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Discrete Logarithm Problem (1977)

Source : Whitfield Diffie, Martin Hellman, New directions in Cryptography
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Generalization to other Groups

I Given a cyclic group (G , ◦) (written multiplicatively),
a generator g of G and a second element h ∈ G ,
compute k such that g k = h

I 1985 : Koblitz and Miller independently propose to use
elliptic curves in cryptography
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ECRYPT II key length recommendations (2012)

Source : www.keylength.com

www.keylength.com


Christophe Petit -Advanced Cryptography 5

Outline

Elliptic Curves

Elliptic Curve Discrete Logarithm Problem

Algorithmic Aspects

Factorization and Primality testing

Pairings

Christophe Petit -Advanced Cryptography 6

Main references

I Silverman, The Arithmetic of Elliptic Curves

I Blake-Seroussi-Smart, Elliptic curve cryptography

I Blake-Seroussi-Smart, Advances in Elliptic curve
cryptography
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Elliptic Curve

I Smooth, projective algebraic curve of genus one,
with a specified point O

I O is the“point at infinity” in the projective plane

I Abelian variety : forms a commutative group defined by
algebraic fomulae, with O as the identity element

I In this course
I Curves over finite fields
I Concrete models
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Weierstrass equation

I Let K be a (finite) field and ai ∈ K

I Weierstrass equation

y 2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

I E (K ) = {(x , y) ∈ K 2 satisfying the equation} ∪ {O}
I O is a special point, called point at infinity
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Projective coordinates

Y 2Z + a1XYZ + a3YZ
2 = X 3 + a2X

2Z + a4XZ + a6Z
3.

I Homogeneous or projective Weierstrass equation

I Point at infinity O = [0 : 1 : 0]
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Parameters of Weierstrass curves

y 2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

I Define b2 = a2
1 + 4a2, b4 = 2a4 + a1a3, b6 = a3

3 + 4a6,
b8 = a2

1a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a2

4,

I Define c4 = b2
2 − 24b4, c6 = b3

2 + 36b2b4 − 216b6

I Define the discriminant
∆ = −b2

2b8 − 8b3
4 − 27b2

6 + 9b2b4b6

I Define the j -invariant j =
c3

4

∆
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Regular curves and Discriminant

y 2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

I Let f (x , y) = y 2 + a1xy + a3y − x3 − a2x
2 − a4x − a6

I The curve is regular iff
f (x0, y0) = 0⇒ (δf /δx , δf /δy)|(x0,y0) 6= (0, 0)
Otherwise, the curve is singular

I E regular ⇔ ∆(E ) 6= 0 (Proof : Silverman Prop. III.1.4)

I This course : elliptic curves are smooth/regular curves
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Regular vs Singular Curves (over rational field)

Pictures source : Silverman, the arithmetic of elliptic curves
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Reduced Weierstrass equation

y 2 = x3 + Ax + B .

I Suppose p 6= 2, 3. Any Weierstrass equation can be
reduced to this form using a linear change of variables

I We have ∆ = −16(4A3 + 27B2)

I We have j = 1728(4A)3

∆
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Weierstrass in characteristic 2 and 3

I If p = 3 : reduced form either
y 2 = x3 + a2x

2 + a6, ∆ = −a3
2a6, j = −a3

2/a6

or
y 2 = x3 + a4x + a6, ∆ = −a3

4, j = 0

I If p = 2 : reduced form either
y 2 + xy = x3 + a2x

2 + a6, ∆ = a6, j = 1/a6

or
y 2 + a3y = x3 + a4x + a6, ∆ = a4

3, j = 0
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Isomorphisms of curves

I What are the rational maps that preserve Weierstrass
form and point at infinity, and are isomorphisms ?

Only some linear transformations

(X ,Y ) = (u2x + r , u3y + u2sx + t)

for any u 6= 0 and any r , s, t

I u12∆(E2) = ∆(E1) and j(E2) = j(E1)
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Isomorphisms and j-invariants

I j is invariant under isomorphisms

I The curve y 2 = x3 + 1 has j = 0
The curve y 2 = x3 + x has j = 1728
The curve y 2 = x3 + 3j

1728−j x + 2j
1728−j has j-invariant j

(j 6= 0, 1728)
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“Inverse” of a point

y 2 = x3 + Ax + B .

I Let P := (x , y) be a point of a curve

I Define −P as the symmetric of P by the x-axis, that is
−P := (x ,−y)
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More generally

y 2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

I Let P = (x , y) ∈ E (K ).

I Define −P as the other point on the curve with the same
x-coordinate

−P := (x ,−y − a1x − a3)

I Define P + (−P) = O the point at infinity

I Define P + O = P = O + P
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Adding two distinct points

y 2 = x3 + Ax + B .

I Let P := (x1, y1) and Q := (x2, y2) where x1 6= x2

I Draw the line through P and Q
I Call −R the third intersection of this line with the curve
I Define P + Q as the symmetric of −R by the x-axis
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Doubling a point

y 2 = x3 + Ax + B .

I Let P := (x , y)
I Draw the tangent line through P
I Call −R the second intersection of this line with the curve
I Define P + P as the symmetric of −R by the x-axis

Christophe Petit -Advanced Cryptography 24

Secant and tangent rules

I Similar definitions for more general equations :
I Draw tangent or secant
I Intersect with the curve to get −(P + Q)
I Take second point on the curve with same x coordinate

I Any non vertical line intersects the curve at exactly
three points (counted with multiplicities)
A tangent point is counted twice

The point at infinity O intersects every vertical line
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Adding two distinct points

y 2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

I Suppose p 6= 0, 2, 3.

I Let P1 = (x1, y1), P2 = (x2, y2) ∈ E (K )

I Let λ := y2−y1

x2−x1

I Let ν := y1x2−y2x1

x2−x1

I Let P1 + P2 := (x3, y3) where
x3 := λ2 + a1λ− a2 − x1 − x2 and
y3 := −(λ + a1)x3 − ν − a3

I y = λx + ν is the line through P1 and P2
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Doubling a point

y 2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

I Suppose p 6= 0, 2, 3.

I Let P = (x , y) ∈ E (K )

I Let λ := 3x2+2a2x+a4−a1y
2y+a1x+a3

I Let ν := −x3+a4x+2a6−a3y
2y+a1x+a3

I Let P + P := (x3, y3) where x3 := λ2 + a1λ− a2 − 2x and
y3 := −(λ + a1)x3 − ν − a3

I y = λx + ν is the tangent line at P
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A group law ?

I The sum of two points of the curve is a point of the curve
(including the point at infinity)

I The point at infinity is the neutral element

I Every element has a unique inverse

I Associativity ? (P + Q) + R = P + (Q + R)
Consider 6 homogeneous lines defined by the above operations, and
the 8 points O,P,Q,R,±(P + R),±(P + Q), plus 2 points S ,T
that we must show equal. Suppose they are distinct. Multiplying
the line equations you get two homogeneous cubics. The space of
homogeneous cubics vanishing at 8 given points has dimension 2,
so the curve equation must be linear combination of the two cubics.
Evaluation at S ,T shows the curve equation is identically 0.
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Scalar multiplication

y 2 = x3 + Ax + B .

