# Advanced Cryptography

Elliptic Curve Cryptography

Christophe Petit

University of Oxford

| Christophe Petit -Advanced Crypto |
|-----------------------------------|

aphy

# Discrete Logarithm Problem (1977)

The new technique makes use of the apparent difficulty of computing logarithms over a finite field GF(q) with a prime number q of elements. Let

 $Y = \alpha^X \mod q$ , for  $1 \le X \le q - 1$ , (4) where  $\alpha$  is a fixed primitive element of GF(q), then X is referred to as the logarithm of Y to the base  $\alpha$ , mod q:

 $X = \log_{\alpha} Y \mod q, \qquad \text{for } 1 \le Y \le q - 1. \tag{5}$ 

 $\sum_{i=1}^{n}, \quad \text{int} x \ge q-1, \quad (5)$ Calculation of Y from X is easy, taking at most  $2 \times \log_2 q$ multiplications [6, pp. 398–422]. For example, for X = 18,

 $Y=\alpha^{18}=(((\alpha^2)^2)^2)^2\times\alpha^2.$ 

(6)

Computing X from Y, on the other hand can be much more Computing 17 month 7, on each other had not not not not not the data of the second difficult and, for certain carefully chosen values of q, requires on the order of  $q^{1/2}$  operations, using the best known algorithm [7, pp. 9, 575–576], [8].

Source : Whitfield Diffie, Martin Hellman, New directions in Cryptography

O 🗐

| VERSITY OF Christophe Petit -Advanced Cryptography |
|----------------------------------------------------|
|----------------------------------------------------|

# Generalization to other Groups

• Given a cyclic group  $(G, \circ)$  (written multiplicatively), a generator g of G and a second element  $h \in G$ , compute k such that  $g^k = h$ 



▶ 1985 : Koblitz and Miller independently propose to use elliptic curves in cryptography

Christophe Petit -Advanced Cryptography

# ECRYPT II key length recommendations (2012)

| Level | Protection                                                                                                                                                                                                                             | Symmetric | Factoring<br>Modulus | Discrete<br>Key | Logarithm<br>Group | Elliptic<br>Curve | Hash |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------|-----------------|--------------------|-------------------|------|
| 1     | Attacks in "real-time" by individuals<br>Only acceptable for authentication tag size                                                                                                                                                   | 32        | -                    | -               |                    | -                 | -    |
| 2     | Very short-term protection against small organizations<br>Should not be used for confidentiality in new systems                                                                                                                        | 64        | 816                  | 128             | 816                | 128               | 128  |
| 3     | Short-term protection against medium organizations,<br>medium-term protection against small organizations                                                                                                                              | 72        | 1008                 | 144             | 1008               | 144               | 144  |
| 4     | Very short-term protection against agencies.<br>long-term protection against small organizations<br>Smallest general-purpose level,<br>2-key 3DES restricted to 2 <sup>se</sup> plaintext/ciphertexts,<br>protection from 2015 to 2015 | 80        | 1248                 | 160             | 1248               | 160               | 160  |
| 5     | Legacy standard level<br>2-key 3DES restricted to 10 <sup>6</sup> plaintext/ciphertexts,<br>protection from 2015 to 2020                                                                                                               | 96        | 1776                 | 192             | 1776               | 192               | 192  |
| 6     | Medium-term protection<br>3-key 3DES, protection from 2015 to 2030                                                                                                                                                                     | 112       | 2432                 | 224             | 2432               | 224               | 224  |
| 7     | Long-term protection<br>Generic application-independent recommendation,<br>protection from 2015 to 2040                                                                                                                                | 128       | 3248                 | 256             | 3248               | 256               | 256  |
| 8     | "Foreseeable future"<br>Good protection against quantum computers,<br>unless Shor's algorithm applies                                                                                                                                  | 256       | 15424                | 512             | 15424              | 512               | 512  |

All key sizes are provided in bits. These are the minimal sizes for security

| N 22 2 | UNIVERSITT OF |  |
|--------|---------------|--|
|        | OVEDDD        |  |
|        | () X F() R D  |  |
|        | OMORD         |  |
|        |               |  |

Source : www.keylength.com

Christophe Petit -Advanced Cryptography

| Outline                                                                                                                                | Main references                                                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Elliptic Curves<br>Elliptic Curve Discrete Logarithm Problem<br>Algorithmic Aspects<br>Factorization and Primality testing<br>Pairings | <ul> <li>Silverman, The Arithmetic of Elliptic Curves</li> <li>Blake-Seroussi-Smart, Elliptic curve cryptography</li> <li>Blake-Seroussi-Smart, Advances in Elliptic curve cryptography</li> </ul> |
| OXFORD Christophe Petit -Advanced Cryptography                                                                                         | 5 UNIVERSITY OF Christophe Petit -Advanced Cryptography 6                                                                                                                                          |

| ~  |      |    |
|----|------|----|
| Οι | itli | ne |

| Elliptic Curves<br>Weierstrass<br>The group I<br>Rational ma | equations<br>aw<br>ps between elliptic curves |
|--------------------------------------------------------------|-----------------------------------------------|
| Elliptic Curve D                                             | iscrete Logarithm Problem                     |
| Algorithmic Asp                                              | pects                                         |
| Factorization ar                                             | nd Primality testing                          |
| Pairings                                                     |                                               |
|                                                              | Christophe Petit -Advanced Cryptography       |

Outline



Elliptic Curve Discrete Logarithm Problem

Algorithmic Aspects

Factorization and Primality testing

Pairing

# Elliptic Curve

- ► Smooth, projective algebraic curve of genus one, with a specified point *O*
- O is the "point at infinity" in the projective plane
- ► Abelian variety : forms a commutative group defined by algebraic fomulae, with *O* as the identity element
- In this course
  - Curves over finite fields
  - Concrete models

Christophe Petit -Advanced Cryptography

# Weierstrass equation

- Let K be a (finite) field and  $a_i \in K$
- Weierstrass equation

$$y^2 + a_1 x y + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

• 
$$E(K) = \{(x, y) \in K^2 \text{ satisfying the equation}\} \cup \{O\}$$

• O is a special point, called *point at infinity* 

| UNIVERSITY OF | Chulsten has Datity. Advanced Countermoder | 10 |
|---------------|--------------------------------------------|----|
| W OYFORD      | Christophe Petit -Advanced Cryptography    | 10 |

$$Y^{2}Z + a_{1}XYZ + a_{3}YZ^{2} = X^{3} + a_{2}X^{2}Z + a_{4}XZ + a_{6}Z^{3}.$$

Projective coordinates

- Homogeneous or projective Weierstrass equation
- Point at infinity O = [0:1:0]

 $y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6.$ 

Parameters of Weierstrass curves

- Define  $b_2 = a_1^2 + 4a_2$ ,  $b_4 = 2a_4 + a_1a_3$ ,  $b_6 = a_3^3 + 4a_6$ ,  $b_8 = a_1^2a_6 + 4a_2a_6 - a_1a_3a_4 + a_2a_3^2 - a_4^2$ ,
- Define  $c_4 = b_2^2 24b_4$ ,  $c_6 = b_2^3 + 36b_2b_4 216b_6$
- ► Define the *discriminant*
- $\Delta = -b_2^2 b_8 8b_4^3 27b_6^2 + 9b_2b_4b_6$
- Define the *j*-invariant  $j = \frac{c_4^3}{\Lambda}$

# Regular curves and Discriminant

$$y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6.$$

- Let  $f(x,y) = y^2 + a_1xy + a_3y x^3 a_2x^2 a_4x a_6$
- ► The curve is *regular* iff  $f(x_0, y_0) = 0 \Rightarrow (\delta f / \delta x, \delta f / \delta y)_{|(x_0, y_0)} \neq (0, 0)$ Otherwise, the curve is *singular*
- *E* regular  $\Leftrightarrow \Delta(E) \neq 0$  (Proof : Silverman Prop. III.1.4)
- ► This course : elliptic curves are smooth/regular curves

| Christophe Petit -Advanced Cryptography | 13 |
|-----------------------------------------|----|
|                                         |    |

# Regular vs Singular Curves (over rational field)



|   | I ICLUICS S   |                                         |    |
|---|---------------|-----------------------------------------|----|
| ø | UNIVERSITY OF | Christophe Petit -Advanced Cryptography | 14 |

