
Introduction to SageMath

Benjamin Pring

University of Bath

November 18thth, 2016

1/43

Outline

Overview

Language features

Using SageMath

Efficiency and profiling

Features to be aware about

Other useful features for Cryptographers

The Future of Sage

Implementation

Introduction to SageMath 2/43

What we’ll cover today

Basic introduction to SageMath.

Pollard-Rho factorisation algorithm.

Baby-Step Giant Step algorithm.

Index Calculus algorithm (if time).

Introduction to SageMath— Overview 3/43

What is SageMath?

Computer Algebra System (CAS)

Open-Source

Free!

Useful for research...

Introduction to SageMath— Overview 4/43

What is SageMath?

Computer Algebra System (CAS)

Open-Source

Free!

Useful for research...

Introduction to SageMath— Overview 4/43

What is SageMath?

Computer Algebra System (CAS)

Open-Source

Free!

Useful for research...

Introduction to SageMath— Overview 4/43

What is SageMath?

Computer Algebra System (CAS)

Open-Source

Free!

Useful for research...

Introduction to SageMath— Overview 4/43

A brief summary
Originated in 2005, by William Stein

Introduction to SageMath— Overview 5/43

A brief summary
Originated in 2005, by William Stein. Still running in 2015.

Introduction to SageMath— Overview 5/43

A brief summary
Originated in 2005, by William Stein. Still running in 2015.
Started as a python interface to GAP (group theory) and
PARI (number theory). Has kept growing.

Introduction to SageMath— Overview 5/43

A brief summary
Originated in 2005, by William Stein. Still running in 2015.
Started as a python interface to GAP (group theory) and
PARI (number theory). Has kept growing.
Mission statement:
”Create a viable free open source alternative to Magma,
Maple, Mathematica and Matlab.”

Introduction to SageMath— Overview 5/43

A brief summary
Originated in 2005, by William Stein. Still running in 2015.
Started as a python interface to GAP (group theory) and
PARI (number theory). Has kept growing.
Mission statement:
”Create a viable free open source alternative to Magma,
Maple, Mathematica and Matlab.”

Software for Arithmetic Geometry Experimentation

Introduction to SageMath— Overview 5/43

A brief summary
Originated in 2005, by William Stein. Still running in 2015.
Started as a python interface to GAP (group theory) and
PARI (number theory). Has kept growing.
Mission statement:
”Create a viable free open source alternative to Magma,
Maple, Mathematica and Matlab.”

Software for Arithmetic Geometry Experimentation
Software for Algebraic Geometry Experimentation

Introduction to SageMath— Overview 5/43

A brief summary
Originated in 2005, by William Stein. Still running in 2015.
Started as a python interface to GAP (group theory) and
PARI (number theory). Has kept growing.
Mission statement:
”Create a viable free open source alternative to Magma,
Maple, Mathematica and Matlab.”

Software for Arithmetic Geometry Experimentation
Software for Algebraic Geometry Experimentation
Software for Algebra and Geometry Experimentation

Introduction to SageMath— Overview 5/43

A brief summary
Originated in 2005, by William Stein. Still running in 2015.
Started as a python interface to GAP (group theory) and
PARI (number theory). Has kept growing.
Mission statement:
”Create a viable free open source alternative to Magma,
Maple, Mathematica and Matlab.”

Software for Arithmetic Geometry Experimentation
Software for Algebraic Geometry Experimentation
Software for Algebra and Geometry Experimentation
Sage

Introduction to SageMath— Overview 5/43

A brief summary
Originated in 2005, by William Stein. Still running in 2015.
Started as a python interface to GAP (group theory) and
PARI (number theory). Has kept growing.
Mission statement:
”Create a viable free open source alternative to Magma,
Maple, Mathematica and Matlab.”

Sage — Sometimes Acronyms Get Eliminated

Now consists of 90-odd packages tied together in a Python
interface with arbitrary precision arithmetic
Number theory: PARI, FLINT, NTL
Combinatorics: Symmetrica
Numerical linear algebra: ATLAS, BLAS, LAPACK, NumPy
Plotting: matplotlib
Algebra: GAP, Maxima
Statistics: R, SciPy
...and more

Introduction to SageMath— Overview 4/43

A brief summary
Originated in 2005, by William Stein. Still running in 2015.
Started as a python interface to GAP (group theory) and
PARI (number theory). Has kept growing.
Mission statement:
”Create a viable free open source alternative to Magma,
Maple, Mathematica and Matlab.”