I For k ∈ Z, define

[k](P) := P + P + . . . + P︸ ︷︷ ︸
k times

I If K finite, then for any P ∈ E (K ), there is m ∈ Z such
that [m](P) = O (m is called the order of P)



Christophe Petit -Advanced Cryptography 29

Scalar multiplication

kP = P + P + · · ·+ P︸ ︷︷ ︸
k times

Slide credit : Philippe Bulens

pouet
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Scalar multiplication

I In reduced Weierstrass form there exist polynomial maps
uk , vk , sk , tk such that

[k](x , y) =

(
uk(x)

vk(x)
, y

sk(x)

tk(x)

)
I Proof :

I Start with arbitrary rational maps in x , y
I Use curve equation to replace any non linear term in y
I Complete the squares in the denominators

I Use −[k]P = [k](−P) to deduce [k](P) =
(
u(x)
v(x) , y

s(x)
t(x)

)
I Replace in equation y 2 = f (x) to deduce v 3|t2 and t2|fv 3
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Torsion points

I Let N ∈ Z∗. The N-torsion EK [N] over K is

EK [N] := {P ∈ E (K ) | [N](P) = O}

I EK [N] is a subgroup of E (K )

I Example for y 2 = x3 + Ax + B , the 2-torsion is

EK [2] = {(x , 0) | x3 + Ax + B = 0}
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Division polynomials

I Division polynomials ΨN(x , y) : polynomial with degree
at most 1 in y and minimal degree in x such that

ψN(x , y) = 0 ⇔ ∃(x , y) ∈ EK [N] \ {O}

I Recursive formulae

ψ0 = 0, ψ1 = 1, ψ2 = 2y ,
ψ3 = 3x4 + 6ax2 + 12bx − a2,

ψ4 = 4y(x6 + 5ax4 + 20bx3 − 5a2x2 − 4abx − 8b2 − a3),
ψ2m+1 = ψm+2ψ

3
m − ψm−1ψ

3
m+1,

ψ2m = (ψm+2ψ
2
m−1 − ψm−2ψ

2
m+1)ψm/2y
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Division polynomials (2)

I Can prove

[k](x , y) =

(
φk(x)

ψ2
k(x)

,
ωk(x , y)

ψ3
k(x , y)

)
=

(
x − ψk−1ψk+1

ψ2
k(x)

,
ψ2k(x , y)

2ψ4
k(x)

)
where φk = xψ2

k − ψk+1ψk−1, ωk =
ψk+2ψ

2
k−1−ψk−2ψ

2
k+1

4y

I Over algebraic closure of K we have

EK̄ [N] ≈ (Z/NZ)× (Z/NZ)
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Number of rational points

y 2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

I Pick a random x ∈ Fpn .
2 solutions for y with probability ≈ 1/2
0 solution for y with probability ≈ 1/2

I In fact : Hasse’s theorem

|#E (Fpn)− (pn + 1)| ≤ 2
√
pn

proof : see Silverman, Chapter V.
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Number of rational points

I Weil-Deligne theorem (Riemann hypothesis for EC)
implies

#E (Fpn) = 1− πn − π̄n + pn

where π2 − πt + p = 0 and t ∈ Z
(π̄ and π complex conjugates) (proof : see Silverman, Chapter V)

I Value tn := πn + π̄n ≤ 2
√
pn called trace of E (Fpn)
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Group structure over finite fields

I Finite, Abelian group of rank at most 2

I We have
E (Fq) ≈ Zn1 × Zn2

where n1|n2 and n1|q − 1
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Isogeny

I Group homomorphism defined by a rational map

Ψ : E1 → E2

I Example : scalar multiplications when E1 = E2

I In reduced Weierstrass form there exist polynomial maps
uk , vk , sk , tk such that

Ψ(x , y) =

(
u(x)

v(x)
, y

s(x)

t(x)

)
and moreover v 3|t2 and t2|fv 3

I Proof identical as for scalar multiplications
I Isogeny is separable if (u/v)′ 6= 0
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Isogeny kernel

I Kernel ker Ψ = {P ∈ E1 | Ψ(P) = O}
I Degree Ψ = max(deg u, deg v)

I For example ker[k] = E [k] and deg[k] = k2

I Degree deg Ψ = # ker Ψ when Ψ separable

I ker Ψ is a subgroup of order deg Ψ in E (K̄ )

I For any curve E there are ` + 1 isogenies of degree `
(defined over K̄ ) from this curve, and each one defines
a quotient curve E/Ψ
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Dual isogeny

I For any isogeny Ψ : E1 → E2, there exists a dual isogeny
Ψ̂ : E2 → E1 such that

Ψ̂ ◦Ψ = [deg Ψ]

I deg Ψ̂ = deg Ψ

I Ψ(E [deg Ψ]) = ker Ψ̂

I Ψ ◦ Ψ̂ = [deg Ψ] on E2
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Endomorphism

I An endomorphism of E is an isogeny E → E

I Example : scalar multiplications
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Frobenius endomorphism

I Let A,B ∈ K := Fq, for q := pm

Let E : y 2 = x3 + Ax + B

I The map
[π] : (x , y)→ (xq, yq)

is an endomorphism

I Called the Frobenius endomorphism

I Commutes with scalars : [k]([π](P)) = [π]([k](P))

I Unseparable isogeny
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The endomorphism ring

I If φ1 and φ2 are endomorphisms, then
φ1 + φ2 is an endomorphim (+ is addition on E )
φ1 ◦ φ2 is an endomorphism (◦ is composition)

I Therefore ∀a, b ∈ Z, the map

[a + bπ] : (x , y)→ [a](x , y) + [b]([π](x , y))

is an endomorphim

I Addition and composition define a ring structure
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Trace of the Frobenius

I Frobenius endomorphism for a curve defined over Fq

[π] : E (Fqn) → E (Fqn)

(x , y) → (xq, yq)

I Satisfies a quadratic equation

[π2 − tπ + q] = [0]

meaning ∀(x , y) ∈ E (K ), (xq
2

, yq2

)− [t](xq, yq) + [q](x , y) = O

I Note E (Fq) = ker(1− π)

I Remember t = q + 1−#E (Fq) with |t| ≤ 2
√
q
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Structure of the endomorphism ring

I Scalar multiplications {[k] : k ∈ Z} = Z
I The endomorphism ring of an elliptic curve is either Z,

an order in a quadratic imaginary field, or an order in a
quaternion algebra [Silverman III.9.4]

I Over finite fields it is always bigger than Z
I Ordinary curves : order in a quadratic imaginary field
End(E ) ⊂ Z× πZ with π2 − tπ + p = 0

I Supersingular curves : order in a quaternion algebra
∃π, φ : E → E s.t. πφ 6= φπ and
End(E ) ⊂ Z× πZ× φZ× πφZ
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Elliptic curve discrete logarithm problem (ECDLP)

I Let K be a finite field, let E be a curve over K ,
let P ∈ E (K ) and let Q ∈ 〈P〉.
Find k such that Q = [k]P .

