

mod n.
• Dec(c, n, d) : compute m̃← cd mod n. If |m̃| > `+ k0 + k1,

output ⊥, otherwise;
◦ parse m̃ as s||t, s ∈ {0, 1}`+k1 , t ∈ {0, 1}k0

◦ compute r ← H(s)⊕ t
◦ compute m′ ← G(r)⊕ s if the least-significant k1 bits of m′ are not

all 0, output ⊥
◦ otherwise, output the ` most-significant bits of m̃.
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A CCA secure KEM in the ROM

The KEM scheme consists of the following algorithms:
• KeyGen(1n): it generates the RSA modulus (N, e, d), where

PK = (N, e) and SK = (N, d). it also generates a hash function
H : Z∗N → {0, 1}n.

• Encaps(PK, 1n): it picks a random r ∈ Z∗N and outputs c← re

mod N and the key k← H(r).
• Decaps(SK, c ∈ Z∗N): it first computes r ← cd mod N and then

outputs k← H(r).
This is a part of ISO/IEC18033-2 standard for public-key
encryption.
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Security of RSA-OAEP

• It is CCA-secure assuming that G and H are modelled as
random oracles.

• There were some attacks on PKCS# v2.0 in 2001 by James
Manger that exploits its implementation- it is a side channel
attack!

• The receiver receives the error message ⊥ in two different
cases!

• The time to return the message errors was not identical.
• The attacker can recover a message m using ONLY |N| queries.
• Lesson: side channels attacks are nasty! Implementations

should take into consideration every possibility of information
leakage!
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RSA weak key generator attack

• Suppose Alice uses private key (p, qa) and Bob uses private
key (p, qb). Is it safe?

• Everybody sees na := pqa and nb := pqb

• Alice can compute qb = nb/p
• Bob can compute qa = na/p
• Anyone can compute gcd(na, nb) = p and then qa and qb

• Attack demonstrated in practice
Lenstra et al. Ron was wrong, Whit is right
Show that 2/1000 RSA keys are insecure
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The Discrete Logarithm Problem (Dlog)

• Let p be a prime and let K := Fp = Z/pZ
• Exponentiation in K in O(n) = O(log p) multiplications
• What about the inverse operation?
• Discrete logarithm problem:

Given g and h = gk mod p, compute k
• Believed to be very hard: subexponential complexity Lp(1/3, c)

• More generally: given G, g ∈ G and h = gk, compute k
• Can be harder or easier depending on the group
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Diffie-Hellman Key Exchange Algorithm

• Designed by Diffie and Hellman in 1976.
• Public elements: G cyclic, g ∈ G a generator
• Alice chooses random a and sends ga to Bob
• Bob chooses random b and sends gb to Alice
• Alice computes (gb)a = gab

• Bob computes (ga)b = gab
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Variants of Diffie-Hellman Problem

• Computational Diffie-Hellman (CDH): Given g, ga, gb ∈ G,
compute gab.

• Decisional Diffie-Hellman (DDH): Given g, h, ga, gb ∈ G, decide if
h = gab.

• There is a huge list of members in the DH family of problems!
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Diffie-Hellman security

• Solving discrete logarithm problem is sufficient to break
Diffie-Hellman key exchange

• Solving discrete logarithm problem might not be necessary to
break Diffie-Hellman key exchange

• For authentication, we use certificate.
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ElGamal Encryption Scheme

Main idea:
• Given a finite group G, let m be an arbitrary element of G.
• Lemma: if we multiply m by an uniform group element of G, say

k, the result k · m is a uniform group element.
• Proof: Let g be an arbitrary element of G,

Pr[k · m = g] = Pr[k = g · m−1].

