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What we’ll cover today

Basic introduction to SageMath.

Pollard-Rho factorisation algorithm.

Baby-Step Giant Step algorithm.

Index Calculus algorithm (if time).
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What is SageMath?

Computer Algebra System (CAS)

Open-Source

Free!

Useful for research...
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Why SageMath?

Computer Algebra System (CAS)

Provides a method of using different software systems
together - great for cryptography!

Easy syntax owing to python

Hides implementation details — allows you to focus on the
mathematics

The most complicated calculator you could possibly own...

Allows quick prototyping and experimentation
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Methods of using Sage

SageMath Cloud — what we’ll be using.

SageMath cell server — embed interactive code in websites1

Unfortunately require either linux or a virtualbox environment
for anything more...

SageMath notebook mode — similar to cloud environment,
but run locally.

SageMath terminal mode. Great emacs integration available.

1see https://wiki.sagemath.org/interact/graphics for examples.
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Language features

Scripting language (can be run interactively)

Open source (all code is freely available for inspection)

Makes use of already mature Computer Algebra Systems and
mathematical coding system through interfaces

Allows use of closed-source systems, such as Magma, Maple
or Mathematica if you have them installed locally (or on HPC
machines).

All bundled together in an easy to use python interface with
arbitrary precision arithmetic

Advantages: use the best parts of many different languages.

Disadvantages: an efficiency cost for converting between
objects from different software packages.
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Getting help

SageMathCloud — inbuilt using ”tab” between function
brackets.

Terminal — Help: functionName?
Display code: functionName??

Webhelp — help pages online are directly compiled from code.
SageMath functions for inclusion are designed to be
auto-documenting with examples of use

Forums — (advantages of open-source community spirit...)
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Sagemath basics — Python

Sagemath is built upon Python, where indentation is key for
defining structures such as loops, conditionals and functions.

Basic printing commands are easily available

1 sage: print "Hello world"
2 Hello world
3 sage: print "This is the 1st line"
4 This is the 1st line
5 sage: print "This is the " + str (2) + "nd line."
6 This is the 2nd line.
7 sage: print "Pi rounded to 5 places is:", \
8 round(pi ,5)
9 Pi rounded to 5 places is: 3.14159

10 sage: print "Command 1"; print "Command 2"
11 Command 1
12 Command 2
13 sage: # We comment out code with the hash symbol
14 sage: # print "Commented out"
15 sage:
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Sagemath basics — variables, equality

1 sage: a = 1
2 sage: print a
3 1
4 sage: a == 1
5 True
6 sage: 3 * 4
7 12
8 sage: 3**4
9 81

10 sage: 3^4
11 81
12 sage: 12 / 5
13 12/5
14 sage: 12/5.n()
15 2.40000000000000
16 sage: 12 // 5
17 2
18 sage: floor (1.6)
19 1
20 sage: ceil (1.6)
21 2
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Python basics — lists

1 sage: v = range (10)
2 sage: v
3 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
4 sage: w = range (5,10)
5 sage: w
6 [5, 6, 7, 8, 9]
7 sage: u = [i**2 % 5 for i in xrange (5)]
8 sage: u
9 [0, 1, 4, 4, 1]

10 sage: u[0:3]
11 [0,1,4]
12 sage: u[2:4]
13 [4,4]
14 sage: u[-1]
15 1
16 sage: u[2] = 99; u
17 [0, 1, 99, 4, 1]
18 sage: len(u)
19 5
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Python basics — sets

1 sage: A = {1,2,3,4,4}
2 sage: A
3 {1, 2, 3, 4}
4 sage: B = {2,4,6,8}
5 sage: B
6 {2, 4, 6, 8}
7 sage: A.union(B)
8 {1, 2, 3, 4, 6, 8}
9 sage: A.intersection(B)

10 {2, 4}
11 sage: 2 in A
12 True
13 sage: 999 in A
14 False
15 sage: A.remove (2)
16 sage: A
17 {1, 3, 4}
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Dictionaries