Sage — Sometimes Acronyms Get Eliminated
Now consists of 90-odd packages tied together in a Python
interface with arbitrary precision arithmetic

Number theory: PARI, FLINT, NTL
Combinatorics: Symmetrica
Numerical linear algebra: ATLAS, BLAS, LAPACK, NumPy
Plotting: matplotlib
Algebra: GAP, Maxima
Statistics: R, SciPy
...and more

Introduction to SageMath— Overview 4/43

A brief summary
Originated in 2005, by William Stein. Still running in 2015.
Started as a python interface to GAP (group theory) and
PARI (number theory). Has kept growing.
Mission statement:
”Create a viable free open source alternative to Magma,
Maple, Mathematica and Matlab.”

Sage — Sometimes Acronyms Get Eliminated
Now consists of 90-odd packages tied together in a Python
interface with arbitrary precision arithmetic
Number theory: PARI, FLINT, NTL
Combinatorics: Symmetrica
Numerical linear algebra: ATLAS, BLAS, LAPACK, NumPy
Plotting: matplotlib
Algebra: GAP, Maxima
Statistics: R, SciPy
...and more

Introduction to SageMath— Overview 4/43

Why SageMath?

Computer Algebra System (CAS)

Provides a method of using different software systems
together - great for cryptography!

Easy syntax owing to python

Hides implementation details — allows you to focus on the
mathematics

The most complicated calculator you could possibly own...

Allows quick prototyping and experimentation

Introduction to SageMath— Overview 5/43

Methods of using Sage

SageMath Cloud — what we’ll be using.

SageMath cell server — embed interactive code in websites1

Unfortunately require either linux or a virtualbox environment
for anything more...

SageMath notebook mode — similar to cloud environment,
but run locally.

SageMath terminal mode. Great emacs integration available.

1see https://wiki.sagemath.org/interact/graphics for examples.
Introduction to SageMath— Overview 6/43

https://wiki.sagemath.org/interact/graphics

Language features

Scripting language (can be run interactively)

Open source (all code is freely available for inspection)

Makes use of already mature Computer Algebra Systems and
mathematical coding system through interfaces

Allows use of closed-source systems, such as Magma, Maple
or Mathematica if you have them installed locally (or on HPC
machines).

All bundled together in an easy to use python interface with
arbitrary precision arithmetic

Advantages: use the best parts of many different languages.

Disadvantages: an efficiency cost for converting between
objects from different software packages.

Introduction to SageMath— Language features 7/43

Getting help

SageMathCloud — inbuilt using ”tab” between function
brackets.

Terminal — Help: functionName?
Display code: functionName??

Webhelp — help pages online are directly compiled from code.
SageMath functions for inclusion are designed to be
auto-documenting with examples of use

Forums — (advantages of open-source community spirit...)

Introduction to SageMath— Language features 8/43

Sagemath basics — Python

Sagemath is built upon Python, where indentation is key for
defining structures such as loops, conditionals and functions.

Basic printing commands are easily available

1 sage: print "Hello world"
2 Hello world
3 sage: print "This is the 1st line"
4 This is the 1st line
5 sage: print "This is the " + str (2) + "nd line."
6 This is the 2nd line.
7 sage: print "Pi rounded to 5 places is:", \
8 round(pi ,5)
9 Pi rounded to 5 places is: 3.14159

10 sage: print "Command 1"; print "Command 2"
11 Command 1
12 Command 2
13 sage: # We comment out code with the hash symbol
14 sage: # print "Commented out"
15 sage:

Introduction to SageMath— Using SageMath 9/43

Sagemath basics — variables, equality

1 sage: a = 1
2 sage: print a
3 1
4 sage: a == 1
5 True
6 sage: 3 * 4
7 12
8 sage: 3**4
9 81