I Fields used in cryptography are prime fields (mostly)
and binary fields with a prime degree extension
(for efficiency, particularly in hardware devices)

I Typically the order of P is a large prime, at least 160 bits
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Elliptic Curve Diffie-Helman problem (ECDHP)

I Given P and [a]P and [b]P , compute [ab]P

I Also believed to be very hard

I Can solve ECDHP if can solve ECDLP,
but other way around not known in general
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Elliptic curve Diffie-Helman

I Goal : key agreement
Two parties want to build a common secret key

I Alice chooses random ra. She sends Qa := [ra](P) to Bob

I Bob chooses random rb. He sends Qb := [rb](P) to Alice

I Alice computes Ka := [ra](Qb)

I Bob computes Kb := [rb](Qa)

I We have Ka = [rarb](P) = Kb
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Elliptic curve El Gamal

I Goal : public key encryption

I Key generation : choose K , E and P ∈ E (K ).
Choose secret key x . Reveal public key E ,P ,Q = [x ](P)
If ECDLP hard, x cannot be recovered from Q.

I Encryption : to encrypt M ∈ E (K ), choose random r .
Compute C1 = [r ](P) and C2 = M + [r ](Q)
Both C1 and C2 are random points on the curve.

I Decryption : compute
C2 − [x ](C1) = M + [r ]([x ](P))− [x ]([r ](P)) = M
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Elliptic curve El Gamal (2)

I Elliptic curve decisional Diffie-Hellman :
Given P and [a]P and [b]P and [c]P ,
decide whether c is ab or random

I Theorem : elliptic curve El Gamal is IND-CPA secure
under ECDDH assumption
(proof is the same as over finite fields)
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ECDSA

I Public key signature standard
I Parameters defined by

I H a hash function
I K a finite field
I q a prime
I E an elliptic curve over K with qh points, h ≤ 4
I P a point of order q on E

I Key generation
I Choose secret key x randomly in {1, . . . , q − 1}
I Set public key Q = xP
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ECDSA : signature

I Let f : E → Fq : P = (x , y)→ x mod q
where x is some well-defined integer representation
of the x-coordinate of P

I To sign a message m :

1. Choose k randomly in {1, . . . , q − 1}
2. Let T = kP
3. Let r = f (T ). If r = 0 start again
4. Let e = H(m)
5. Let s = (e + xr)/k mod q. If s = 0 start again
6. Return (r , s)
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ECDSA : verification

I To verify signature (r , s) on a message m
I Reject if r , s /∈ {1, . . . , q − 1}
I Let e = H(m)
I Let u1 = e/s mod q and u2 = r/s mod q
I Let T = u1P + u2Q
I Accept iff r = f (T )

I Correctness : u1 + xu2 = (e + rx)/s = k mod q
hence u1P + u2Q = T
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ECDSA : security

I Existential unforgeability, if we replace the hash function
by a random function and the group by a generic group,
and suppose f is almost invertible

I Essential that k does not repeat as otherwise two
signatures (r , s) and (r ′, s ′) give

x =
se ′ − s ′e

r(s ′ − s)
mod q

(used to recover the secret key of Sony PS3)

I More attacks if some bits of k leak or repeat
(see later for lattice-based attacks)
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ECDLP cryptanalysis : state-of-the-art

I Generic attacks : Pollard’s rho, Pohligh-Hellman,. . .

I Anomalous attack if |E (Fp)| = p (see later in these slides)

I MOV attack if efficient pairings (see later in these slides)

I Weil descent reduction to hyperelliptic curve discrete
logarithms (not covered in this course)

I Index calculus attacks being developed, perhaps
subexponential but worse than generic ones in practice
(see bonus slides ; ask me for a dissertation project)

I Best attacks are generic ones for well-chosen parameters
160-bit ECDLP ∼ 1024-bit RSA
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NIST curves

I 15 curves and base points on these curves,
to be used by US federal government

I 5 curves over prime fields, with pseudo-Mersenne primes
for efficiency

I 5 curves with parameters defined over F2

I 5 additional curves in characteristic 2

I Curve parameters are derived from a given seed,
using SHA-1, until the curve has prime order

I See http://csrc.nist.gov/groups/ST/toolkit/

documents/dss/NISTReCur.pdf

Christophe Petit -Advanced Cryptography 60

NIST curves (2)

I De facto world standard

I Ongoing revision, likely to drop most curves including all
binary curves, and to include a few other popular curves

I Seed claimed to derive from some passphrase

I Suspicion seed chosen to allow trapdoor attacks

http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf
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Other commonly used curves

I See http://safecurves.cr.yp.to/

for a classification and analysis of curves recommended by
ANSI, IEEE, BSI,. . . and the one used in Bitcoin
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Anomalous attack

I Let E be an elliptic curve over Fp, with p prime

I Assume #E (Fp) = p

I In that case, we can lift the discrete logarithm problem
over the p-adic numbers, where it turns out to be easy

I Remark : condition #E (Fp) = p can be checked easily,
and very unlikely to hold for random curves
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p-adic numbers (informally)

I Let p be a prime
I Let r ∈ Q

I We can write r = a
bp

i with a, b, p coprime
I p-valuation of r defined by |r |p = p−i

I |.|p defines a norm hence a distance d(r1, r2) = |r1 − r2|p
I Considering all limits of Cauchy sequences of rationals

under |.|p norm, we get the p-adic numbers Qp

(the same way we get R using usual |.| norm)

I Any p-adic number can be uniquely written as
∑∞

i=k aip
i

I Practical computations up to some precision (modulo p`)

http://safecurves.cr.yp.to/
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Lifting from Fp to Qp

I Let y 2 = x3 + Ax + B defining an elliptic curve E over Fp

I See E as an elliptic curve Ē defined over Qp

I Lift P and Q to points P̄ and Q̄ over Ē
To lift a point (x , y) keep x and solve y2 = x3 + Ax + B
up to some precision over Qp using Hensel’s lemma

(solve the equation modulo p2, then p3, etc)

I Let E1(Qp) = {P ∈ E (Qp) | P mod p = O}
subgroup of E (Qp)

I We have E (Qp)/E1(Qp) = E (Fp)
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A group homomorphism

I Let y 2 = x3 + Ax + B defining an elliptic curve over Qq

I Let ω(z) be the power series solution to the equation

ω = z3 + Azω2 + Bω3

I There is a group homomorphism θq : E1(Qq)→ Ĝq

defined by

θq(P) =

(∫
ω(z)dz

)
(zq) = zq +

d1

2
z2
q +

d2

3
z3
q + . . .

where di are polynomials in A,B and zq = −x(P)/y(P)
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Anomalous attack

I Assumption : p = #E (Fp)

I Lift P and Q to points P̄ and Q̄ over Ē

I Compute θp(pP̄) and θp(pQ̄) up to O(p2) terms

I The equation Q − kP = 0 implies

θp(pQ̄)− kθp(pP̄) = 0 mod p2

I Compute

k =
θp(pQ̄)

θp(pP̄)
mod p
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Point addition and point doubling