And because k is uniform

Pr[k = g · m−1] = 1/|G|.
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ElGamal Scheme- Construction

We define ElGamal public key encryption scheme as follows:
• KeyGen(n) : first, it outputs a description a cyclic group G with

order q, where |q| = n and a generator g, i.e (G, q, g). Then, it
picks a uniform x ∈ Zq to compute h← gx. the public key is
PK = (G, g, q, h) and the private/secret key is SK = x. The
messages are elements of G.

• Enc(PK,m ∈ G) : it chooses a uniform y ∈ Zq, and output the
following ciphertext

c = (c1, c2)← (gy, hy · m).

• Dec(SK, c) : it outputs
m′ = c2/cx

1

• Check its correctness!
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ElGamal scheme- Example

Example
[Katz-Lindell book] Let q = 83 and p = 2q + 1 = 167. Let G denote
the group of quadratic residues mod p. As both p and q are
primes, then G is a subgroup of Z∗p with order q. Note that |G| is
prime, so any element 1 6= g ∈ G is a generator. Take g = 22 = 4
mod 167, pick x = 37 ∈ Z83, compute h = gx = 437 mod 167 = 76
The public becomes PK = (p, q, g, h) = (167, 83, 4, 76)

• Enc(PK,m = 65 ∈ G): a it picks y = 71 and compute the
ciphertext,

c = (c1, c2) = (471, 7671 · 65) = (132, 44) mod 167

a65 is indeed in G as 65 = 302 mod 167
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ElGamal Scheme-Example

Example
• Dec(SK, c):

m =c2/cx
1

=44/13237 mod 167

=44/124 mod 167

=44 · 124−1 mod 167

=44 · 66 mod 167

=65
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Security of ElGamal Scheme

Theorem
If the DDH problem is hard, then the ElGamal encryption scheme
is CPA-secure.

Sketch Proof.
Idea: we consider a PPT algorithm D that wants to solve DDH,
and PPT algorithm A (the adversary) who is attacking ELGamal
scheme S. the algorithm D first receives an instance of the DDH
problem, i.e (G, q, g, h1 = gx, h2 = gy, h3),and his challenge is to
figure out whether or not h3 is equal to gxy.
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Security of ElGamal Scheme

Sketch Proof.
Algorithm D will simulate the ElGamal scheme to A as follows:
• On input (G, q, g, h1, h2, h3), it sets PK = (G, q, g, h1).
• On input (m0,m1) received from A, it picks b ∈ {0, 1}, and sets

c1 = h2 and c2 = h3 · mb and sends them over to A
• It receives the bit b′ from A, it then outputs 1 if b′ = b and 0

otherwise.
Now, let S′ be a modified version of ElGamal, works as follows:
• Same key generation algorithm
• Encryption algorithm: it chooses a uniform y, z ∈ Zq, and output

the following ciphertext (gy, gz · m). Note that the decryption
algorithm doesn’t work here, but we don’t actually need it in the
experiment.
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Security of ElGamal Scheme

Sketch Proof.
For the modified encryption scheme, since c2 is a uniformly
distributed group element, we have

Pr[PubKCPA
A,S′(n) = 1] = 1/2

And if DDH holds, then

|Pr[D(G, q, g, gx, gy, gz) = 1]−Pr[D(G, q, g, gx, gy, gxy) = 1]| < negl(n)
(1)

Case 1–random tuple: We can easily see that the View A when
run as a subroutine by D is distributed identically to its view in
experiment PubKcpa

A,S′ . Therefore

Pr[D(G, q, g, gx, gy, gz) = 1] = Pr[PubKCPA
A,S′(n) = 1] = 1/2 (2)
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Security of ElGamal Scheme

Sketch Proof.
Case 2– DH tuple: We can also see that the View A when run as
a subroutine by D is distributed identically to its view in experiment
PubKcpa

A,S. Therefore

Pr[PubKCPA
A,S (n) = 1] = Pr[D(G, q, g, gx, gy, gxy) = 1] (3)

Equations (1), (2) and (3) give us

Pr[PubKCPA
A,S (n)] < 1/2 + negl(n)

Is ElGamal scheme CCA-secure?Why?
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A CPA-secure KEM Scheme based on DDH

The scheme consists of the following algorithms:

• KeyGen(1n): it generates (G, q, g). It then chooses x ∈ Zq and
computes h = gx. It also specifies a hash function
H : G→ {0, 1}`(n) The public key PK = (G, q, g, h,H) and the
private key is x.