1 sage: D = {"Alice": 55, "Bob" : 55, "Eve" : "???"}
2 sage: D.update ({99 : "flake"})
3 sage: D["Alice"]
4 55
5 sage: D["Eve"]
6 ’???’
7 sage: D[99]
8 ’flake ’
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Python basics — if

1 if condition:
2 statements
3 else:
4 statements

Note that pass will count as ”Do nothing”

1 sage: x = 2**40
2 if x % 3 == 0:
3 print x, "is a multiple of 3"
4 elif x % 3 == 1:
5 print x, "- 1 is divisible by 3"
6 else:
7 print x, "+ 1 is divisible by 3"
8 sage: 1099511627776 -1 is divisible by 3
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Python basics — for

1 for item in iterable:
2 statements #may reference the current item

1 sage: for i in range (10):
2 ....: print i
3 ....:
4 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
5
6 sage: for i in range (20,0,-2):
7 ....: print i
8 ....:
9 20, 18, 16, 14, 12, 10, 8, 6, 4, 2

10
11 sage: # valid for iterables ,ie. sets ,dictionaries
12 sage: D = {"Alice": "Honest", "Bob": "Honest",\
13 "Eve": "Dishonest"}
14 sage: for i in D:
15 print i, D[i]
16 ....:
17 Bob Honest
18 Alice Honest
19 Eve Dishonest

Introduction to SageMath— Using SageMath 15/43



Python basics — while

1 while condition:
2 statements

1 sage: x = 2
2 sage: while x < 10:
3 x += 3
4 print x
5 ....:
6 5
7 8
8 11

Introduction to SageMath— Using SageMath 16/43



Python basics — functions

1 def functionName(var1 ,var2 ,..., varN):
2 statements
3 return VALUE

Functions may also take default input by placing an equality sign
next to the variable. All such variables with default values must be
left-most from the standard variables.

1 def foo(a,b,c=0):
2 temp = a**b + b**a
3 return temp + c
4 sage: foo(2,3,0)
5 17
6 sage: foo(2,3,10)
7 27
8 sage: foo(2,3)
9 17
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Python basics — commenting

1 sage: # Single line commenting with hash symbols
2 sage: def test ():
3 ... """ Documentation is placed within functions
4 via triple -quotes and may be
5 auto -extracted by the sphinx document
6 generator.
7 Sage documentation online is extracted
8 by this method."""
9 ... pass

10 ...
11 sage: test()
12 sage:
13 sage: """ This will result in a string in terminal """
14 ’This will result in a string in terminal ’
15 sage:

1 """ Triple quote commenting may also be used in
2 scripting files """
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SageMath — Rings and Fields I

Z — ZZ
Q — QQ
R — RR
C — CC

1 sage: a = 1
2 sage: a.parent ()
3 Integer Ring
4 sage: b = 3/4
5 sage: b.parent ()
6 Rational Field
7 sage: c = 1.1
8 sage: c.parent ()
9 Real Field with 53 bits of precision

10 sage: d = 1 + CC(i)
11 sage: d.parent ()
12 Complex Field with 53 bits of precision
13 sage: a = RR(a)
14 sage: a.parent ()
15 Real Field with 53 bits of precision
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SageMath — Rings and Field II
GF (pk) — GF(p**k, ”x”)
R[X ] — R[”X”]

1 sage: F = GF(5**3,"x")
2 sage: F.gen()
3 x
4 sage: F.random_element ()
5 x^2 + 4*x
6 sage: F.modulus ()
7 x^3 + 3*x + 3
8 sage: F.base()
9 Finite Field of size 5