I Let E : y 2 = x3 + a4x + a6 and let Pi = (xi , yi) ∈ E
I If (x2, y2) = (x1,−y1) then P1 + P2 = O
I Otherwise P1 + P2 = (x3, y3) with

x3 = λ2 − x1 − x2

y3 = −λx3 − ν

where{
λ = y2−y1

x2−x1
and ν = y1x2−y2x1

x2−x1
if P1 6= P2

λ = 3x2+a4

2y
and ν = −x3+a4x+2a6

2y
if P1 = P2

I How to compute [k]P ?
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Double and add algorithm

I Scalar multiplication : given k and P , return [k]P

1: Let k =
∑n

i=0 ki2
i

2: P ′ ← P ; Q ← [k0]P
3: for i=1 to n do
4: P ′ ← [2]P
5: Q ← Q + [ki ]P

′

6: end for
7: return Q

I Let n = log k . Scalar multiplication requires
I n point doublings
I n/2 point additions on average
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Double and add algorithm (“left-to-right”)

I Scalar multiplication : given k and P , return [k]P

1: Let k = 2n+1 +
∑n

i=0 ki2
i

2: Q ← P
3: for i=n to 1 do
4: Q ← [2]Q
5: Q ← Q + [ki−1]P
6: end for
7: return Q

I Same cost as the “right-to-left” version
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Projective coordinates

I Goal : avoid divisions in addition/doubling formulae
(more expensive than additions and multiplications)

I A point P = (x , y) is now represented as P = (X ,Y ,Z )
where x = X/Z and y = Y /Z

I P2 = ±P1 tested as x1z2 = x2z1 and y1z2 = ±y2z1

I Doubling and addition re-written without division

I Double-and-add algorithm performed without division

I If needed, a single division 1/Z is performed at the end
to recover affine coordinates
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Window methods

I Goal : reduce the number of additions with
precomputation

I Simplest variant
I Precompute Pi = [i ]P for i = 0, . . . , 2k − 1
I In left-to-right version, perform at least k doublings

before each addition

I Cost is now n doublings, 2k−1
2k
· n
k

additions,
plus a precomputation of 2k − 2 additions
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Non adjacent form representations

I Goal : reduce the number of additions

I Observe addition and substraction have the same cost

I Use signed representations with ki ∈ {−1, 0, 1}
to ensure that 1 or -1 is always followed by 0

I Algorithm to compute signed representations :

1: while k > 0 do
2: if k odd then ki = 2− (k mod 4)
3: if k even then ki = 0
4: k ← (k − ki)/2
5: i ← i + 1
6: end while
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Cost of NAF representation

I Cost is n doublings and αn additions/substractions
I What is α ?

I Consider a state automaton with two states 0 and ±1
I State goes from ±1 to 0 with probability 1
I State goes from 0 to ±1 with probability 1/2
I State goes from 0 to 0 with probability 1/2
I At equilibrium we have α = (1− α) 1

2 hence α = 1
3

I Cost is n doublings and n/3 additions or substractions

I Better addition/substraction chains may exist, but
finding optimal one is NP-hard

I Can be combined with window methods
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Multi-exponentiations

I Goal : compute
∑

[ki ]Pi faster than by serial computation

I Idea : do the doublings only once

I Algorithm

1: Let kj =
∑n

i=0 kj ,i2
i

2: Q ←
∑

j Pj ,n

3: for i=n to 1 do
4: Q ← [2]Q
5: Q ← Q +

∑
j [kj ,i−1]Pj

6: end for
7: return Q

I Can be combined with other tricks
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Frobenius expansions

I Goal : for elliptic curves defined over F2,
replace double-and-add by Frobenius-and-add

I Note that Frobenius map (x , y)→ (x2, y 2) is a very
efficient operation, especially if elements of F2n are
represented using a normal basis {α2i , i = 0, . . . , n − 1}

I There is efficient algorithm writing k =
∑

i kiϕ
i

(use ϕ2 − tϕ+ 2 = 0) (see BSS IV.3 and references therein)
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Gallant-Lambert Vanstone

I Goal : exploit efficient endomorphism when we have one

I Example : if ι2 = −1 then φ : (x , y)→ (−x , ιy) is an
endomorphism of E : y 2 = x3 + ax , with φ2 = [−1]

I Let f (x) = x2 + tφx + nφ characteristic polynomial of φ

I Let N order of P

I Assume there is λ ∈ Z/NZ such that f (λ) = 0 mod N

I Then φ = [λ] or [tφ − λ] on 〈P〉 (assume first case)

I Idea : write k = aλ + b mod N with a, b about n/2 bits
then compute aφ(P) + bP using multi-exponentiation
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Euclide algorithm

I Goal : given integers a and b, find d = gcd(a, b)

I d |a, d |b imply d |(a + kb) for any integer k

Require: a ≥ b
Ensure: gcd(a, b)

1: if b|a then
2: return b
3: else
4: Compute q such that 0 < a − qb < b
5: return gcd(b, a − qb)
6: end if

I Complexity O(|a|2) ; best algorithms achieve O(|a| log |a|)
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Extended Euclide algorithm

I Goal : compute r and s such that ra + sb = gcd(a, b)

Require: a ≥ b
Ensure: d = gcd(a, b) and r , s, such that ar + bs = d

1: if b|a then
2: return a, 0, 1
3: else
4: Compute q such that 0 < a − qb < b
5: d , r , s ← gcd(b, a − qb)
6: return d , s, r − qs
7: end if

I Indeed if rb + s(a − qb) = d then sa + (r − qs)b = d
I Complexity O(|a|2) ; best algorithms achieve O(|a| log |a|)
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Gallant-Lambert Vanstone

I Goal : exploit efficient endomorphism when we have one
I Idea : write k = aλ + b mod N with a, b about n/2 bits

then compute aφ(P) + bP using multi-exponentiation

I To find a, b
I Run extended Euclide algorithm with inputs N, λ and

stop it at the middle, when all coefficients are ≈
√
N

I Deduce ui , vi of size about
√
N s.t. uiλ+ vi = 0 mod N

I Compute C1,C2 ∈ R s.t. (0, k) = C1(u1, v1) + C2(u2, v2)
I Round C1,C2 to nearest integers c1, c2

I Return (a, b) = (C1 − c1)(u1, v1) + (C2 − c2)(u2, v2)

I Equivalently, apply Babai’s nearest plane algorithm
to a well-chosen lattice (see later)

Christophe Petit -Advanced Cryptography 83

Point compression

I Goal : reduce both memory and scalar multiplication costs
by projecting points on x coordinates

I Observation :
I x coordinate determines an elliptic curve point up to sign
I x([k]P) only depends on x(P)

I Some existing tricks :
I Represent (x , y) by x and an additional bit for y
I Only use x in signature schemes
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Birrational equivalence

I Informal definition : two curves E and E ′ defined by the
equations F (x , y) = 0 and F ′(X ,Y ) = 0 are birrationally
equivalent if there exist rational maps

ϕ : E → E ′ and φ : E ′ → E

such that φ ◦ ϕ is the identity map on E for all but a few
exceptional points

(definition makes sense over characteristic 0 fields)
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Why other models ?