Reduced Weierstrass equation

$$y^2 = x^3 + Ax + B.$$

- Suppose p ≠ 2,3. Any Weierstrass equation can be reduced to this form using a *linear change of variables*
- We have  $\Delta = -16(4A^3 + 27B^2)$
- We have  $j = \frac{1728(4A)^3}{\Lambda}$

Christophe Petit -Advanced Cryptography

# Weierstrass in characteristic 2 and 3

- If p = 3: reduced form either  $y^2 = x^3 + a_2 x^2 + a_6$ ,  $\Delta = -a_2^3 a_6$ ,  $j = -a_2^3/a_6$ or  $y^2 = x^3 + a_4 x + a_6$ ,  $\Delta = -a_4^3$ , j = 0
- If p = 2: reduced form either  $y^2 + xy = x^3 + a_2x^2 + a_6$ ,  $\Delta = a_6$ ,  $j = 1/a_6$ or  $y^2 + a_3y = x^3 + a_4x + a_6$ ,  $\Delta = a_3^4$ , j = 0

# Isomorphisms of curves

 What are the rational maps that preserve Weierstrass form and point at infinity, and are isomorphisms? Only some linear transformations

$$(X, Y) = (u^2x + r, u^3y + u^2sx + t)$$

for any  $u \neq 0$  and any r, s, t

• 
$$u^{12}\Delta(E_2) = \Delta(E_1)$$
 and  $j(E_2) = j(E_1)$ 

Christophe Petit -Advanced Cryptography

# Isomorphisms and *j*-invariants

- j is invariant under isomorphisms
- ▶ The curve  $y^2 = x^3 + 1$  has j = 0The curve  $y^2 = x^3 + x$  has j = 1728The curve  $y^2 = x^3 + \frac{3j}{1728-j}x + \frac{2j}{1728-j}$  has *j*-invariant *j*  $(j \neq 0, 1728)$

| UNIVERSITY OF | Chairteache Detit. Advense d'Orante menter | 10 |
|---------------|--------------------------------------------|----|
| W OXFORD      | Christophe Petit -Advanced Cryptography    | 10 |

| $\cap$ | +  | lina |
|--------|----|------|
| 0      | uι | ime  |

# Elliptic Curves The group law Christophe Petit -Advanced Cryptography

 $y^2 = x^3 + Ax + B.$ 

"Inverse" of a point

- Let P := (x, y) be a point of a curve
- Define -P as the symmetric of P by the x-axis, that is -P := (x, -y)



# More generally

$$y^2 + a_1 x y + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6.$$

- Let  $P = (x, y) \in E(K)$ .
- ► Define -P as the other point on the curve with the same *x*-coordinate

$$-P := (x, -y - a_1x - a_3)$$

- Define P + (-P) = O the point at infinity
- Define P + O = P = O + P

Christophe Petit -Advanced Cryptography

# Adding two distinct points

$$y^2 = x^3 + Ax + B$$

- Let  $P := (x_1, y_1)$  and  $Q := (x_2, y_2)$  where  $x_1 \neq x_2$
- Draw the line through P and Q
- Call -R the third intersection of this line with the curve
- Define P + Q as the symmetric of -R by the x-axis



22

# Doubling a point

$$y^2 = x^3 + Ax + B.$$

• Let P := (x, y)

- Draw the tangent line through P
- Call -R the second intersection of this line with the curve
- Define P + P as the symmetric of -R by the x-axis





- Similar definitions for more general equations :
  - Draw tangent or secant
  - Intersect with the curve to get -(P+Q)
  - ► Take second point on the curve with same x coordinate
- Any non vertical line intersects the curve at exactly three points (counted with multiplicities)
   A tangent point is counted twice
   The point at infinity O intersects every vertical line

# Adding two distinct points

$$y^2 + a_1 x y + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6.$$

- ▶ Suppose *p* ≠ 0, 2, 3.
- Let  $P_1 = (x_1, y_1), P_2 = (x_2, y_2) \in E(K)$
- Let  $\lambda := \frac{y_2 y_1}{x_2 x_1}$
- Let  $\nu := \frac{y_1 x_2 y_2 x_1}{x_2 x_1}$
- Let  $P_1 + P_2 := (x_3, y_3)$  where  $x_3 := \lambda^2 + a_1\lambda - a_2 - x_1 - x_2$  and  $y_3 := -(\lambda + a_1)x_3 - \nu - a_3$
- $y = \lambda x + \nu$  is the line through  $P_1$  and  $P_2$

Christophe Petit -Advanced Cryptography

# Doubling a point

 $y^2 + a_1 x y + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6.$ 

- Suppose *p* ≠ 0, 2, 3.
- Let  $P = (x, y) \in E(K)$
- Let  $\lambda := \frac{3x^2 + 2a_2x + a_4 a_1y}{2y + a_1x + a_3}$
- Let  $\nu := \frac{-x^3 + a_4 x + 2a_6 a_3 y}{2y + a_1 x + a_3}$
- Let  $P + P := (x_3, y_3)$  where  $x_3 := \lambda^2 + a_1\lambda a_2 2x$  and  $y_3 := -(\lambda + a_1)x_3 \nu a_3$
- $y = \lambda x + \nu$  is the tangent line at *P*

| UNIVERSITY OF | Chuistanha Datit Advanced Counternahu   | 26 |
|---------------|-----------------------------------------|----|
| STORD OXFORD  | Christophe Petit -Advanced Cryptography | 20 |

A group law?

- The sum of two points of the curve is a point of the curve (including the point at infinity)
- The point at infinity is the neutral element
- Every element has a unique inverse
- ► Associativity? (P + Q) + R = P + (Q + R) Consider 6 homogeneous lines defined by the above operations, and the 8 points O, P, Q, R, ±(P + R), ±(P + Q), plus 2 points S, T that we must show equal. Suppose they are distinct. Multiplying the line equations you get two homogeneous cubics. The space of homogeneous cubics vanishing at 8 given points has dimension 2, so the curve equation must be linear combination of the two cubics. Evaluation at S, T shows the curve equation is identically 0.

Christophe Petit -Advanced Cryptography

# Scalar multiplication

$$y^2 = x^3 + Ax + B.$$

▶ For  $k \in \mathbb{Z}$ , define

$$[k](P) := \underbrace{P + P + \ldots + P}_{k \text{ times}}$$

▶ If K finite, then for any  $P \in E(K)$ , there is  $m \in \mathbb{Z}$  such that [m](P) = O (m is called the order of P)

OXFORD





# Scalar multiplication

• In reduced Weierstrass form there exist polynomial maps  $u_k, v_k, s_k, t_k$  such that

$$[k](x,y) = \left(\frac{u_k(x)}{v_k(x)}, y\frac{s_k(x)}{t_k(x)}\right)$$

Proof :

- Start with arbitrary rational maps in x, y
- Use curve equation to replace any non linear term in y
- Complete the squares in the denominators
- Use -[k]P = [k](-P) to deduce  $[k](P) = \left(\frac{u(x)}{v(x)}, y\frac{s(x)}{t(x)}\right)$

• Replace in equation  $y^2 = f(x)$  to deduce  $v^3|t^2$  and  $t^2|fv^3$ 

|  | Christophe Petit -Advanced Cryptography | 30 |
|--|-----------------------------------------|----|
|--|-----------------------------------------|----|

# Torsion points

• Let  $N \in \mathbb{Z}^*$ . The *N*-torsion  $E_K[N]$  over *K* is

$$E_{\kappa}[N] := \{P \in E(\kappa) \mid [N](P) = O\}$$

- $E_{\kappa}[N]$  is a subgroup of E(K)
- Example for  $y^2 = x^3 + Ax + B$ , the 2-torsion is

$$E_{\mathcal{K}}[2] = \{(x,0) \mid x^3 + Ax + B = 0\}$$

OXFORD

Christophe Petit -Advanced Cryptography

# Division polynomials

• Division polynomials  $\Psi_N(x, y)$ : polynomial with degree at most 1 in y and minimal degree in x such that

$$\psi_N(x,y) = 0 \iff \exists (x,y) \in E_{\mathcal{K}}[N] \setminus \{O\}$$

Recursive formulae

$$\begin{split} \psi_0 &= 0, \ \psi_1 = 1, \ \psi_2 = 2y, \\ \psi_3 &= 3x^4 + 6ax^2 + 12bx - a^2, \\ \psi_4 &= 4y(x^6 + 5ax^4 + 20bx^3 - 5a^2x^2 - 4abx - 8b^2 - a^3), \\ \psi_{2m+1} &= \psi_{m+2}\psi_m^3 - \psi_{m-1}\psi_{m+1}^3, \\ \psi_{2m} &= (\psi_{m+2}\psi_{m-1}^2 - \psi_{m-2}\psi_{m+1}^2)\psi_m/2y \end{split}$$