10 sage: 3^4
11 81
12 sage: 12 / 5
13 12/5
14 sage: 12/5.n()
15 2.40000000000000
16 sage: 12 // 5
17 2
18 sage: floor (1.6)
19 1
20 sage: ceil (1.6)
21 2

Introduction to SageMath— Using SageMath 10/43

Python basics — lists

1 sage: v = range (10)
2 sage: v
3 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
4 sage: w = range (5,10)
5 sage: w
6 [5, 6, 7, 8, 9]
7 sage: u = [i**2 % 5 for i in xrange (5)]
8 sage: u
9 [0, 1, 4, 4, 1]

10 sage: u[0:3]
11 [0,1,4]
12 sage: u[2:4]
13 [4,4]
14 sage: u[-1]
15 1
16 sage: u[2] = 99; u
17 [0, 1, 99, 4, 1]
18 sage: len(u)
19 5

Introduction to SageMath— Using SageMath 11/43

Python basics — sets

1 sage: A = {1,2,3,4,4}
2 sage: A
3 {1, 2, 3, 4}
4 sage: B = {2,4,6,8}
5 sage: B
6 {2, 4, 6, 8}
7 sage: A.union(B)
8 {1, 2, 3, 4, 6, 8}
9 sage: A.intersection(B)

10 {2, 4}
11 sage: 2 in A
12 True
13 sage: 999 in A
14 False
15 sage: A.remove (2)
16 sage: A
17 {1, 3, 4}

Introduction to SageMath— Using SageMath 12/43

Dictionaries

1 sage: D = {"Alice": 55, "Bob" : 55, "Eve" : "???"}
2 sage: D.update ({99 : "flake"})
3 sage: D["Alice"]
4 55
5 sage: D["Eve"]
6 ’???’
7 sage: D[99]
8 ’flake ’

Introduction to SageMath— Using SageMath 13/43

Python basics — if

1 if condition:
2 statements
3 else:
4 statements

Note that pass will count as ”Do nothing”

1 sage: x = 2**40
2 if x % 3 == 0:
3 print x, "is a multiple of 3"
4 elif x % 3 == 1:
5 print x, "- 1 is divisible by 3"
6 else:
7 print x, "+ 1 is divisible by 3"
8 sage: 1099511627776 -1 is divisible by 3

Introduction to SageMath— Using SageMath 14/43

Python basics — for

1 for item in iterable:
2 statements #may reference the current item

1 sage: for i in range (10):
2: print i
3:
4 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
5
6 sage: for i in range (20,0,-2):
7: print i
8:
9 20, 18, 16, 14, 12, 10, 8, 6, 4, 2

10
11 sage: # valid for iterables ,ie. sets ,dictionaries
12 sage: D = {"Alice": "Honest", "Bob": "Honest",\
13 "Eve": "Dishonest"}
14 sage: for i in D:
15 print i, D[i]
16:
17 Bob Honest
18 Alice Honest
19 Eve Dishonest

Introduction to SageMath— Using SageMath 15/43

Python basics — while

1 while condition:
2 statements

1 sage: x = 2
2 sage: while x < 10:
3 x += 3
4 print x
5:
6 5
7 8
8 11

Introduction to SageMath— Using SageMath 16/43

Python basics — functions

1 def functionName(var1 ,var2 ,..., varN):
2 statements
3 return VALUE

Functions may also take default input by placing an equality sign
next to the variable. All such variables with default values must be
left-most from the standard variables.

1 def foo(a,b,c=0):
2 temp = a**b + b**a
3 return temp + c
4 sage: foo(2,3,0)
5 17
6 sage: foo(2,3,10)
7 27
8 sage: foo(2,3)
9 17

Introduction to SageMath— Using SageMath 17/43

Python basics — commenting

1 sage: # Single line commenting with hash symbols
2 sage: def test ():
3 ... """ Documentation is placed within functions
4 via triple -quotes and may be
5 auto -extracted by the sphinx document
6 generator.
7 Sage documentation online is extracted
8 by this method."""
9 ... pass

10 ...
11 sage: test()
12 sage:
13 sage: """ This will result in a string in terminal """
14 ’This will result in a string in terminal ’
15 sage:

1 """ Triple quote commenting may also be used in
2 scripting files """