10 sage: F.degree ()
11 3
12 sage: F = GF(5**3, name="a",\
13 modulus = x**3 + x**2 + 3*x**1 + 1)
14 sage: F
15 Finite Field in a of size 5^3
16 sage: F.gen()
17 a
18 sage: FX = F["X"]
19 sage: FX.random_element(degree =2)
20 2*a*X^2 + (2*a^2 + 4*a + 4)*X + 4*a^2 + 3
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SageMath — Matrices I
1 sage: M = matrix(ZZ ,3,3,1)
2 sage: M
3 [1 0 0]
4 [0 1 0]
5 [0 0 1]
6 sage: N = matrix(QQ ,[[1 ,2 ,3] ,[4 ,5 ,6] ,[7 ,8 ,9] ,[10 ,11 ,12]])
7 sage: N
8 [ 1 2 3]
9 [ 4 5 6]

10 [ 7 8 9]
11 [10 11 12]
12 sage: M.stack(N)
13 [ 1 0 0]
14 [ 0 1 0]
15 [ 0 0 1]
16 [ 1 2 3]
17 [ 4 5 6]
18 [ 7 8 9]
19 [10 11 12]
20 sage: N = N.transpose (); N
21 [ 1 4 7 10]
22 [ 2 5 8 11]
23 [ 3 6 9 12]
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SageMath — Matrices II
1 sage: A = matrix(QQ ,[[1 ,2 ,3] ,[4 ,5 ,6] ,[7 ,8 ,9]]); A
2 [1 2 3]
3 [4 5 6]
4 [7 8 9]
5 sage: b = vector(QQ ,[1 ,2,3])
6 sage: A.solve_right(b)
7 (-1/3, 2/3, 0)
8 sage: A.solve_left(b)
9 (1, 0, 0)

10 sage: A.echelon_form ()
11 [ 1 0 -1]
12 [ 0 1 2]
13 [ 0 0 0]
14 sage: A.determinant ()
15 0
16 sage: A.change_ring
17 A.change_ring
18 sage: A.parent ()
19 Full MatrixSpace of 3 by 3 dense matrices over
20 Rational Field
21 sage: A = A.change_ring(IntegerModRing (11))
22 sage: A.parent ()
23 Full MatrixSpace of 3 by 3 dense matrices over
24 Ring of integers modulo 11
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SageMath — Polynomials

1 sage: R = PolynomialRing(ZZ ,"X");R
2 Univariate Polynomial Ring in X over Integer Ring
3 sage: f = R.random_element(degree =3);f
4 X^3 - 4*X^2 - X + 6
5 sage: Rf = R.quotient_ring(f)
6 sage: g = R.random_element(degree =10);g
7 -2*X^10 - 6*X^8 - 3*X^7 - 57*X^6 + X^5 + X^4 + X^2 - X - 11
8 sage: Rf(g)
9 -154397* Xbar^2 + 22175* Xbar + 239965

10 sage: h = Rf(g);h
11 -154397* Xbar^2 + 22175* Xbar + 239965
12 sage: h.lift()
13 -154397*X^2 + 22175*X + 239965
14 sage: h.lift (). parent ()
15 Univariate Polynomial Ring in X over Integer Ring

Introduction to SageMath— Using SageMath 23/43



SageMath — Primes, number theory and random numbers

1 sage: p = random_prime (2**11 , lbound =2**10)
2 sage: p
3 1997
4 sage: p.binary ()
5 ’11111001101 ’
6 sage: p.is_prime ()
7 True
8 sage: (p+1). is_prime ()
9 False

10 sage: ZZ.random_element (40 ,50)
11 47
12 sage: [ZZ.random_element (40 ,50) for _ in xrange (10)]
13 [44, 43, 40, 45, 48, 42, 43, 42, 47, 42]
14 sage: CC.random_element ()
15 0.731798085535406 - 0.0337554359009657*I
16 sage: FX.random_element ()
17 (4*x^2 + 4*x + 3)*X^2 + (4*x^2 + 2*x)*X + 4*x^2 + x + 3
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Some examples of crypto with SageMath

Block Ciphers
http://tinyurl.com/OX-SAGE-BLOCKC

ElGamal
http://tinyurl.com/OX-SAGE-ELGAMAL
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Timing your code