# Division polynomials (2)

Can prove

$$[k](x,y) = \left(\frac{\phi_k(x)}{\psi_k^2(x)}, \frac{\omega_k(x,y)}{\psi_k^3(x,y)}\right) = \left(x - \frac{\psi_{k-1}\psi_{k+1}}{\psi_k^2(x)}, \frac{\psi_{2k}(x,y)}{2\psi_k^4(x)}\right)$$
  
where  $\phi_k = x\psi_k^2 - \psi_{k+1}\psi_{k-1}, \ \omega_k = \frac{\psi_{k+2}\psi_{k-1}^2 - \psi_{k-2}\psi_{k+1}^2}{4y}$ 

• Over algebraic closure of K we have

$$E_{\bar{K}}[N] \approx (\mathbb{Z}/N\mathbb{Z}) \times (\mathbb{Z}/N\mathbb{Z})$$



Christophe Petit -Advanced Cryptography

# Number of rational points

$$y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6.$$

- Pick a random  $x \in \mathbb{F}_{p^n}$ . 2 solutions for y with probability  $\approx 1/2$ 0 solution for y with probability  $\approx 1/2$
- ► In fact : Hasse's theorem

$$|\# \mathsf{E}(\mathbb{F}_{p^n}) - (p^n + 1)| \le 2\sqrt{p^n}$$



36

proof : see Silverman, Chapter V.



| Outline<br>Elliptic Curves<br>Weierstrass equations<br>The group law<br>Rational maps between elliptic curves |  |
|---------------------------------------------------------------------------------------------------------------|--|
|                                                                                                               |  |
|                                                                                                               |  |
|                                                                                                               |  |
|                                                                                                               |  |
|                                                                                                               |  |

Christophe Petit -Advanced Cryptography

lsogeny

• Group homomorphism defined by a rational map

$$\Psi: E_1 \to E$$

- Example : scalar multiplications when  $E_1 = E_2$
- In reduced Weierstrass form there exist polynomial maps  $u_k, v_k, s_k, t_k$  such that

$$\Psi(x,y) = \left(\frac{u(x)}{v(x)}, y\frac{s(x)}{t(x)}\right)$$

and moreover  $v^3|t^2$  and  $t^2|fv^3$ 

- Proof identical as for scalar multiplications
- Isogeny is *separable* if  $(u/v)' \neq 0$

| UNIVERSITY OF | Christophe Petit -Advanced Cryptography | 38 |
|---------------|-----------------------------------------|----|
|---------------|-----------------------------------------|----|

lsogeny kernel

- Kernel ker  $\Psi = \{P \in E_1 \mid \Psi(P) = O\}$
- Degree  $\Psi = \max(\deg u, \deg v)$
- For example ker[k] = E[k] and  $deg[k] = k^2$
- Degree deg  $\Psi=\# \operatorname{ker} \Psi$  when  $\Psi$  separable
- ker  $\Psi$  is a subgroup of order deg  $\Psi$  in  $E(\bar{K})$
- For any curve *E* there are  $\ell + 1$  isogenies of degree  $\ell$ (defined over  $\bar{K}$ ) from this curve, and each one defines a quotient curve  $E/\Psi$

OXFORD

# 

Dual isogeny

- For any isogeny  $\Psi: E_1 \to E_2$ , there exists a *dual isogeny*  $\hat{\Psi}: E_2 \to E_1$  such that
  - $\hat{\Psi}\circ\Psi=[\mathsf{deg}\,\Psi]$
- $\blacktriangleright \ \deg \hat{\Psi} = \deg \Psi$
- $\Psi(E[\deg \Psi]) = \ker \hat{\Psi}$
- $\Psi \circ \hat{\Psi} = [\deg \Psi]$  on  $E_2$

# Endomorphism

## • An endomorphism of *E* is an isogeny $E \rightarrow E$

• Example : scalar multiplications

# Frobenius endomorphism

- Let  $A, B \in K := \mathbb{F}_q$ , for  $q := p^m$ Let  $E : y^2 = x^3 + Ax + B$
- The map

$$[\pi]:(x,y) \to (x^q,y^q)$$

is an endomorphism

- Called the Frobenius endomorphism
- Commutes with scalars :  $[k]([\pi](P)) = [\pi]([k](P))$
- Unseparable isogeny

| See.  | UNIVERSITY OF |  |
|-------|---------------|--|
| 친 및 문 | OVEODD        |  |

Christophe Petit -Advanced Cryptography

Christophe Petit -Advanced Cryptography

# The endomorphism ring

- If  $\phi_1$  and  $\phi_2$  are endomorphisms, then  $\phi_1 + \phi_2$  is an endomorphim (+ is addition on *E*)  $\phi_1 \circ \phi_2$  is an endomorphism ( $\circ$  is composition)
- Therefore  $orall a, b \in \mathbb{Z}$ , the map

$$[a+b\pi]:(x,y)\to [a](x,y)+[b]([\pi](x,y))$$

is an endomorphim

Addition and composition define a ring structure

Christophe Petit -Advanced Cryptography

# Trace of the Frobenius

• Frobenius endomorphism for a curve defined over  $\mathbb{F}_q$ 

$$egin{array}{rcl} [\pi]: E(\mathbb{F}_{q^n}) & o & E(\mathbb{F}_{q^n}) \ (x,y) & o & (x^q,y^q) \end{array}$$

Satisfies a quadratic equation

$$[\pi^2 - t\pi + q] = [0]$$

meaning 
$$\forall (x, y) \in E(K)$$
,  $(x^{q^2}, y^{q^2}) - [t](x^q, y^q) + [q](x, y) = O$ 

Christophe Petit -Advanced Cryptography

- Note  $E(\mathbb{F}_q) = \ker(1-\pi)$
- Remember  $t = q + 1 \# E(\mathbb{F}_q)$  with  $|t| \leq 2\sqrt{q}$

# Structure of the endomorphism ring

- Scalar multiplications  $\{[k] : k \in \mathbb{Z}\} = \mathbb{Z}$
- ► The endomorphism ring of an elliptic curve is either Z, an order in a quadratic imaginary field, or an order in a quaternion algebra [Silverman III.9.4]
- $\blacktriangleright$  Over finite fields it is always bigger than  $\mathbb Z$
- Ordinary curves : order in a quadratic imaginary field  $End(E) \subset \mathbb{Z} \times \pi\mathbb{Z}$  with  $\pi^2 - t\pi + p = 0$
- ► Supersingular curves : order in a quaternion algebra  $\exists \pi, \phi : E \rightarrow E \text{ s.t. } \pi \phi \neq \phi \pi \text{ and}$  $End(E) \subset \mathbb{Z} \times \pi \mathbb{Z} \times \phi \mathbb{Z} \times \pi \phi \mathbb{Z}$

| UNIVERSITY OF |   |
|---------------|---|
| OXFOR         | Г |

Christophe Petit -Advanced Cryptography

# Outline

#### Elliptic Curves

Elliptic Curve Discrete Logarithm Problem Definition and Protocols Recommended Curves Anomalous attack

#### Algorithmic Aspects

Factorization and Primality testing

Pairings

45

# 

Christophe Petit -Advanced Cryptography

Outline

Elliptic Curves

Elliptic Curve Discrete Logarithm Problem Definition and Protocols

Anomalous attack

Algorithmic Aspects

Factorization and Primality testing

Pairing

Christophe Petit -Advanced Cryptography

# Elliptic curve discrete logarithm problem (ECDLP)

- Let K be a finite field, let E be a curve over K, let P ∈ E(K) and let Q ∈ ⟨P⟩.
   Find k such that Q = [k]P.
- Fields used in cryptography are prime fields (mostly) and binary fields with a prime degree extension (for efficiency, particularly in hardware devices)
- ▶ Typically the order of *P* is a large prime, at least 160 bits