Introduction to SageMath— Using SageMath 18/43

SageMath — Rings and Fields I

Z — ZZ
Q — QQ
R — RR
C — CC

1 sage: a = 1
2 sage: a.parent ()
3 Integer Ring
4 sage: b = 3/4
5 sage: b.parent ()
6 Rational Field
7 sage: c = 1.1
8 sage: c.parent ()
9 Real Field with 53 bits of precision

10 sage: d = 1 + CC(i)
11 sage: d.parent ()
12 Complex Field with 53 bits of precision
13 sage: a = RR(a)
14 sage: a.parent ()
15 Real Field with 53 bits of precision

Introduction to SageMath— Using SageMath 19/43

SageMath — Rings and Field II
GF (pk) — GF(p**k, ”x”)
R[X] — R[”X”]

1 sage: F = GF(5**3,"x")
2 sage: F.gen()
3 x
4 sage: F.random_element ()
5 x^2 + 4*x
6 sage: F.modulus ()
7 x^3 + 3*x + 3
8 sage: F.base()
9 Finite Field of size 5

10 sage: F.degree ()
11 3
12 sage: F = GF(5**3, name="a",\
13 modulus = x**3 + x**2 + 3*x**1 + 1)
14 sage: F
15 Finite Field in a of size 5^3
16 sage: F.gen()
17 a
18 sage: FX = F["X"]
19 sage: FX.random_element(degree =2)
20 2*a*X^2 + (2*a^2 + 4*a + 4)*X + 4*a^2 + 3

Introduction to SageMath— Using SageMath 20/43

SageMath — Matrices I
1 sage: M = matrix(ZZ ,3,3,1)
2 sage: M
3 [1 0 0]
4 [0 1 0]
5 [0 0 1]
6 sage: N = matrix(QQ ,[[1 ,2 ,3] ,[4 ,5 ,6] ,[7 ,8 ,9] ,[10 ,11 ,12]])
7 sage: N
8 [1 2 3]
9 [4 5 6]

10 [7 8 9]
11 [10 11 12]
12 sage: M.stack(N)
13 [1 0 0]
14 [0 1 0]
15 [0 0 1]
16 [1 2 3]
17 [4 5 6]
18 [7 8 9]
19 [10 11 12]
20 sage: N = N.transpose (); N
21 [1 4 7 10]
22 [2 5 8 11]
23 [3 6 9 12]

Introduction to SageMath— Using SageMath 21/43

SageMath — Matrices II
1 sage: A = matrix(QQ ,[[1 ,2 ,3] ,[4 ,5 ,6] ,[7 ,8 ,9]]); A
2 [1 2 3]
3 [4 5 6]
4 [7 8 9]
5 sage: b = vector(QQ ,[1 ,2,3])
6 sage: A.solve_right(b)
7 (-1/3, 2/3, 0)
8 sage: A.solve_left(b)
9 (1, 0, 0)

10 sage: A.echelon_form ()
11 [1 0 -1]
12 [0 1 2]
13 [0 0 0]
14 sage: A.determinant ()
15 0
16 sage: A.change_ring
17 A.change_ring
18 sage: A.parent ()
19 Full MatrixSpace of 3 by 3 dense matrices over
20 Rational Field
21 sage: A = A.change_ring(IntegerModRing (11))
22 sage: A.parent ()
23 Full MatrixSpace of 3 by 3 dense matrices over
24 Ring of integers modulo 11
Introduction to SageMath— Using SageMath 22/43

SageMath — Polynomials

1 sage: R = PolynomialRing(ZZ ,"X");R
2 Univariate Polynomial Ring in X over Integer Ring
3 sage: f = R.random_element(degree =3);f
4 X^3 - 4*X^2 - X + 6
5 sage: Rf = R.quotient_ring(f)
6 sage: g = R.random_element(degree =10);g
7 -2*X^10 - 6*X^8 - 3*X^7 - 57*X^6 + X^5 + X^4 + X^2 - X - 11
8 sage: Rf(g)
9 -154397* Xbar^2 + 22175* Xbar + 239965