• Encaps(PK): it chooses a uniform y ∈ Zq and outputs the
ciphertext c← gy and the key H(hy).

• Decaps(SK, c): it outputs H(cx).

If H is modelled as a random oracle model, then the scheme is
CPA-secure based on (the weaker assumption) CDH
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Cramer-Shoup cryptosystem

• The first public key encryption scheme that is CCA-secure
without random oracles.

• It is based on ElGamal.
• Its CCA-security relies on the hardness of DDH.

28 of 43



Cramer-Shoup Cryptosystem

• KeyGen(n) : first, it outputs a description a cyclic group G with
prime order q, s.t. ‖q‖ = n and a couple of generators g1, g2, i.e
(G, q, g1, g2). Then, it picks a uniform x1, x2, y1, y2, z1, z2 ∈ Zq, it
computes
◦ c← gx1

1 gx2
2

◦ d ← gy1
1 gy2

2
◦ h← gz1

1 gz2
2

The public key is PK = (G, q, g1, g2, c, d, h,H) where H() is a
collision-resistant hash function. The private/secret key is
SK = (x1, x2, y1, y2, z1, z2). The messages are elements of G.
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Cramer-Shoup Cryptosystem

• Enc(PK,m ∈ G) : it chooses a uniform k ∈ Zq, and outputs the
following ciphertext:
◦ u1 = gk

1, u2 = gk
2

◦ e = hkm
◦ α = H(u1, u2, e)
◦ v = ckdkα

The ciphertext is CT = (u1, u2, e, v)
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Cramer-Shoup Cryptosystem

• Dec(CT,SK) :
◦ It computes α = H(u1, u2, e),
◦ If ux1

1 ux2
2 (uy1

1 uy2
2 )α 6= v, output ⊥

◦ It outputs m′ = e/(uz1
1 uz2

2 )

Correctness:

m′ = e/(uz1
1 uz2

2 ) = hkm/gkz1
1 gkz2

2 = hkm/hk = m
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Cramer-Shoup: Security Proof

Let A be the adversary attacking the Cramer-Shoup scheme and
D the distinguisher that wants to distinguish a DH tuple from a
random tuple.

Proof.
Distinguisher D(g1, g2, g3, g4)
x1, x2, y1, y2, z1, z2 ← Zq.
PK = (g1, g2, c := gx1

1 gx2
2 , d := gy1

1 gy2
2 , h := gz1

1 gz2
2 ,H).

(m0,m1)← A(PK,Dec(SK, ·)).
b← {0, 1}.
CT∗ = (g3, g4, g

z1
3 gz2

4 mb, g
x1+αy1
3 gx2+αy2

4 ).
b′ ← A(PK,CT∗,Dec(SK, ·)CT∗),
Output 1 iff b′ = b
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Cramer-Shoup: Security Proof

Proof.
Claim 1: ∣∣Pr[D = 1|DH]− Pr[D = 1|Random]

∣∣ = negl(n)

[It follows from the DDH assumption]
Claim 2:

Pr[D outputs 1|DH] = Pr[b′ = b|A attacks S directly]

Claim 3: ∣∣Pr[D = 1|Random]− 1
2

∣∣ = negl(n)
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Cramer-Shoup: Security Proof

Proof.
When D gets a DH tuple, then there exist γ, r s.t.:
(g1, g2 = gγ1 , g3 = gr

1, g4 = gr
2)

It is easy to verify that the distribution of PK and CT are exactly
the same of those obtained from a real world Cramer-Shoup
challenger (and not from the distinguisher who is simulating the
game). Therefore,

Pr[D outputs 1|DH tuple] = Pr[b′ = b|A attacks S directly]

i.e.