47

48

# Elliptic Curve Diffie-Helman problem (ECDHP)

- ▶ Given P and [a]P and [b]P, compute [ab]P
- Also believed to be very hard
- Can solve ECDHP if can solve ECDLP, but other way around not known in general

# Elliptic curve Diffie-Helman

- Goal : key agreement
   Two parties want to build a common secret key
- Alice chooses random  $r_a$ . She sends  $Q_a := [r_a](P)$  to Bob
- Bob chooses random  $r_b$ . He sends  $Q_b := [r_b](P)$  to Alice
- Alice computes  $K_a := [r_a](Q_b)$
- Bob computes  $K_b := [r_b](Q_a)$
- We have  $K_a = [r_a r_b](P) = K_b$

| 83      | UNIVERSITY OF |
|---------|---------------|
| <b></b> | OVEODD        |

Christophe Petit -Advanced Cryptography

- OXFORD
- Christophe Petit -Advanced Cryptography 50

# Elliptic curve El Gamal

- Goal : public key encryption
- Key generation : choose K, E and P ∈ E(K). Choose secret key x. Reveal public key E, P, Q = [x](P) If ECDLP hard, x cannot be recovered from Q.
- Encryption : to encrypt M ∈ E(K), choose random r. Compute C<sub>1</sub> = [r](P) and C<sub>2</sub> = M + [r](Q) Both C<sub>1</sub> and C<sub>2</sub> are random points on the curve.
- Decryption : compute  $C_2 - [x](C_1) = M + [r]([x](P)) - [x]([r](P)) = M$

# Elliptic curve El Gamal (2)

- Elliptic curve decisional Diffie-Hellman : Given P and [a]P and [b]P and [c]P, decide whether c is ab or random
- Theorem : elliptic curve El Gamal is IND-CPA secure under ECDDH assumption (proof is the same as over finite fields)

# ECDSA

- Public key signature standard
- Parameters defined by
  - ► H a hash function
  - ► K a finite field
  - $\blacktriangleright$  q a prime
  - *E* an elliptic curve over *K* with *qh* points,  $h \leq 4$
  - P a point of order q on E
- Key generation
  - Choose secret key x randomly in  $\{1, \ldots, q-1\}$
  - Set public key Q = xP

Christophe Petit -Advanced Cryptography

# ECDSA : signature

- ▶ Let  $f : E \to \mathbb{F}_q : P = (x, y) \to x \mod q$ where x is some well-defined integer representation of the x-coordinate of P
- ▶ To sign a message *m* :
  - 1. Choose k randomly in  $\{1, \ldots, q-1\}$
  - 2. Let T = kP
  - 3. Let r = f(T). If r = 0 start again
  - 4. Let e = H(m)
  - 5. Let  $s = (e + xr)/k \mod q$ . If s = 0 start again
  - 6. Return (*r*, *s*)

| UNIVERSITY OF | Chulatanka Datit Advanced Counterventor | E 4 |
|---------------|-----------------------------------------|-----|
| S OXFORD      | Christophe Petit -Advanced Cryptography | 54  |

# **ECDSA** : verification

- To verify signature (r, s) on a message m
  - ▶ Reject if  $r, s \notin \{1, \ldots, q-1\}$
  - Let e = H(m)
  - Let  $u_1 = e/s \mod q$  and  $u_2 = r/s \mod q$
  - Let  $T = u_1 P + u_2 Q$
  - Accept iff r = f(T)
- ► Correctness : u<sub>1</sub> + xu<sub>2</sub> = (e + rx)/s = k mod q hence u<sub>1</sub>P + u<sub>2</sub>Q = T

Christophe Petit -Advanced Cryptography

# ECDSA : security

- Existential unforgeability, if we replace the hash function by a random function and the group by a generic group, and suppose *f* is almost invertible
- Essential that k does not repeat as otherwise two signatures (r, s) and (r', s') give

$$x = \frac{se' - s'e}{r(s' - s)} \bmod q$$

(used to recover the secret key of Sony PS3)

 More attacks if some bits of k leak or repeat (see later for lattice-based attacks)

| Outline                                        | ECDLP cryptanalysis : state-of-the-art                                                                                                                           |
|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Elliptic Curves                                | ► Generic attacks : Pollard's rho, Pohligh-Hellman,                                                                                                              |
| Elliptic Curve Discrete Logarithm Problem      | <ul> <li>Anomalous attack if  E(𝔅<sub>p</sub>)  = p (see later in these slides)</li> <li>MOV attack if efficient pairings (see later in these slides)</li> </ul> |
| Recommended Curves<br>Anomalous attack         | <ul> <li>Weil descent reduction to hyperelliptic curve discrete<br/>logarithms (not covered in this course)</li> </ul>                                           |
| Algorithmic Aspects                            | <ul> <li>Index calculus attacks being developed, perhaps<br/>subexponential but worse than generic ones in practice</li> </ul>                                   |
| Factorization and Primality testing            | (see bonus slides; ask me for a dissertation project)                                                                                                            |
| Pairings                                       | $\blacktriangleright$ Best attacks are generic ones for well-chosen parameters 160-bit ECDLP $\sim$ 1024-bit RSA                                                 |
|                                                |                                                                                                                                                                  |
| OXFORD Christophe Petit -Advanced Cryptography | 57 Christophe Petit -Advanced Cryptography                                                                                                                       |

# NIST curves

- 15 curves and base points on these curves, to be used by US federal government
  - ➤ 5 curves over prime fields, with pseudo-Mersenne primes for efficiency
  - $\blacktriangleright$  5 curves with parameters defined over  $\mathbb{F}_2$
  - ► 5 additional curves in characteristic 2
- Curve parameters are derived from a given seed, using SHA-1, until the curve has prime order
- See http://csrc.nist.gov/groups/ST/toolkit/ documents/dss/NISTReCur.pdf

Christophe Petit -Advanced Cryptography

- De facto world standard
- Ongoing revision, likely to drop most curves including all binary curves, and to include a few other popular curves

NIST curves (2)

- Seed claimed to derive from some passphrase
- ► Suspicion seed chosen to allow trapdoor attacks

# Other commonly used curves

See http://safecurves.cr.yp.to/ for a classification and analysis of curves recommended by ANSI, IEEE, BSI,... and the one used in Bitcoin

# Outline

# Elliptic Curve Discrete Logarithm Problem Anomalous attack

# OXFORD

Christophe Petit -Advanced Cryptography

# OXFORD

Christophe Petit -Advanced Cryptography

# Anomalous attack

- Let E be an elliptic curve over  $\mathbb{F}_p$ , with p prime
- Assume  $\#E(\mathbb{F}_p) = p$
- ► In that case, we can lift the discrete logarithm problem over the *p*-adic numbers, where it turns out to be easy
- Remark : condition  $\#E(\mathbb{F}_p) = p$  can be checked easily, and very unlikely to hold for random curves

# *p*-adic numbers (informally)

- ► Let *p* be a prime
- Let  $r \in \mathbb{Q}$ 

  - We can write  $r = \frac{a}{b}p^i$  with a, b, p coprime p-valuation of r defined by  $|r|_p = p^{-i}$   $|.|_p$  defines a norm hence a distance  $d(r_1, r_2) = |r_1 r_2|_p$
- ► Considering all limits of Cauchy sequences of rationals under  $|.|_p$  norm, we get the *p*-adic numbers  $\mathbb{Q}_p$ (the same way we get  $\mathbb R$  using usual |.| norm)
- Any *p*-adic number can be uniquely written as  $\sum_{i=k}^{\infty} a_i p^i$
- Practical computations up to some precision (modulo  $p^{\ell}$ )