10 sage: h = Rf(g);h
11 -154397* Xbar^2 + 22175* Xbar + 239965
12 sage: h.lift()
13 -154397*X^2 + 22175*X + 239965
14 sage: h.lift (). parent ()
15 Univariate Polynomial Ring in X over Integer Ring

Introduction to SageMath— Using SageMath 23/43

SageMath — Primes, number theory and random numbers

1 sage: p = random_prime (2**11 , lbound =2**10)
2 sage: p
3 1997
4 sage: p.binary ()
5 ’11111001101 ’
6 sage: p.is_prime ()
7 True
8 sage: (p+1). is_prime ()
9 False

10 sage: ZZ.random_element (40 ,50)
11 47
12 sage: [ZZ.random_element (40 ,50) for _ in xrange (10)]
13 [44, 43, 40, 45, 48, 42, 43, 42, 47, 42]
14 sage: CC.random_element ()
15 0.731798085535406 - 0.0337554359009657*I
16 sage: FX.random_element ()
17 (4*x^2 + 4*x + 3)*X^2 + (4*x^2 + 2*x)*X + 4*x^2 + x + 3

Introduction to SageMath— Using SageMath 24/43

Some examples of crypto with SageMath

Block Ciphers
http://tinyurl.com/OX-SAGE-BLOCKC

ElGamal
http://tinyurl.com/OX-SAGE-ELGAMAL

Introduction to SageMath— Using SageMath 25/43

http://tinyurl.com/OX-SAGE-BLOCKC
http://tinyurl.com/OX-SAGE-ELGAMAL

Timing your code

1 sage:timeit(’factor (2**200+1) ’)
2 5 loops , best of 3: 78.3 ms per loop
3 sage: %time factor (2**200+1)
4 CPU times: user 136 ms , sys: 0 ns , total: 136 ms
5 Wall time: 135 ms
6 257 * 1601 * 25601 * 82471201 * 4278255361 * 432363203127002885506543172618401
7 sage: %prun factor (2**200+1)
8 8 function calls in 0.134 seconds
9

10 Ordered by: internal time
11
12 ncalls tottime percall cumtime percall filename:lineno(function)
13 1 0.134 0.134 0.134 0.134 {method ’factor ’ of ’sage.rings.integer.Integer ’ objects}
14 1 0.000 0.000 0.134 0.134 <string >:1(<module >)
15 1 0.000 0.000 0.134 0.134 arith.py :2256(factor)
16 2 0.000 0.000 0.000 0.000 {isinstance}
17 1 0.000 0.000 0.000 0.000 factorization_integer.py:28(__init__)
18 1 0.000 0.000 0.000 0.000 proof.py:151(get_flag)
19 1 0.000 0.000 0.000 0.000 {method ’disable ’ of ’_lsprof.Profiler ’ objects}

Introduction to SageMath— Efficiency and profiling 26/43

Features to be aware about

Easy parallel processing support - viable for quick HPC code.

Cython — optimise specific portions of code in C for speedup.

Good emacs support.

Introduction to SageMath— Features to be aware about 27/43

LATEXintegration

SageTex — include Sage code results/graphs directly into
your documents

22 · 33 · 13

Creation of LATEXcode from within Sagemath

1 sage: var(’a b c x y z’)
2 (a, b, c, x, y, z)
3 sage: f = a*sin(b*x + y) + exp (15*x*y)**z
4 sage: latex(f)
5 a \sin\left(b x + y\right) + \left(e^{\ left (15 \, x y\right)}\ right)^{z}

a sin (bx + y) +
(
e(15 xy)

)z

Introduction to SageMath— Features to be aware about 28/43

LATEXintegration

SageTex — include Sage code results/graphs directly into
your documents

22 · 33 · 13

Creation of LATEXcode from within Sagemath

1 sage: var(’a b c x y z’)
2 (a, b, c, x, y, z)
3 sage: f = a*sin(b*x + y) + exp (15*x*y)**z
4 sage: latex(f)
5 a \sin\left(b x + y\right) + \left(e^{\ left (15 \, x y\right)}\ right)^{z}

a sin (bx + y) +
(
e(15 xy)