1 sage:timeit(’factor (2**200+1) ’)
2 5 loops , best of 3: 78.3 ms per loop
3 sage: %time factor (2**200+1)
4 CPU times: user 136 ms , sys: 0 ns , total: 136 ms
5 Wall time: 135 ms
6 257 * 1601 * 25601 * 82471201 * 4278255361 * 432363203127002885506543172618401
7 sage: %prun factor (2**200+1)
8 8 function calls in 0.134 seconds
9

10 Ordered by: internal time
11
12 ncalls tottime percall cumtime percall filename:lineno(function)
13 1 0.134 0.134 0.134 0.134 {method ’factor ’ of ’sage.rings.integer.Integer ’ objects}
14 1 0.000 0.000 0.134 0.134 <string >:1(<module >)
15 1 0.000 0.000 0.134 0.134 arith.py :2256( factor)
16 2 0.000 0.000 0.000 0.000 {isinstance}
17 1 0.000 0.000 0.000 0.000 factorization_integer.py:28( __init__)
18 1 0.000 0.000 0.000 0.000 proof.py:151( get_flag)
19 1 0.000 0.000 0.000 0.000 {method ’disable ’ of ’_lsprof.Profiler ’ objects}
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Features to be aware about

Easy parallel processing support - viable for quick HPC code.

Cython — optimise specific portions of code in C for speedup.

Good emacs support.
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LATEXintegration

SageTex — include Sage code results/graphs directly into
your documents

22 · 33 · 13

Creation of LATEXcode from within Sagemath

1 sage: var(’a b c x y z’)
2 (a, b, c, x, y, z)
3 sage: f = a*sin(b*x + y) + exp (15*x*y)**z
4 sage: latex(f)
5 a \sin\left(b x + y\right) + \left(e^{\ left (15 \, x y\right )}\ right )^{z}

a sin (bx + y) +
(
e(15 xy)

)z
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Other useful features of Cryptographers

Pycrypto

hashlib

Toy ciphers

Statistics through the R interface.
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Popular usage
Popularity in crypto (and other Math...) continues to grow
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Popular usage
Popularity in crypto (and other Math...) continues to grow
SageMathCloud usage hitting new records each year
Twitter / community activity: A break of the GGH13
Multilinear Map in 2015 scheme really started to get attention
when a toy version of the break was published online using a
SageCell interface by Martin Albrecht.
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Use in research culture
Popularity in crypto (and other Math...) continues to grow
SageMathCloud usage hitting new records each year
Recent break of the GGH13 Multilinear Map scheme really
started to get attention when a toy version of the break was
published online using a SageCell interface by Martin Albrecht.
SageMath citations growing each year

Popular uses include prototyping and quick programs for
parameter estimation — see papers on choosing parameters
for cryptosystems based on hardness of LWE:
https://eprint.iacr.org/2015/046

Provides an alternate way to think about problems via
experimentation to build and confirm intution.
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Implementation — Why bother?

Helps with your intution

Ensures you understand the algorithm

Can throw out suprising results

Allows easy testing of counter-examples and conjectures

Is is the scheme practical? Asymptotically yes, but what
about in the real world?

It’s vaguely satisfying...

Afternoon’s goal: Implement a discrete logarithm solver and
factorization method. Experiment.
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Tools

SageMathCloud

SageMath help

People around you

Me
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Pollard’s ρ factorization method

Input: N — an integer to be factored

Input: g — a polynomial in x , usually g(x) := x2 + 1, which
is always computed mod N.

Output: A small factor of N.

Initialization: x = 2, y = 2, d = 1

Algorithm:

while d is 1:
x = g(x)
y = g(g(y))
d = gcd(|x − y |, n)

if d is n:
return Fail

else:
return d
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Pollard in Sage

http://tinyurl.com/OX-2016-POLLARD-RHO
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Baby step, giant step (BSGS)

Input: a cyclic group G = 〈g〉 of prime order p.