# Lifting from $\mathbb{F}_p$ to $\mathbb{Q}_p$

- Let  $y^2 = x^3 + Ax + B$  defining an elliptic curve E over  $\mathbb{F}_p$
- See *E* as an elliptic curve  $\overline{E}$  defined over  $\mathbb{Q}_p$
- Lift P and Q to points P and Q over E
   To lift a point (x, y) keep x and solve y<sup>2</sup> = x<sup>3</sup> + Ax + B
   up to some precision over Q<sub>p</sub> using Hensel's lemma
   (solve the equation modulo p<sup>2</sup>, then p<sup>3</sup>, etc)
- ► Let  $E_1(\mathbb{Q}_p) = \{P \in E(\mathbb{Q}_p) \mid P \mod p = O\}$ subgroup of  $E(\mathbb{Q}_p)$
- We have  $E(\mathbb{Q}_p)/E_1(\mathbb{Q}_p) = E(\mathbb{F}_p)$

Christophe Petit -Advanced Cryptography

65

# A group homomorphism

- Let  $y^2 = x^3 + Ax + B$  defining an elliptic curve over  $\mathbb{Q}_q$
- Let  $\omega(z)$  be the power series solution to the equation

$$\omega = z^3 + Az\omega^2 + B\omega$$

• There is a group homomorphism  $\theta_q: E_1(\mathbb{Q}_q) \to \hat{G}_q$  defined by

$$\theta_q(P) = \left(\int \omega(z)dz\right)(z_q) = z_q + \frac{d_1}{2}z_q^2 + \frac{d_2}{3}z_q^3 + \dots$$

where  $d_i$  are polynomials in A, B and  $z_q = -x(P)/y(P)$ 

| UNIVERSITY OF | Chairborn has Darthy Andreas and Commission and the | 66 |
|---------------|-----------------------------------------------------|----|
| WEODD         | Christophe Petit -Advanced Cryptography             | 00 |
| S UAFURD      |                                                     |    |

# Anomalous attack

- Assumption :  $p = \#E(\mathbb{F}_p)$
- Lift P and Q to points  $\overline{P}$  and  $\overline{Q}$  over  $\overline{E}$
- Compute  $\theta_p(p\bar{P})$  and  $\theta_p(p\bar{Q})$  up to  $O(p^2)$  terms
- The equation Q kP = 0 implies

$$heta_p(par{Q}) - k heta_p(par{P}) = 0 \mod p^2$$

Compute

$$k = \frac{\theta_p(pQ)}{\theta_p(p\bar{P})} \bmod p$$

Christophe Petit -Advanced Cryptography

Outline

Elliptic Curves

Elliptic Curve Discrete Logarithm Problem

Algorithmic Aspects Faster arithmetic Alternative Models Generating good curves

Factorization and Primality testing

Pairing

|                                                                      | Outline                                 |    |
|----------------------------------------------------------------------|-----------------------------------------|----|
| Elliptic Curves                                                      |                                         |    |
| Elliptic Curve Dis                                                   | crete Logarithm Problem                 |    |
| Algorithmic Aspe<br>Faster arithme<br>Alternative M<br>Generating go | etts<br>ettic<br>odels<br>od curves     |    |
| Factorization and                                                    | Primality testing                       |    |
| Pairings                                                             |                                         |    |
|                                                                      | Christophe Petit -Advanced Cryptography | 69 |

# Point addition and point doubling

# ▶ Let $E: y^2 = x^3 + a_4x + a_6$ and let $P_i = (x_i, y_i) \in E$

- If  $(x_2, y_2) = (x_1, -y_1)$  then  $P_1 + P_2 = O$
- Otherwise  $P_1 + P_2 = (x_3, y_3)$  with

$$x_3 = \lambda^2 - x_1 - x_2$$
  
$$y_3 = -\lambda x_3 - \nu$$

where

$$\begin{cases} \lambda = \frac{y_2 - y_1}{x_2 - x_1} \text{ and } \nu = \frac{y_1 x_2 - y_2 x_1}{x_2 - x_1} & \text{if } P_1 \neq P_2 \\ \lambda = \frac{3x^2 + a_4}{2y} \text{ and } \nu = \frac{-x^3 + a_4 x + 2a_6}{2y} & \text{if } P_1 = P_2 \end{cases}$$

Christophe Petit -Advanced Cryptography

• How to compute [k]P?

70

# Double and add algorithm

- Scalar multiplication : given k and P, return [k]P
  - 1: Let  $k = \sum_{i=0}^{n} k_i 2^i$
  - 2:  $P' \leftarrow P$ ;  $Q' \leftarrow [k_0]P$
  - 3: for i=1 to n do
  - 4:  $P' \leftarrow [2]P$ 5:  $Q \leftarrow Q + [k_i]P'$

- 7: **return** Q
- Let  $n = \log k$ . Scalar multiplication requires
  - n point doublings
  - ► n/2 point additions on average

Christophe Petit -Advanced Cryptography

Double and add algorithm ("left-to-right")

▶ Scalar multiplication : given k and P, return [k]P

- 1: Let  $k = 2^{n+1} + \sum_{i=0}^{n} k_i 2^i$
- 2:  $Q \leftarrow P$
- 3: for  $i{=}n$  to 1 do
- 4:  $Q \leftarrow [2]Q$
- 5:  $Q \leftarrow Q + [k_{i-1}]P$
- 6: **end for**
- 7: return Q
- Same cost as the "right-to-left" version

# Projective coordinates

- ► Goal : avoid divisions in addition/doubling formulae (more expensive than additions and multiplications)
- A point P = (x, y) is now represented as P = (X, Y, Z)where x = X/Z and y = Y/Z
- $P_2 = \pm P_1$  tested as  $x_1z_2 = x_2z_1$  and  $y_1z_2 = \pm y_2z_1$
- Doubling and addition re-written without division
- Double-and-add algorithm performed without division
- If needed, a single division 1/Z is performed at the end to recover affine coordinates

| 1000 | UNIVERSITY OF |
|------|---------------|
|      | OVEODD        |
| 847  | UAFURD        |

Christophe Petit -Advanced Cryptography

73

# Window methods

- Goal : reduce the number of additions with precomputation
- Simplest variant
  - Precompute  $P_i = [i]P$  for  $i = 0, \ldots, 2^k 1$
  - ► In left-to-right version, perform at least k doublings before each addition

ced Cryptography

• Cost is now *n* doublings,  $\frac{2^k-1}{2^k} \cdot \frac{n}{k}$  additions, plus a precomputation of  $2^k - 2$  additions

| UNIVERSITY OF | Chairman In Davis Advan |
|---------------|-------------------------|
| OXFORD        | Christophe Petit -Advan |

# Non adjacent form representations

- ► Goal : reduce the number of additions
- Observe addition and substraction have the same cost
- Use signed representations with  $k_i \in \{-1, 0, 1\}$ to ensure that 1 or -1 is always followed by 0
- Algorithm to compute signed representations :
  - 1: while k > 0 do
  - if k odd then  $k_i = 2 (k \mod 4)$ 2:
  - 3: if k even then  $k_i = 0$
  - $k \leftarrow (k k_i)/2$ 4:  $i \leftarrow i + 1$
  - 5:
  - 6: end while

Christophe Petit -Advanced Cryptography

# Cost of NAF representation

- Cost is *n* doublings and  $\alpha n$  additions/substractions
- What is  $\alpha$ ?
  - $\blacktriangleright$  Consider a state automaton with two states 0 and  $\pm 1$
  - State goes from  $\pm 1$  to 0 with probability 1
  - State goes from 0 to  $\pm 1$  with probability 1/2
  - State goes from 0 to 0 with probability 1/2
  - At equilibrium we have  $\alpha = (1 \alpha)\frac{1}{2}$  hence  $\alpha = \frac{1}{3}$
- Cost is *n* doublings and n/3 additions or substractions
- Better addition/substraction chains may exist, but finding optimal one is NP-hard
- Can be combined with window methods

# Multi-exponentiations

Frobenius expansions

- Goal : compute  $\sum [k_i] P_i$  faster than by serial computation
- Idea : do the doublings only once
- Algorithm
  - 1: Let  $k_j = \sum_{i=0}^n k_{j,i} 2^i$ 2:  $Q \leftarrow \sum_j P_{j,n}$ 3: for i=n to 1 do
  - 4:  $Q \leftarrow [2]Q$
  - $Q \leftarrow Q + \sum_{j} [k_{j,i-1}] P_j$ 5:
  - 6: end for
  - 7: return Q
- Can be combined with other tricks