I Any elliptic curve can be written in (short) Weierstrass
form, but other forms may be better in practice

I Faster arithmetic, in particular decreasing the number
of field multiplications for one scalar multiplication

I Complete addition formula (“no special case”)
I Preventing implementation bugs
I Side-channel resistance

I Special curves with “useful” properties
(but beware cryptanalysis)
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Elliptic curve formula database

Source : www.hyperelliptic.org/EFD/
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Edwards curves

I Defined by an equation (assume characteristic not 2)

x2 + y 2 = c2(1 + dx2y 2)

I Addition of two points (x1, y1) and (x2, y2) defined by(
x1y2 + x2y1

c(1 + dx1x2y1y2)
,

y1y2 − x1x2

c(1− dx1x2y1y2)

)
I Neutral element is (0, c) and −(x , y) = (−x , y)

I (0,−c) has order 2 and (−c , 0) has order 4

www.hyperelliptic.org/EFD/
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Edwards curves (2)

I Only elliptic curves with order divisible by 4
can be written in this form

I Complete addition law : no special case

I Efficient arithmetic

I See Bernstein-Lange, Faster addition and doubling on
elliptic curves

Christophe Petit -Advanced Cryptography 90

Outline

Elliptic Curves

Elliptic Curve Discrete Logarithm Problem

Algorithmic Aspects
Faster arithmetic
Alternative Models
Generating good curves

Factorization and Primality testing

Pairings

Christophe Petit -Advanced Cryptography 91

Generating good curves

I In cryptography we need curves defined over Fp

with a large subgroup of prime order q
I Two methods

I Random generation : generate random curves and
compute their orders

I Complex multiplication method : choose suitable
p and q then compute a corresponding curve

I The second method is faster but it produces special curves
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Random Curves

I Idea :
I Generate random A,B ∈ K with 4A3 + 27B2 6= 0
I Compute the order of E : y2 = x3 + Ax + B
I Repeat until the order is good

I We need an efficient algorithm to compute the order
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Remember : CRT

I Chinese Remainder Theorem

I Let pi = 2, 3, 5, ... be prime numbers, let ei be integers
let ti ∈ {0, 1, . . . , peii − 1}

I The congruence system t = ti mod peii ,∀i
has a unique solution modulo

∏
peii

I This solution can be computed efficiently

I Example : t = 3 mod 22, t = 2 mod 5⇒ t = 7 mod 20
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Point counting

I Goal : given E defined over Fq, return #E (Fqn)

I By Hasse’s theorem, we have lower and upper bounds

I By Weil-Deligne’s theorem, sufficient to compute #E (Fq)

I We know that [π2 − tπ + q] = [0]

I On the m-torsion, we have
[π2 − tπ + q] = [π2 − (t mod m)π + (q mod m)]

I If [m](P) = O and [π2 − tmπ + q](P) = O then
t = tm mod m
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Schoof’s algorithm

1. Use Hasse’s theorem to bound #E (Fq)

2. Find primes pi s.t.
∏

pi ≥ 2
√
q

3. For each pi
3.1 Find Pi ∈ E [pi ], Pi 6= O
3.2 For ti = 0, . . . , pi − 1,

compute [π2 − tiπ + q](Pi )
until we get O

3.3 Deduce t = ti mod pi

4. Use CRT to recover t.
Deduce #E (Fp).
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Further on point counting

I Can also use powers of primes

I Improvements by Elkies, Atkin,...

I p-adic methods
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Complex multiplication method

I Two steps :
I Choose suitable p and N
I Compute the curve using complex multiplication theory

I Faster than random curves/ point counting
but it produces special curves
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Complex multiplication

I Remember

π2 − tπ + p = 0 and N = #E (Fp) = p + 1− t

I By Hasse’s theorem,

∆ = t2 − 4p ≤ 0

Careful : this ∆ is not the discriminant defined before

I End(E ) is an order in an imaginary quadratic field
(we say E has complex multiplication by this order)
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Deuring’s lifting theorem

I For any E/Fp, there exists Ẽ/K such that Ẽ mod p = E
(where K is some number field such that p is split in K )
and moreover any φ ∈ End(E ) arises as φ̃ mod p
where φ̃ ∈ End(Ẽ )

I Efficient to compute elliptic curves over C
with complex multiplication by a given order,
as long as the discriminant is small enough
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Computing CM j-invariants over C

I Let p and N fixed, hence fixing ∆ as well

I j-invariants with complex multiplication by a given order
with discriminant ∆ satisfy some symmetry property

I This symmetry leads to an equation in j that can be
solved numerically with arbitrary precision

I Non trivial fact : all such j are roots of a polynomial HD

with integer coefficients
I H∆ is called the Hilbert class polynomial
I degH∆ = the class number of K
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Reduction modulo p

I H∆ can be computed exactly using finite precision for j
since its coefficients are integer

I The j-invariants over Fp with complex multiplication by
an order of discriminant ∆ are the roots of H∆ mod p

I Coefficients of H∆ are huge, so only practical for small ∆

I In fact if ∆ = Df 2 then H∆ mod p = HD mod p
so it is enough to compute HD
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Curve equation from j-invariant

I E : y 2 = x3 + 1 has j = 0

I E : y 2 = x3 + x has j = 1728

I E : y 2 = x3 + ax − a with a = 27j
4(1728−j)

has j-invariant j 6= 0, 1728

I E : y 2 = x3 + Ax + B and E d : y 2 = x3 + Ad2x + Bd3

have the same j invariant

I If d is a quadratic non residue then E d is called the
quadratic twist of E and t(E ) = −t(E d)

I If #E = p + 1 + t then #E d = p + 1− t
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CM method

I Choose a small D and a suitable p (see next slide)

I Compute the Hilbert polynomial HD

(computation complexity is quasi-linear in D)

I Compute j as a root of HD modulo p

I Compute E (j)

I Return E (j) if #E (j) = N

I Otherwise return its quadratic twist
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Finding a suitable p

I There exists an elliptic curve E with discriminant D < 0
reducing modulo p to a curve of order N if and only if

Df 2 = t2− 4p = (p + 1−N)2− 4p = (N + 1− p)2− 4N

for some integer f

I Simple algorithm

1. Choose a random prime p
2. Use Cornacchia’s algorithm to solve p = u2 − Dv2

3. If there is a solution deduce N± = p + 1± 2u
4. Repeat until either N+ or N− is “good”
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Best rational approximations

I Euclide algorithm can also be used to compute
best rational approximations : given χ ∈ R
(not necessarily rational) find p, q such that
p/q is closer to χ than any fraction with a smaller
or equal denominator

I Roughly : run Euclide algorithm with inputs χ, 1

χ = s0 · 1 + r1, 1 = s1 · r1 + r2, r1 = s2r2 + r3, . . .

simultaneously compute pn, qn such that rn = −pn + qnχ

I Can prove that
∣∣∣χ− pn

qn

∣∣∣ =
∣∣∣ rnqn ∣∣∣ ≤ 1

qnqn+1
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Cornacchia’s algorithm