)z

Introduction to SageMath— Features to be aware about 28/43

LATEXintegration

SageTex — include Sage code results/graphs directly into
your documents

22 · 33 · 13

Creation of LATEXcode from within Sagemath

1 sage: var(’a b c x y z’)
2 (a, b, c, x, y, z)
3 sage: f = a*sin(b*x + y) + exp (15*x*y)**z
4 sage: latex(f)
5 a \sin\left(b x + y\right) + \left(e^{\ left (15 \, x y\right)}\ right)^{z}

a sin (bx + y) +
(
e(15 xy)

)z

Introduction to SageMath— Features to be aware about 28/43

LATEXintegration

SageTex — include Sage code results/graphs directly into
your documents

22 · 33 · 13

Creation of LATEXcode from within Sagemath

1 sage: var(’a b c x y z’)
2 (a, b, c, x, y, z)
3 sage: f = a*sin(b*x + y) + exp (15*x*y)**z
4 sage: latex(f)
5 a \sin\left(b x + y\right) + \left(e^{\ left (15 \, x y\right)}\ right)^{z}

a sin (bx + y) +
(
e(15 xy)

)z
Introduction to SageMath— Features to be aware about 28/43

Other useful features of Cryptographers

Pycrypto

hashlib

Toy ciphers

Statistics through the R interface.

Introduction to SageMath— Other useful features for Cryptog-
raphers 29/43

Popular usage
Popularity in crypto (and other Math...) continues to grow

Introduction to SageMath— The Future of Sage 30/43

Popular usage
Popularity in crypto (and other Math...) continues to grow
SageMathCloud usage hitting new records each year

Introduction to SageMath— The Future of Sage 30/43

Popular usage
Popularity in crypto (and other Math...) continues to grow
SageMathCloud usage hitting new records each year
Twitter / community activity: A break of the GGH13
Multilinear Map in 2015 scheme really started to get attention
when a toy version of the break was published online using a
SageCell interface by Martin Albrecht.

Introduction to SageMath— The Future of Sage 30/43

Use in research culture
Popularity in crypto (and other Math...) continues to grow
SageMathCloud usage hitting new records each year
Recent break of the GGH13 Multilinear Map scheme really
started to get attention when a toy version of the break was
published online using a SageCell interface by Martin Albrecht.
SageMath citations growing each year

Popular uses include prototyping and quick programs for
parameter estimation — see papers on choosing parameters
for cryptosystems based on hardness of LWE:
https://eprint.iacr.org/2015/046

Provides an alternate way to think about problems via
experimentation to build and confirm intution.

Introduction to SageMath— The Future of Sage 30/43

https://eprint.iacr.org/2015/046

Use in research culture
Popularity in crypto (and other Math...) continues to grow
SageMathCloud usage hitting new records each year
Recent break of the GGH13 Multilinear Map scheme really
started to get attention when a toy version of the break was
published online using a SageCell interface by Martin Albrecht.
SageMath citations growing each year
Popular uses include prototyping and quick programs for
parameter estimation — see papers on choosing parameters
for cryptosystems based on hardness of LWE:
https://eprint.iacr.org/2015/046

Provides an alternate way to think about problems via
experimentation to build and confirm intution.

Introduction to SageMath— The Future of Sage 30/43

https://eprint.iacr.org/2015/046

Use in research culture
Popularity in crypto (and other Math...) continues to grow
SageMathCloud usage hitting new records each year
Recent break of the GGH13 Multilinear Map scheme really
started to get attention when a toy version of the break was
published online using a SageCell interface by Martin Albrecht.
SageMath citations growing each year
Popular uses include prototyping and quick programs for
parameter estimation — see papers on choosing parameters
for cryptosystems based on hardness of LWE:
https://eprint.iacr.org/2015/046

Provides an alternate way to think about problems via
experimentation to build and confirm intution.

Introduction to SageMath— The Future of Sage 30/43

https://eprint.iacr.org/2015/046

Implementation — Why bother?

Helps with your intution

Ensures you understand the algorithm

Can throw out suprising results

Allows easy testing of counter-examples and conjectures

Is is the scheme practical? Asymptotically yes, but what
about in the real world?

It’s vaguely satisfying...

Afternoon’s goal: Implement a discrete logarithm solver and
factorization method. Experiment.