# 

Christophe Petit -Advanced Cryptography

- Goal : for elliptic curves defined over  $\mathbb{F}_2$ , replace double-and-add by Frobenius-and-add
- Note that Frobenius map  $(x, y) \rightarrow (x^2, y^2)$  is a very efficient operation, especially if elements of  $\mathbb{F}_{2^n}$  are represented using a normal basis  $\{\alpha^{2^i}, i = 0, \dots, n-1\}$
- There is efficient algorithm writing  $k = \sum_i k_i \varphi^i$ (use  $\varphi^2 - t\varphi + 2 = 0$ ) (see BSS IV.3 and references therein)

| WIVERSITY OF | Christenke Detit Advensed Counterney    | -         |
|--------------|-----------------------------------------|-----------|
| 💐 OXFORD     | Christophe Petit -Advanced Cryptography | · · · · · |

# Gallant-Lambert Vanstone

- ► Goal : exploit efficient endomorphism when we have one
- Example : if  $\iota^2 = -1$  then  $\phi : (x,y) \to (-x,\iota y)$  is an ► endomorphism of  $E: y^2 = x^3 + ax$ , with  $\phi^2 = [-1]$
- Let  $f(x) = x^2 + t_{\phi}x + n_{\phi}$  characteristic polynomial of  $\phi$
- ▶ Let *N* order of *P*
- Assume there is  $\lambda \in \mathbb{Z}/N\mathbb{Z}$  such that  $f(\lambda) = 0 \mod N$
- Then  $\phi = [\lambda]$  or  $[t_{\phi} \lambda]$  on  $\langle P \rangle$  (assume first case)
- Idea : write  $k = a\lambda + b \mod N$  with a, b about n/2 bits then compute  $a\phi(P) + bP$  using multi-exponentiation

# Euclide algorithm

- Goal : given integers a and b, find d = gcd(a, b)
- d|a, d|b imply d|(a + kb) for any integer k

**Require:** a > b**Ensure:** gcd(a, b)

- 1: if b|a then
- 2: **return** b
- 3: else
- Compute q such that 0 < a qb < b4:
- return gcd(b, a qb)5:
- 6: end if
- Complexity  $O(|a|^2)$ ; best algorithms achieve  $O(|a|\log |a|)$

# Extended Euclide algorithm

• Goal : compute r and s such that ra + sb = gcd(a, b)**Require:**  $a \ge b$ **Ensure:** d = gcd(a, b) and r, s, such that ar + bs = d1: if b|a then 2: **return** *a*, 0, 1 3: else Compute q such that 0 < a - qb < b4:  $d, r, s \leftarrow \gcd(b, a - qb)$ 5: return d, s, r - qs6: 7: end if • Indeed if rb + s(a - qb) = d then sa + (r - qs)b = d• Complexity  $O(|a|^2)$ ; best algorithms achieve  $O(|a|\log |a|)$ 

Christophe Petit -Advanced Cryptography

# Gallant-Lambert Vanstone

- Goal : exploit efficient endomorphism when we have one
- Idea : write  $k = a\lambda + b \mod N$  with a, b about n/2 bits
- then compute  $a\phi(P) + bP$  using multi-exponentiation
- ► To find *a*, *b* 
  - ▶ Run extended Euclide algorithm with inputs *N*,  $\lambda$  and stop it at the middle, when all coefficients are  $\approx \sqrt{N}$
  - Deduce  $u_i, v_i$  of size about  $\sqrt{N}$  s.t.  $u_i \lambda + v_i = 0 \mod N$
  - Compute  $C_1, C_2 \in \mathbb{R}$  s.t.  $(0, k) = C_1(u_1, v_1) + C_2(u_2, v_2)$
  - Round  $C_1, C_2$  to nearest integers  $c_1, c_2$
  - Return  $(a, b) = (C_1 c_1)(u_1, v_1) + (C_2 c_2)(u_2, v_2)$
- Equivalently, apply Babai's nearest plane algorithm to a well-chosen lattice (see later)

|          | Christophe Petit -Advanced Cryptography | 82 |
|----------|-----------------------------------------|----|
| Ø OXFORD |                                         |    |

# Point compression

- Goal : reduce both memory and scalar multiplication costs by projecting points on x coordinates
- Observation :
  - x coordinate determines an elliptic curve point up to sign
  - x([k]P) only depends on x(P)
- Some existing tricks :
  - ▶ Represent (x, y) by x and an additional bit for y
  - Only use x in signature schemes

Christophe Petit -Advanced Cryptography

Elliptic Curves

Elliptic Curve Discrete Logarithm Problem

Algorithmic Aspects Faster arithmetic Alternative Models Generating good curve

Factorization and Primality testing

#### Pairing

Outline

# Birrational equivalence

▶ Informal definition : two curves E and E' defined by the equations F(x, y) = 0 and F'(X, Y) = 0 are birrationally equivalent if there exist rational maps

$$\varphi: E \to E' \text{ and } \phi: E' \to E$$

such that  $\phi\circ\varphi$  is the identity map on E for all but a few exceptional points

(definition makes sense over characteristic 0 fields)

Christophe Petit -Advanced Cryptography

85

# Why other models?

- Any elliptic curve can be written in (short) Weierstrass form, but other forms may be better in practice
- Faster arithmetic, in particular decreasing the number of field multiplications for one scalar multiplication
- Complete addition formula ("no special case")
  - Preventing implementation bugs
  - Side-channel resistance
- Special curves with "useful" properties (but beware cryptanalysis)

| OXFORD | Christophe Petit -Advanced Cryptography | 86 |
|--------|-----------------------------------------|----|
|--------|-----------------------------------------|----|

# Elliptic curve formula database

### Genus-1 curves over large-characteristic fields

 $\begin{array}{l} \label{eq:Doubling-oriented Doche-Icart-Kohel curves: } y^{2=x^3+a^8x^2+16^8a^8x} \\ Tripling-oriented Doche-Icart-Kohel curves: } y^{2=x^3+a^8x^2+16^8a^8x} \\ \hline Edwards curves: x^{3+y^2=2}a^{4e}(1+d^8x^{2e}y^2) \\ \hline Hessian curves: x^{3+y^3+1=3^8d^8x^9y} \\ Jacobi interscripts: y^{2=x^3+1=3^8d^8x^9y} \\ Jacobi interscripts: y^{2=x^3+1=3^8d^8x^2+1} \\ \hline Montgomery.curves: b^9y^{2=x^3+a^8x^2+1} \\ \hline Montgomery.curves: b^9y^{2=x^3+a^8x^2+1} \\ \hline Twisted Edwards curves: a^8x^{2+y^2=1+d^8x^2ey^2} \\ \hline Twisted Hessian curves: a^8x^{3+y^3+1=d^8x^9y} \\ \hline \end{array}$ 

#### Ordinary genus-1 curves over binary fields

 $\begin{array}{l} \underline{Binary \ Edwards \ curves:} \ d1^{*}(x+y)+d2^{*}(x^{2}+y^{2})=(x+x^{2})^{*}(y+y^{2})\\ \underline{Hessian \ curves:} \ x^{3}+y^{3}+1=3^{*}d^{*}x^{*}y\\ \underline{Short \ Weierstrass \ curves:} \ y^{2}+x^{*}y=x^{3}+a2^{*}x^{2}+a6 \end{array}$ 

Source : www.hyperelliptic.org/EFD/

### 

Christophe Petit -Advanced Cryptography

# Edwards curves

Defined by an equation (assume characteristic not 2)

$$x^2 + y^2 = c^2(1 + dx^2y^2)$$

• Addition of two points  $(x_1, y_1)$  and  $(x_2, y_2)$  defined by

$$\left(\frac{x_1y_2+x_2y_1}{c(1+dx_1x_2y_1y_2)},\frac{y_1y_2-x_1x_2}{c(1-dx_1x_2y_1y_2)}\right)$$

• Neutral element is 
$$(0, c)$$
 and  $-(x, y) = (-x, y)$ 

• (0, -c) has order 2 and (-c, 0) has order 4

OXFORD

Christophe Petit -Advanced Cryptography

# Edwards curves (2)

- Only elliptic curves with order divisible by 4 can be written in this form
- Complete addition law : no special case
- Efficient arithmetic
- ► See Bernstein-Lange, *Faster addition and doubling on elliptic curves*