Require: Squarefree d > 0 and prime p
Ensure: A solution to p = u2 + dv 2, if one exists

1: Compute r such that r 2 = −d mod p
2: Compute continued fraction approximations an/bn to r/p,

until bn <
√
p < bn+1

3: Set v = bn and compute u =
√

p−v2

d

4: If u is an integer, return u, v

I Remark : when there is a solution we have u = rbn − anp

I Proof when d = 1 : show that u2 + v2 = 0 mod p,
and u2 + v2 < 2p using continued fraction properties
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Generating good curves

I In cryptography we need curves defined over Fp

with a large subgroup of prime order q
I Two methods

I Random generation : generate random curves and
compute their orders

I Complex multiplication method : choose suitable
p and q then compute a corresponding curve

I The second method is faster but it produces special
curves with small discriminant
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Pollard’s p − 1 factorization method

I Goal : factor n = pq assuming p − 1 is B-powersmooth
(recall x =

∏
peii is B-powersmooth if peii < B)

I Let s be the product of all peii < B

I By assumption (p − 1)|s, hence g s = 1 mod p

I We deduce gcd(g s − 1, n) = p

I Only works if some factor p such that p − 1 smooth !
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Elliptic curve factorization method

I Idea : generalize previous method when
neither p − 1 nor q − 1 are smooth

I The group order #E (Fp) of an elliptic curve can be
smooth even when p − 1 is not !
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Elliptic curve addition law

I Let E : y 2 = x3 + Ax + B

I Let P1 = (x1, y1), P2 = (x2, y2) two points on the curve

I The chord-and-tangent rules lead to addition formulae :
for example we have P1 + P2 = (x3, y3) where
λ = y2−y1

x2−x1
, ν = y1x2−y2x1

x2−x1
,

x3 = λ2 − x1 − x2, y3 = −λx3 − ν
I These formulae involve divisions

I Over Fp, a division by 0 means P3 is point at infinity

I Over Zn, a division fails if (x2 − x1) is not invertible

I A failure reveals a factor of n !
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Elliptic curve factorization method

1. Choose E and P = (x , y) ∈ E (Zn)

2. Let B be a smoothness bound on #E (Zp) for p|n
3. Compute s =

∏
peii where peii ≤ B

4. We have [s]P = O in E (Zp)

5. Try to compute [s](P) in E (Zn) : division by p occurs
and produces an error

6. When a division by some d fails, compute

gcd(d , n) 6= 1
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Elliptic curve factorization method

I For a random curve, we expect #E (Fp) to be roughly
uniformly distributed in

#E (Fp) ∈ [(p + 1)− 2
√
p, (p + 1) + 2

√
p]

I Let B ≈ Lp(1/2)

I Probability to be B-smooth is about
(Lp(1/2))−1 = exp(−c(log p)1/2(log log p)1/2)

I Repeat with random curves until you get a factor

I Remark : runtime depends on the smallest factor

I In practice, the method is used as subroutine to factor
middle-size integers when log2 n ≈ 60− 80 bits
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Factorization in practice : Magma

Christophe Petit -Advanced Cryptography 116

Outline

Elliptic Curves

Elliptic Curve Discrete Logarithm Problem

Algorithmic Aspects

Factorization and Primality testing
Elliptic Curve Factorization Method
Elliptic Curve Primality Proving

Pairings



Christophe Petit -Advanced Cryptography 117

Primality test vs Primality Proof

I Given n ∈ Z, is n prime ?

I Fermat and Miller-Rabin algorithms are primality tests :
they return a definitive no or a plausible yes

I Goldwasser-Killian algorithm aims at primality proving :
returns a short proof that a number is prime
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Main idea

I Let E be an elliptic curve over Zn, let P 6= O ∈ E

I When p|n can consider E and P “modulo p”

I If ord(P) is prime then ord(P mod p) = ord(P)

I Let p|n with p <
√
n

I ord(P mod p) is bounded above by Hasse’s theorem
ord(P mod p) ≤ p + 1 + 2

√
p = (

√
p + 1)2 < (n1/4 + 1)2

I So if ord(P) is prime and ≥ (n1/4 + 1)2 then n is prime
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Goldwasser-Killian Algorithm

1. Randomly choose A,B such that gcd(4A3 + 27B2, n) = 1
and E : y 2 = x3 + Ax + B has order 2q with q prime

I GCD condition ensures E regular modulo any divisor of n
I Order of E computed with Schoof’s algorithm, assuming

n is prime : if algorithm fails then n is composite
I Primality of q tested with Miller-Rabin algorithm

2. Find P of order q in E
I Select random x until x3 + Ax + B is square
I Compute corresponding y assuming n is prime :

if algorithm fails then n composite

3. Recursively prove that q is prime : if not then restart

4. Return A,B ,P , q and a proof that q is prime
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Remarks

I Heuristically expect O(log q) trials until q is prime, and
polytime algorithm

I Atkin-Morain : avoid point counting and use complex
multiplication instead
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Cryptographic pairings

I Pairings are non-degenerate, bilinear maps

e : G1 × G2 → G3

where Gi are all cyclic groups of the same order r
(usually consider G1,G2 additive and G3 multiplicative)

I Bilinear :

e(P1 + Q1,P2) = e(P1,P2)e(Q1,P2)

e(P1,P2 + Q2) = e(P1,P2)e(P1,Q2)

I Non-degenerate : for all P1 ∈ G1, P1 6= O, there exists
P2 ∈ G2 such that e(P1,P2) 6= 1 (and vice-versa)
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Properties

I e(P ,O) = e(O,P) = 1

I e(−P ,Q) = e(P ,Q)−1 = e(P ,−Q)

I e(jP ,Q) = e(P ,Q)j = e(P , jQ) for any j ∈ Z

I We say the pairing is symmetric if G1 = G2

I For symmetric pairings

e(P1,P2) = e(P1, kP1) = e(kP1,P1) = e(P2,P1)
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Pairings : applications

I Tripartite Diffie-Hellman

I Identity-based encryption

I Short signatures

I Groth-Sahai zero-knowledge proofs of knowledge

I . . .