Introduction to SageMath— Implementation 31/43

Implementation — Why bother?

Helps with your intution

Ensures you understand the algorithm

Can throw out suprising results

Allows easy testing of counter-examples and conjectures

Is is the scheme practical? Asymptotically yes, but what
about in the real world?

It’s vaguely satisfying...

Afternoon’s goal: Implement a discrete logarithm solver and
factorization method. Experiment.

Introduction to SageMath— Implementation 31/43

Implementation — Why bother?

Helps with your intution

Ensures you understand the algorithm

Can throw out suprising results

Allows easy testing of counter-examples and conjectures

Is is the scheme practical? Asymptotically yes, but what
about in the real world?

It’s vaguely satisfying...

Afternoon’s goal: Implement a discrete logarithm solver and
factorization method. Experiment.

Introduction to SageMath— Implementation 31/43

Implementation — Why bother?

Helps with your intution

Ensures you understand the algorithm

Can throw out suprising results

Allows easy testing of counter-examples and conjectures

Is is the scheme practical? Asymptotically yes, but what
about in the real world?

It’s vaguely satisfying...

Afternoon’s goal: Implement a discrete logarithm solver and
factorization method. Experiment.

Introduction to SageMath— Implementation 31/43

Implementation — Why bother?

Helps with your intution

Ensures you understand the algorithm

Can throw out suprising results

Allows easy testing of counter-examples and conjectures

Is is the scheme practical? Asymptotically yes, but what
about in the real world?

It’s vaguely satisfying...

Afternoon’s goal: Implement a discrete logarithm solver and
factorization method. Experiment.

Introduction to SageMath— Implementation 31/43

Implementation — Why bother?

Helps with your intution

Ensures you understand the algorithm

Can throw out suprising results

Allows easy testing of counter-examples and conjectures

Is is the scheme practical? Asymptotically yes, but what
about in the real world?

It’s vaguely satisfying...

Afternoon’s goal: Implement a discrete logarithm solver and
factorization method. Experiment.

Introduction to SageMath— Implementation 31/43

Implementation — Why bother?

Helps with your intution

Ensures you understand the algorithm

Can throw out suprising results

Allows easy testing of counter-examples and conjectures

Is is the scheme practical? Asymptotically yes, but what
about in the real world?

It’s vaguely satisfying...

Afternoon’s goal: Implement a discrete logarithm solver and
factorization method. Experiment.

Introduction to SageMath— Implementation 31/43

Tools

SageMathCloud

SageMath help

People around you

Me

Introduction to SageMath— Implementation 32/43

Pollard’s ρ factorization method

Input: N — an integer to be factored

Input: g — a polynomial in x , usually g(x) := x2 + 1, which
is always computed mod N.

Output: A small factor of N.

Initialization: x = 2, y = 2, d = 1

Algorithm:

while d is 1:
x = g(x)
y = g(g(y))
d = gcd(|x − y |, n)

if d is n:
return Fail

else:
return d

Introduction to SageMath— Implementation 33/43

Pollard in Sage

http://tinyurl.com/OX-2016-POLLARD-RHO

Introduction to SageMath— Implementation 34/43

http://tinyurl.com/OX-2016-POLLARD-RHO

Baby step, giant step (BSGS)

Input: a cyclic group G = 〈g〉 of prime order p.

Input: h ∈ G .

Output: find the value of x s.t. h = g x .

Let N ′ = d
√
|G |e

There exist 0 ≤ i , j < N ′ such that x = jN ′ + i

h = g jN′+i ⇔ hg−jN
′

= g i

Compute LB := {g i |i = 0, . . . ,N ′ − 1}
Compute LG := {hg−jN′ |j = 0, . . . ,N ′ − 1}
Look for the same values in each list (note that you only have
to create one list and can use a loop for the other)

Attack requires time and memory each O
(
|G |1/2

)
Extension: What happens when we alter the size of N ′?

Introduction to SageMath— Implementation 35/43

Implementation goals

We consider applying the BSGS algorithm to the discrete
logarithm problem in (Zp)∗ — that is, given g , h ∈ (Zp)∗ st.
〈g〉 = (Zp)∗, find x st. g x = h.