Christophe Petit -Advanced Cryptography

# Outline

Elliptic Curves

Elliptic Curve Discrete Logarithm Problem

Algorithmic Aspects Faster arithmetic Alternative Models Generating good curves

Factorization and Primality testing

Pairings

Christophe Petit -Advanced Cryptography

90

# Generating good curves

- In cryptography we need curves defined over  $\mathbb{F}_p$  with a large subgroup of prime order q
- Two methods
  - Random generation : generate random curves and compute their orders
  - Complex multiplication method : choose suitable p and q then compute a corresponding curve
- The second method is faster but it produces special curves

Christophe Petit -Advanced Cryptography

► Idea :

• Generate random  $A, B \in K$  with  $4A^3 + 27B^2 \neq 0$ 

Random Curves

- Compute the order of  $E: y^2 = x^3 + Ax + B$
- Repeat until the order is good
- We need an efficient algorithm to compute the order

# Remember : CRT

- ► Chinese Remainder Theorem
- ▶ Let  $p_i = 2, 3, 5, ...$  be prime numbers, let  $e_i$  be integers let  $t_i \in \{0, 1, ..., p_i^{e_i} 1\}$
- ► The congruence system t = t<sub>i</sub> mod p<sub>i</sub><sup>e<sub>i</sub></sup>, ∀i has a unique solution modulo ∏ p<sub>i</sub><sup>e<sub>i</sub></sup>
- This solution can be computed efficiently
- Example :  $t = 3 \mod 2^2, t = 2 \mod 5 \Rightarrow t = 7 \mod 20$

Christophe Petit -Advanced Cryptography

# Point counting

- Goal : given E defined over  $\mathbb{F}_q$ , return  $\#E(\mathbb{F}_{q^n})$
- $\blacktriangleright$  By Hasse's theorem, we have lower and upper bounds
- By Weil-Deligne's theorem, sufficient to compute  $\#E(\mathbb{F}_q)$
- We know that  $[\pi^2 t\pi + q] = [0]$
- On the *m*-torsion, we have
- $[\pi^2 t\pi + q] = [\pi^2 (t \mod m)\pi + (q \mod m)]$
- If [m](P) = O and  $[\pi^2 t_m \pi + q](P) = O$  then  $t = t_m \mod m$

| UNIVERSITY OF | Christophe Petit -Advanced Cryptography | 94 |
|---------------|-----------------------------------------|----|
| SET OXFORD    |                                         |    |

# Schoof's algorithm

- 1. Use Hasse's theorem to bound  $\#E(\mathbb{F}_q)$
- 2. Find primes  $p_i$  s.t.  $\prod p_i \ge 2\sqrt{q}$
- 3. For each  $p_i$ 
  - 3.1 Find  $P_i \in E[p_i]$ ,  $P_i \neq O$ 3.2 For  $t_i = 0, \dots, p_i - 1$ , compute  $[\pi^2 - t_i\pi + q](P_i)$ until we get O3.3 Deduce  $t = t_i \mod p_i$

4. Use CRT to recover *t*. Deduce  $\#E(\mathbb{F}_p)$ .

# Further on point counting

- ► Can also use powers of primes
- ► Improvements by Elkies, Atkin,...
- *p*-adic methods

# Complex multiplication method

- Two steps :
  - Choose suitable p and N
  - ► Compute the curve using complex multiplication theory
- Faster than random curves/ point counting but it produces special curves

UNIVERSITY OF OXFORD Christophe Petit -Advanced Cryptography

97

# Complex multiplication

Remember

$$\pi^2 - t\pi + p = 0$$
 and  $N = \#E(\mathbb{F}_p) = p + 1 - t$ 

► By Hasse's theorem,

$$\Delta = t^2 - 4p \le 0$$

 $\mathsf{Careful}:\mathsf{this}\;\Delta$  is not the discriminant defined before

 End(E) is an order in an imaginary quadratic field (we say E has complex multiplication by this order)

|  | Christophe Petit -Advanced Cryptography | 98 |
|--|-----------------------------------------|----|
|--|-----------------------------------------|----|

# Deuring's lifting theorem

- For any E/𝔽<sub>p</sub>, there exists Ẽ/K such that Ẽ mod p = E (where K is some number field such that p is split in K) and moreover any φ ∈ End(E) arises as φ̃ mod p where φ̃ ∈ End(Ẽ)
- Efficient to compute elliptic curves over C with complex multiplication by a given order, as long as the discriminant is small enough

# Computing CM *j*-invariants over $\mathbb{C}$

- Let p and N fixed, hence fixing  $\Delta$  as well
- *j*-invariants with complex multiplication by a given order with discriminant Δ satisfy some symmetry property
- This symmetry leads to an equation in *j* that can be solved numerically with arbitrary precision
- ▶ Non trivial fact : all such *j* are roots of a polynomial H<sub>D</sub> with integer coefficients
  - $H_{\Delta}$  is called the Hilbert class polynomial
  - deg  $H_{\Delta}$  = the class number of K

99

# Reduction modulo *p*

- H<sub>△</sub> can be computed exactly using finite precision for j since its coefficients are integer
- The *j*-invariants over F<sub>p</sub> with complex multiplication by an order of discriminant Δ are the roots of H<sub>Δ</sub> mod p
- Coefficients of  $H_\Delta$  are huge, so only practical for small  $\Delta$
- In fact if ∆ = Df<sup>2</sup> then H<sub>∆</sub> mod p = H<sub>D</sub> mod p so it is enough to compute H<sub>D</sub>

Christophe Petit -Advanced Cryptography

# Curve equation from *j*-invariant

- $E: y^2 = x^3 + 1$  has j = 0
- $E: y^2 = x^3 + x$  has j = 1728
- $E: y^2 = x^3 + ax a$  with  $a = \frac{27j}{4(1728-j)}$ has *j*-invariant  $j \neq 0, 1728$
- ► E: y<sup>2</sup> = x<sup>3</sup> + Ax + B and E<sup>d</sup>: y<sup>2</sup> = x<sup>3</sup> + Ad<sup>2</sup>x + Bd<sup>3</sup> have the same j invariant
- If d is a quadratic non residue then E<sup>d</sup> is called the quadratic twist of E and t(E) = −t(E<sup>d</sup>)
- If #E = p + 1 + t then  $\#E^d = p + 1 t$

| Christophe Petit -Advanced Cryptography | 102 |
|-----------------------------------------|-----|
|                                         |     |

# CM method

- ► Choose a small *D* and a suitable *p* (see next slide)
- Compute the Hilbert polynomial H<sub>D</sub> (computation complexity is quasi-linear in D)
- Compute j as a root of  $H_D$  modulo p
- ► Compute E(j)
- Return E(j) if #E(j) = N
- Otherwise return its quadratic twist

Christophe Petit -Advanced Cryptography

# Finding a suitable p

 There exists an elliptic curve *E* with discriminant *D* < 0 reducing modulo *p* to a curve of order *N* if and only if

 $Df^2 = t^2 - 4p = (p + 1 - N)^2 - 4p = (N + 1 - p)^2 - 4N$ 

for some integer f

### Simple algorithm

- 1. Choose a random prime p
- 2. Use Cornacchia's algorithm to solve  $p = u^2 Dv^2$
- 3. If there is a solution deduce  $N_{\pm} = p + 1 \pm 2u$
- 4. Repeat until either  $N_+$  or  $N_-$  is "good"

103

# Best rational approximations

- Euclide algorithm can also be used to compute **best rational approximations** : given  $\chi \in \mathbb{R}$ (not necessarily rational) find p, q such that p/q is closer to  $\chi$  than any fraction with a smaller or equal denominator
- Roughly : run Euclide algorithm with inputs  $\chi$ , 1

 $\chi = s_0 \cdot 1 + r_1, \quad 1 = s_1 \cdot r_1 + r_2, \quad r_1 = s_2 r_2 + r_3, \dots$ 

simultaneously compute  $p_n, q_n$  such that  $r_n = -p_n + q_n \chi$ 

• Can prove that  $\left|\chi - \frac{p_n}{q_n}\right| = \left|\frac{r_n}{q_n}\right| \le \frac{1}{q_n q_{n+1}}$ 