I Building new primitives

I Improving efficiency

I Removing random oracles in security proofs (replacing
them with new pairing computational assumptions)
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Remember : (Elliptic curve) Diffie-Helman

I Goal : key agreement
Two parties want to build a common secret key

I Alice chooses random ra. She sends Qa := [ra](P) to Bob

I Bob chooses random rb. He sends Qb := [rb](P) to Alice

I Alice computes Ka := [ra](Qb)

I Bob computes Kb := [rb](Qa)

I We have Ka = [rarb](P) = Kb
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3-partite Diffie-Hellman

I Goal : key agreement
Three parties want to build a common secret key

I Public parameters
I Symmetric pairing e : G1 × G1 → G3

I A generator P in G1

I Party i chooses random ri and sends Qi = [ri ]Pi to the
other parties

I On receiving Qi and Qj , party k computes the common
secret key

e(Qi ,Qj)
rk = e(P ,P)ri rj rk
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3-partite Diffie-Hellman (2)

I Originally described for asymmetric pairings, in which
case two elements are sent instead of one in first round

I Bilinear Diffie-Hellman problem (BDH) :
given P , Pi = [ri ]P for random ri , compute e(P ,P)r1r2r3

I BDH must be hard for secure 3-partite Diffie-Hellman

I BDH hard implies DH (hence DLP) hard in G1 and G3
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Identity-based cryptography

I Identity (ID)-based cryptography
I Public key is (some hash of) identity
I No need for certificates
I Trusted Authority (TA) generates private keys

I Simplifies public key infrastructure at the price of
key escrow : Trusted Authority knows all secret keys

I Idea of ID-based encryption suggested by Shamir ;
solution using bilinear pairings by Boneh-Franklin

Christophe Petit -Advanced Cryptography 130

Boneh-Franklin

I Identity-based encryption scheme
I Public parameters

I Pairing e : G1 × G1 → G3

I Generator P ∈ G1

I Hash function H1 : {0, 1}∗ → G1

I Hash function H3 : G3 → {0, 1}n

I TA chooses a master secret key s randomly and
publishes master public key Q = [s]P
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Boneh-Franklin (2)

I Public key of user i computed as Qi = H1(IDi)

I Private key of user i computed as Si = [s]Qi by TA,
and sent to user i using a secure channel

I Encryption of n-bit message M for party i is

C = (C1,C2) = ([t]P ,M ⊕ H3(e(Q,Qi)
t))

for a randomly chosen t

I Party i uses its private key Si to decrypt as

M = C2 ⊕ H3(e(C1, Si))
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Security notions

I IND-ID-CPA security
I Adversary can get encryptions on messages of his choice
I Adversary can also get secret keys on identities of his

choice
I Adversary chooses two messages M1, M2

I Adversary must distinguish encryptions of M1 and M2

I IND-ID-CCA2 security
I After receiving an encryption of either M1 or M2,

adversary can additionally make decryption queries
on other ciphertexts of his choice
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Boneh-Franklin security

I IND-ID-CPA secure if BDH is hard & random oracles
Proof : H3 is random oracle so only way to distinguish is to guess
pairing value.

Guessing the pairing value corresponds to BDH. Indeed, let r such

that Qi = rP then adversary sees P, rP, sP, tP and must produce

e(P,P)rst

I Not IND-CCA2
Given C = (C1,C2), ask for a decryption of C ′ = (C1,C2 ⊕ R)

I Can be extended into an IND-CCA2 secure version
See paper for details.
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Boneh-Lynn-Sacham (BLS) signatures

I Public parameters
I Pairing e : G1 × G1 → G3

I Generator P ∈ G1

I Hash function H : {0, 1}∗ → G1

I User public key is Q = [s]P , for randomly chosen s
User secret key is s

I Signature on M ∈ {0, 1}∗ is σ = [s]H(M)

I Signature σ on M is verified by

e(P , σ) = e(Q,H(M))

Christophe Petit -Advanced Cryptography 135

BLS signatures (2)

I Existentially unforgeable under chosen message attacks
if CDH is hard in G1 & random oracles
Intuition : as H is random oracle R = H(m) cannot be manipulated,

hence adversary left with computing [s]R from R, P and [s]P

I Very short signatures : one element in G1

Paper suggests elliptic curve pairing parameters such that security

168-bit BLS signatures ∼ 1024-bit RSA at the time (needs revision)
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Divisors

I Let E be an elliptic curve over a finite field K = Fq

I A divisor D on E is a formal sum of points

D =
∑

P∈E(K̄)

nP(P)

where nP ∈ Z and all but a finite number of them are 0

I Support of D is the set of all points with nP 6= 0

I Degree of D is
∑

nP
I Natural group structure, with neutral element written 0
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Divisor of a function

I Let f be a function on E , and P a point on E

I Write ordP f for the order of P at f
sign depends on whether P is a zero or a pole of f

I Define the divisor of f as (f ) =
∑

P∈E(K̄) ordP f (P)

I (fg) = (f ) + (g)

I (f ) = 0⇔ f is constant

I (f ) defines f up to a constant factor

I D is called a principal divisor if D = (f ) for some f

I Define equivalence relation D1 ∼ D2 if D1 − D2 principal
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Addition law

I Any vertical line corresponds to a linear function
v(x , y) = x − x̂ with divisor (P) + (−P)− 2(O)

I Any non vertical line corresponds to a linear function
`(x , y) with divisor (P1) + (P2) + (−P1 − P2)− 3(O)

I Equation P1 + P2 = P3 equivalent to divisor equality
(P3)− (O) = (P1)− (O) + (P2)− (O)− (`/v)

I Group homomorphism P → (P)− (0)
up to principal divisors

I Let D =
∑

P nP(P) be a degree 0 divisor on E .
Then D ∼ 0 if and only if

∑
P [nP ]P = O.
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Weil reciprocity

I Let D =
∑

P nP(P) a divisor and f a function on E

I Define
f (D) =

∏
P

f (P)nP

I If degD = 0 and g = cf for a constant c
then f (D) = g(D)

I Weil reciprocity : if the support of (f ) and (g) are
disjoint then

f ((g)) = g((f ))

See [BSS], chapter 9 for a proof.
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Tate pairing

I Let E defined over a finite field K0 = Fq, and n ∈ Z+

I Let K = Fqk be the extension of K0 containing
all the nth roots of unity

I Let E (K )[n] = {P ∈ E (K ) | [n]P = 0}
I Let nE (K ) = {[n]P | P ∈ E (K )}
I Let (K ∗)n = {un | u ∈ K ∗}
I Tate pairing e : E (K )[n]× E (K )/nE (K )→ K ∗/(K ∗)n

defined by
e(P ,Q) = f (D)

where (f ) = n(P)− n(0) and D ∼ (Q)− (0)
have disjoint supports
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Properties of the Tate pairing

I Result independent of the choice of D ∼ (Q)− (0) :
D ′ ∼ D implies f (D ′)/f (D) ∈ (K ∗)n

Proof : write D ′ = D + (g). Then f (D ′) = f (D)f ((g)) and

f ((g)) = g((f )) = g(n(P)− n(0)) = (g(P)/g(0))n

I Result independent of representative of Q ∈ E (K )/nE (K )
Q ′ = Q + [n]R implies f (D ′)/f (D) ∈ (K ∗)n

Proof : we have D ′ ∼ D + n(R)− n(0) hence up to nth powers

f (D ′) = f (D + n(R)− n(0)) = f (D)(f ((R)− (0)))n = f (D)

I Can replace (f ) = n(P)− n(0) by (f ′) = n(P +R)− n(R)
Proof : let h so that (h) = (P + R)− (P)− (R) + (0). Let f ′ = fhn

so f ′(D)/f (D) ∈ (K∗)n and (f ′) = (f ) + n(h) = n(P + R)− n(R)
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Properties of the Tate pairing(2)

I Linearity wrt first term
Proof : let P1 + P2 = P3 and g a function such that
(P3)− (0) = (P1)− (0) + (P2 − 0) + (g).
Let fi such that (fi ) = n(Pi )− n(0) for i = 1, 2.