Create a BSGS function definition which should initially be
defined as:

1 def BSGS(h, g):
2 pass

and return x , cast as an integer.
If you have time and wish to experiment, this may be expanded to

1 def BSGS(h, g, f):
2 pass

where BSGS should use f as a method of choosing N ′ based upon
|G |.

Introduction to SageMath— Implementation 36/43

BSGS in Sage

http://tinyurl.com/OX-2016-BSGS

Introduction to SageMath— Implementation 37/43

http://tinyurl.com/OX-2016-BSGS

A naive index calculus algorithm for F∗p
DLP: given g , h ∈ F∗p, find x such that h = g x

Factor basis made of small primes

FB := {primes pi ≤ B} = {p1, . . . , pk}

Relation search

Compute gi := gai for random ai ∈ {1, . . . , p − 1}
If all factors of gi are ≤ B, we have a relation

gai =
∏
pj∈F

p
ei,j
j (1)

Linear algebra Once we have ` ≥ k linearly independent
equations similar to equations (1), we solve (mod (p − 1))
for logg pi , i = 1, . . . , k .

Search for t such that [g t · h mod p] is B-smooth. Once
found, solve for logg h.

Introduction to SageMath— Implementation 38/43

Index Calculus in Sage

http://tinyurl.com/OX-SAGE-INDEXCALC

Introduction to SageMath— Implementation 39/43

http://tinyurl.com/OX-SAGE-INDEXCALC

Language interfaces/Behind the scenes
1 sage: M = gap(’[[1,2,3],[4,5,6],[7,8,9]]’)
2 sage: N = gap(’[[1,1,1],[2,2,2],[3,3,3]]’)
3 sage: timeit(’N*M’)
4 625 loops , best of 3: 436 µs per loop
5 sage: M.parent ()
6 Gap
7 sage: (N*M). parent ()
8 Gap
9 sage: timeit(’matrix(ZZ ,N*M)’)

10 25 loops , best of 3: 11.6 ms per loop
11 sage: timeit(’matrix(ZZ ,N)* matrix(ZZ ,M)’)
12 25 loops , best of 3: 22.3 ms per loop
13 sage:
14 sage: Ms = matrix(ZZ ,M)
15 sage: Ns = matrix(ZZ ,N)
16 sage: timeit(’Ms*Ns’)
17 625 loops , best of 3: 5.94 µs per loop
18 sage: (Ms*Ns). parent ()
19 Full MatrixSpace of 3 by 3 dense matrices over \
20 Integer Ring
21 sage: type(Ms*Ns)
22 <type ’sage.matrix.matrix_integer_dense.Matrix_\
23 integer_dense ’>

Introduction to SageMath— Other things 40/43

Contributing to SageMath

Sage has gained limited support from OpenDreamKit — a
European research project to further software used in research
computing to provide a professional full-time developer.

Open-souce nature means that you can contribute, bug-fix
and keep the project going — good for future employment
opportunities, both in academia and industry.

Introduction to SageMath— Other things 41/43

Sage days

Get-togethers to discuss the future of Sage and code

Worldwide locations

#71 was at Oxford last year, with a focus on p−adic number
theory in March.

#83 Held recently in Morroco on Combinatorics and Knot
Theory.

#82 to be held in Paris in January on Women in Sage.

Yearly school on Computational Discrete Mathematics held
with focus on GAP and SageMath
(http://www.codima.ac.uk/)

Introduction to SageMath— Other things 42/43

http://www.codima.ac.uk/

That’s all folks!

Questions?

Introduction to SageMath— Other things 43/43

	Overview
	What we'll cover today
	What is Sage?
	A brief summary
	Why Sage?
	Methods of using Sage

	Language features
	Not reinventing the wheel
	Help system

	Using SageMath
	Python basics
	SageMath extensions to Python
	A Sage implemention of ElGamal encryption

	Efficiency and profiling
	Features to be aware about
	LaTeXintegration

	Other useful features for Cryptographers
	The Future of Sage
	Popular usage

	Implementation
	Tools
	Pollard's factorization method
	Baby-Step Giant-Step
	Index Calculus

	Other things
	Language interfaces/Behind the scenes
	Contributing
	Sage days and opportunities