Pr[D outputs 1|DH tuple] = Pr[PubKcca
A,CS(n) = 1]
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Cramer-Shoup: Security Proof

Proof.
When D gets a random tuple, it will look like
(g1, g2 = gγ1 , g3 = gr

1, g4 = gr′
2 ), where γ 6= 0 and r 6= r′.

Getting information about z1, z2:
• From the PK, A learns

logg1
h = z1 + γz2. (4)

• From the decryption oracle on CT = (u1, u2, e, v), we distinguish
between two cases, valid and invalid ciphertexts. We will prove
that he learns nothing from valid ciphertexts and that the
probability that it accepts invalid ciphertexts is negligible. CT is
invalid if logg1

u1 6= logg2
u2 and Dec(SK, ·) doesn’t return ⊥, it is

valid otherwise.
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Cramer-Shoup: Security Proof

Proof.
no extra information from valid ciphertexts, why?
When Dec() returns ⊥, it means that v is not in the right format,
but z1, z2 are not involved in this check, so no information about
them in this case.
On the other hand, if

logg1
u1 = logg2

u2 = r′′

then what A can learn from m is

logg1
m = logg1

e− r′′z1 − r′′γz2 (5)

But equation (5) is linearly dependent on equation (4), so no extra
information about z1, z2 from this case.
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Cramer-Shoup: Security Proof

During the course of the experiment, A learns the following about
x1, x2, y1, y2:

Proof.
From the public key, A learns the following:

logg1
c = x1 + x2γ (6)

logg1
d = y1 + y2γ (7)

From the challenge ciphertext, A learns:

logg1
v∗ = (x1 + αy1)r + (x2 + αy2)γr′ (8)
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Cramer-Shoup: Security Proof

Proof.
Now the idea is to prove that the probability that A submits the
previous type of “bad” decryption queries is negligible. Let
CT∗ = (u∗1, u

∗
2, e
∗, v∗) be the challenge ciphertext, we have three

possible types of “bad” decryption queries:
• (u1, u2, e) = (u∗1, u

∗
2, e
∗) with v 6= v∗. Since we will have same

hash values but with v 6= v∗, the decryption oracle will reject it.
• (u1, u2, e) 6= (u∗1, u

∗
2, e
∗) and α = α′. It means that we found a

collision in H, but H is collision-resistant, so this happens only
with negligible probability.
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Cramer-Shoup: Security Proof

Proof.
• (u1, u2, e) 6= (u∗1, u

∗
2, e
∗) and α 6= α′. The decryption oracle will

accept the query only if

logg1
v = (x1 + α′y1)r̃ + (x2 + α′y2)γr̃′ (9)

where r̃ 6= r̃′, is linearly dependent with (6),(7),(8).

BUT, we can show that in this case, the equations (6),(7),(8) and
(9) are linearly independent because

det


1 γ 0 0
0 0 1 γ
r r′γ rα r′αγ
r̃ r̃′γ r̃α′ r̃′α′γ

 = (γ2)(r′ − r)(r̃′ − r̃)(α− α′) 6= 0
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Cramer-Shoup: Security Proof

Proof.
In the third case, the decryption query is rejected except with
probability 1/q, which is the probability to have v in the right format
(from A’s point of view, v is uniformly distributed in G), this v has to
use the same values for x1, x2, y1, y2 that are used in (6),(7),(8)
(remember that these values are unknown to A). If the adversary
makes η queries, then the probability that one of these queries is
not rejected is at most

η

q− η + 1
which is negligible as q is

exponential in the security parameter whereas the number of
queries η is polynomial in it.
We deduce that the hidden bit b is independent from A’s view
except when either a collision is found in H or the decryption
oracle accepts an invalid ciphertext. Claim 3 follows.
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