Then f3 = f1f2g
n satisfies (f3) = n(P3)− n(0).

I Linearity wrt second term
Proof : let Q1 + Q2 = Q3. Let Di ∼ (Qi )− (0) for i = 1, 2, 3.

Then D3 ∼ D1 + D2 hence f (D3) = f (D1)f (D2).

I Non-degenerate
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Reduced Tate pairing

I The output of the Tate pairing is an element in K ∗/(K ∗)n

I Representation as an element of K ∗ not unique

I Let µn = {u |un = 1} ⊆ K ∗ be the nth roots of unity

I Reduced Tate pairing

e : E (K )[n]× E (K )/nE (K )→ µn

defined by
e(P ,Q) = e ′(P ,Q)(qk−1)/n

where e ′ is the Tate pairing
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Embedding degree

I To define the Tate pairing we need an extension Fqk

of Fq, such that n divides qk − 1

I The smallest such k is called the embedding degree

I k is the order of q modulo n i.e. k divides ϕ(n)

I Construction only practical for small embedding degrees

I Given any reasonably large n dividing #E (Fq),
unlikely that n divides qk − 1 for small k

I We will need special curves to implement pairings
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Weil pairing

I Let µn = {u |un = 1} ⊆ K ∗ be the nth roots of unity

I Weil pairing is a map

en : E (K )[n]× E (K )[n]→ µn

defined by
en(P1,P2) = f1(D2)/f2(D1)

where Di ∼ (Pi)− (0) and (fi) ∼ nDi
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Properties of Weil pairing

I Bilinearity

I Alternating : en(P ,P) = 1 so en(P ,Q) = en(Q,P)−1

I Non-degenerate : if en(P ,Q) = 1 for all Q ∈ E [n]
then P = 0

I Let n prime and P 6= 0 in E [n].
Then en(P ,Q) = 1 if and only if Q ∈ 〈P〉.

I Often for cryptographic parameters

en(P ,Q) = e ′(P ,Q)/e ′(Q,P)

where e ′ is the Tate pairing
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FR / MOV reduction

I Let E an elliptic curve over Fq, let P ∈ E (Fq) a point
of prime order r , and let Q ∈ 〈P〉

I Let e a bilinear pairing on E with images in F∗qk
I Frey-Rück / Menezes-Okamoto-Vanstone reduction

I Find S such that e(P,S) 6= 1
I Let g = e(P, S) and h = e(Q, S)
I Find x such that h = g x

I The last step is subexponential in qk , hence
subexponential in q when k is not too large
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Symmetric pairings

I In many protocols we need symmetric pairings
e : G1 × G1 → G3

I Tate and Weil pairings are such that e(P ,P) = 1

I Idea to build symmetric pairings
I Find an endomorphism φ : E → E sending some

G1 = 〈P〉 of prime order to G2 6= G1

I Define a modified Weil/Tate pairing as

ên(P,P) = en(P, φ(P))
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Distortion maps

I Let P ∈ E (Fq) with prime order r , and suppose k > 1

I A distortion map is an endomorphism φ : E → E , defined
over Fpk , sending P ∈ E (Fq)[r ] to φ(P) /∈ E (Fq)[r ]

I Example :
I Let p = 2 mod 3
I Let E : y2 = x3 + a with a ∈ Fp2 square but not cube
I Let u ∈ Fp6 \ Fp2 such that u6 = a/ap

I Define φ(x , y) = (u2xp, u3yp)

I If E has a distortion map then E is supersingular
Proof : let π be the Frobenius. For P ∈ E (Fq) we have

π(φ(P)) 6= φ(P) = φ(π(P)) hence End(E ) is non-Abelian.
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Trace map

I Let E defined over Fq

I Let P be a point of order r in E (Fqk )

I Trace map defined as

Tr(x , y) =
k−1∑
i=0

(xq
i

, yqi )

I The map φ : P → [k]P − Tr(P) is a homomorphism,
with the trace zero subgroup as image

I Can ensure e(P , φ(P)) 6= 1
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Miller’s algorithm

I Both Tate and Weil pairing require the evaluation f (D)
where (f ) = n(P)− n(0) and D ∼ (Q)− (0)

I As n is of cryptographic size, even storing f could take
prohibitive time and space

I Miller’s algorithm uses a variant of square-and-multiply
algorithm to successively compute fi(D) where

(fi) ∼ i(P)− ([i ]P)− (i − 1)(0)

I The algorithm uses recursive formula

(fi+j) = (fi) + (fj) + ([i ]P) + ([j ]P)− ([i + j ]P)− (0)

= (fi) + (fj) + (`i+j/vi+j)
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Pairing-friendly elliptic curves

I Efficient arithmetic on the elliptic curve
(q not too big)

I Efficient pairing computation
(qk not too big)

I Elliptic curve discrete logarithm hard
(elliptic curve subgroup of size r at least 160 bits)

I Discrete logarithm problem hard in image group
(qk at least 1000-2000 bits, sometimes bigger)

I We want ρ = log q/ log r as small as possible
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Supersingular curves

I Embedding degree is at most 6

Picture source : Advances in ECC, p204.

I Small characteristic curves (k = 4, 6) are now broken
by MOV + quasipolynomial time algorithm in image field

Christophe Petit -Advanced Cryptography 155

Miyaji-Nakabayashi-Takano (MNT) curves

I Suppose #E (Fq) = q + 1− t prime and k ∈ {3, 4, 6}.
Then q and t must satisfy the following relations

k q t
3 12`2 − 1 −1± 6`
4 `2 + ` + 1 −` or ` + 1
6 4`2 + 1 1± 2`

I Fix small D and search for solutions of t2 − 4q = −Dy 2

with q + 1− t prime (quadratic diophantine equation in
y and ` solved with Euclidean algorithm, & primality test)

I Use CM method to generate curves

Christophe Petit -Advanced Cryptography 156

Other methods

I Cocks-Pinch method

I Barreto-Naehrig curves

I Dupont-Enge-Morain method

I Brezing-Weng curves

I Barreto-Lynn-Scott curves

I . . .

I See Freeman-Scott-Teske, A taxonomy of pairing-friendly
elliptic curves
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Security considerations

I Hardness of pairing problems typically implies
but is not implied by ECDLP/ECDHP hardness

I Besides BDHP, many other assumptions suggested,
but they have not been well-studied (see Koblitz-Menezes,
The brave new world of bodacious assumptions in cryptography)

I Even the “purest” pairing problems probably need more
study (ask me for a research project in that direction)

Christophe Petit -Advanced Cryptography 158

Outline

Elliptic Curves

Elliptic Curve Discrete Logarithm Problem

Algorithmic Aspects

Factorization and Primality testing

Pairings

Christophe Petit -Advanced Cryptography 159

Conclusion on Elliptic Curve Cryptography

I ECDLP is typically much harder to solve than DLP,
hence allowing smaller keys

I Assumptions related to the Weil and Tate pairings have
allowed to build many schemes with interesting properties

I Extra structure (endomorphisms, isogenies) used to
improve efficiency, without affecting security so far
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