Input: h ∈ G .

Output: find the value of x s.t. h = g x .

Let N ′ = d
√
|G |e

There exist 0 ≤ i , j < N ′ such that x = jN ′ + i

h = g jN′+i ⇔ hg−jN
′

= g i

Compute LB := {g i |i = 0, . . . ,N ′ − 1}
Compute LG := {hg−jN′ |j = 0, . . . ,N ′ − 1}
Look for the same values in each list (note that you only have
to create one list and can use a loop for the other)

Attack requires time and memory each O
(
|G |1/2

)
Extension: What happens when we alter the size of N ′?
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Implementation goals

We consider applying the BSGS algorithm to the discrete
logarithm problem in (Zp)∗ — that is, given g , h ∈ (Zp)∗ st.
〈g〉 = (Zp)∗, find x st. g x = h.

Create a BSGS function definition which should initially be
defined as:

1 def BSGS(h, g):
2 pass

and return x , cast as an integer.
If you have time and wish to experiment, this may be expanded to

1 def BSGS(h, g, f):
2 pass

where BSGS should use f as a method of choosing N ′ based upon
|G |.
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BSGS in Sage

http://tinyurl.com/OX-2016-BSGS
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A naive index calculus algorithm for F∗p
DLP: given g , h ∈ F∗p, find x such that h = g x

Factor basis made of small primes

FB := {primes pi ≤ B} = {p1, . . . , pk}

Relation search

Compute gi := gai for random ai ∈ {1, . . . , p − 1}
If all factors of gi are ≤ B, we have a relation

gai =
∏
pj∈F

p
ei,j
j (1)

Linear algebra Once we have ` ≥ k linearly independent
equations similar to equations (1), we solve ( mod (p − 1))
for logg pi , i = 1, . . . , k .

Search for t such that [g t · h mod p] is B-smooth. Once
found, solve for logg h.
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Index Calculus in Sage

http://tinyurl.com/OX-SAGE-INDEXCALC
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Language interfaces/Behind the scenes
1 sage: M = gap(’[[1,2,3],[4,5,6],[7,8,9]]’)
2 sage: N = gap(’[[1,1,1],[2,2,2],[3,3,3]]’)
3 sage: timeit(’N*M’)
4 625 loops , best of 3: 436 µs per loop
5 sage: M.parent ()
6 Gap
7 sage: (N*M). parent ()
8 Gap
9 sage: timeit(’matrix(ZZ ,N*M)’)

10 25 loops , best of 3: 11.6 ms per loop
11 sage: timeit(’matrix(ZZ ,N)* matrix(ZZ ,M)’)
12 25 loops , best of 3: 22.3 ms per loop
13 sage:
14 sage: Ms = matrix(ZZ ,M)
15 sage: Ns = matrix(ZZ ,N)
16 sage: timeit(’Ms*Ns’)
17 625 loops , best of 3: 5.94 µs per loop
18 sage: (Ms*Ns). parent ()
19 Full MatrixSpace of 3 by 3 dense matrices over \
20 Integer Ring
21 sage: type(Ms*Ns)
22 <type ’sage.matrix.matrix_integer_dense.Matrix_\
23 integer_dense ’>
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Contributing to SageMath

Sage has gained limited support from OpenDreamKit — a
European research project to further software used in research
computing to provide a professional full-time developer.

Open-souce nature means that you can contribute, bug-fix
and keep the project going — good for future employment
opportunities, both in academia and industry.
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Sage days

Get-togethers to discuss the future of Sage and code

Worldwide locations

#71 was at Oxford last year, with a focus on p−adic number
theory in March.

#83 Held recently in Morroco on Combinatorics and Knot
Theory.

#82 to be held in Paris in January on Women in Sage.

Yearly school on Computational Discrete Mathematics held
with focus on GAP and SageMath
(http://www.codima.ac.uk/)
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That’s all folks!

Questions?
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