Christophe Petit -Advanced Cryptography

# Cornacchia's algorithm

**Require:** Squarefree d > 0 and prime p

- **Ensure:** A solution to  $p = u^2 + dv^2$ , if one exists
- 1: Compute *r* such that  $r^2 = -d \mod p$
- 2: Compute continued fraction approximations  $a_n/b_n$  to r/p, until  $b_n < \sqrt{p} < b_{n+1}$

3: Set 
$$v = b_n$$
 and compute  $u = \sqrt{\frac{p-v}{d}}$ 

- 4: If u is an integer, return u, v
- Remark : when there is a solution we have  $u = rb_n a_np$
- ▶ Proof when d = 1 : show that u<sup>2</sup> + v<sup>2</sup> = 0 mod p, and u<sup>2</sup> + v<sup>2</sup> < 2p using continued fraction properties</p>

|  | Christophe Petit -Advanced Cryptography | 106 |
|--|-----------------------------------------|-----|
|--|-----------------------------------------|-----|

# Generating good curves

- In cryptography we need curves defined over 𝑘<sub>p</sub> with a large subgroup of prime order q
- Two methods
  - Random generation : generate random curves and compute their orders
  - Complex multiplication method : choose suitable p and q then compute a corresponding curve
- The second method is faster but it produces special curves with small discriminant

Christophe Petit -Advanced Cryptography

107

# Outline

Elliptic Curves

Elliptic Curve Discrete Logarithm Problem

Algorithmic Aspects

Factorization and Primality testing Elliptic Curve Factorization Method Elliptic Curve Primality Proving

Pairings

# Outline

Elliptic Curves

Elliptic Curve Discrete Logarithm Problem

Algorithmic Aspects

Factorization and Primality testing Elliptic Curve Factorization Method Elliptic Curve Primality Proving

Pairings

UNIVERSITY OF Christophe Petit -Advanced Cryptography

# Pollard's p-1 factorization method

- Goal : factor n = pq assuming p 1 is *B*-powersmooth (recall  $x = \prod p_i^{e_i}$  is *B*-powersmooth if  $p_i^{e_i} < B$ )
- Let s be the product of all  $p_i^{e_i} < B$
- By assumption (p-1)|s, hence  $g^s = 1 \mod p$
- We deduce  $gcd(g^s 1, n) = p$
- Only works if some factor p such that p-1 smooth !

|          | Christophe Petit -Advanced Cryptography | 110 |
|----------|-----------------------------------------|-----|
| S UAFURD |                                         |     |

# Elliptic curve factorization method





- ► Idea : generalize previous method when neither p − 1 nor q − 1 are smooth
- The group order  $\#E(\mathbb{F}_p)$  of an elliptic curve can be smooth even when p-1 is not !

# Elliptic curve addition law

- Let  $E: y^2 = x^3 + Ax + B$
- Let  $P_1 = (x_1, y_1)$ ,  $P_2 = (x_2, y_2)$  two points on the curve
- ► The chord-and-tangent rules lead to addition formulae :
- for example we have  $P_1 + P_2 = (x_3, y_3)$  where  $\lambda = \frac{y_2 y_1}{x_2 x_1}$ ,  $\nu = \frac{y_1 x_2 y_2 x_1}{x_2 x_1}$ ,  $x_3 = \lambda^2 x_1 x_2$ ,  $y_3 = -\lambda x_3 \nu$
- These formulae involve divisions
- Over  $\mathbb{F}_p$ , a division by 0 means  $P_3$  is point at infinity
- Over  $\mathbb{Z}_n$ , a division fails if  $(x_2 x_1)$  is not invertible
- A failure reveals a factor of n!

# Elliptic curve factorization method

- 1. Choose E and  $P = (x, y) \in E(\mathbb{Z}_n)$
- 2. Let *B* be a smoothness bound on  $\#E(\mathbb{Z}_p)$  for p|n
- 3. Compute  $s = \prod p_i^{e_i}$  where  $p_i^{e_i} \leq B$
- 4. We have [s]P = O in  $E(\mathbb{Z}_p)$
- 5. Try to compute [s](P) in  $E(\mathbb{Z}_n)$ : division by p occurs and produces an error
- 6. When a division by some d fails, compute

 $gcd(d, n) \neq 1$ 

Christophe Petit -Advanced Cryptography

# Elliptic curve factorization method

For a random curve, we expect #E(𝔽<sub>P</sub>) to be roughly uniformly distributed in

$$\#E(\mathbb{F}_p)\in [(p+1)-2\sqrt{p},(p+1)+2\sqrt{p}]$$

- Let  $B \approx L_p(1/2)$
- Probability to be *B*-smooth is about  $(L_p(1/2))^{-1} = \exp(-c(\log p)^{1/2}(\log \log p)^{1/2})$
- $\blacktriangleright$  Repeat with random curves until you get a factor
- $\blacktriangleright$  Remark : runtime depends on the smallest factor
- ► In practice, the method is used as subroutine to factor middle-size integers when  $\log_2 n \approx 60 80$  bits

|  | Christophe Petit -Advanced Cryptography | 114 |
|--|-----------------------------------------|-----|
|--|-----------------------------------------|-----|

# Factorization in practice : Magma





Outline

# Primality test vs Primality Proof

# Main idea

- Given  $n \in \mathbb{Z}$ , is *n* prime?
- Fermat and Miller-Rabin algorithms are primality tests : they return a definitive no or a plausible yes
- Goldwasser-Killian algorithm aims at primality proving : returns a short proof that a number is prime

- Let *E* be an elliptic curve over  $\mathbb{Z}_n$ , let  $P \neq O \in E$
- When p|n can consider E and P "modulo p"
- If ord(P) is prime then  $ord(P \mod p) = ord(P)$
- Let p|n with  $p < \sqrt{n}$

- ▶ ord( $P \mod p$ ) is bounded above by Hasse's theorem ord( $P \mod p$ ) ≤  $p + 1 + 2\sqrt{p} = (\sqrt{p} + 1)^2 < (n^{1/4} + 1)^2$
- So if ord(P) is prime and  $\geq (n^{1/4} + 1)^2$  then n is prime

| No we have | UNIVERSITY OF |  |
|------------|---------------|--|
| 무성         | OVEODD        |  |
| 8807       |               |  |

Christophe Petit -Advanced Cryptography

·

Christophe Petit -Advanced Cryptography

# Goldwasser-Killian Algorithm

- 1. Randomly choose A, B such that  $gcd(4A^3 + 27B^2, n) = 1$ and  $E: y^2 = x^3 + Ax + B$  has order 2q with q prime
  - GCD condition ensures E regular modulo any divisor of n
  - Order of E computed with Schoof's algorithm, assuming n is prime : if algorithm fails then n is composite
  - Primality of *q* tested with Miller-Rabin algorithm
- 2. Find P of order q in E
  - Select random x until x<sup>3</sup> + Ax + B is square
     Compute corresponding y assuming n is prime :
  - if algorithm fails then *n* composite
- 3. Recursively prove that q is prime : if not then restart
- 4. Return A, B, P, q and a proof that q is prime

Christophe Petit -Advanced Cryptography

# Remarks

- ► Heuristically expect  $O(\log q)$  trials until q is prime, and polytime algorithm
- Atkin-Morain : avoid point counting and use complex multiplication instead

OXFORD

Christophe Petit -Advanced Cryptography

120

# Outline

Elliptic Curves

Elliptic Curve Discrete Logarithm Problem

Algorithmic Aspects

Factorization and Primality testing

Pairings Definition and Protocols Concrete Implementations

Christophe Petit -Advanced Cryptography

# Outline

Elliptic Curves

Elliptic Curve Discrete Logarithm Problem

Algorithmic Aspects

Factorization and Primality testing

Pairings Definition and Protocols Concrete Implementations

Christophe Petit -Advanced Cryptography

Cryptographic pairings

Pairings are non-degenerate, bilinear maps

$$e: G_1 \times G_2 \rightarrow G_3$$

where  $G_i$  are all cyclic groups of the same order r(usually consider  $G_1$ ,  $G_2$  additive and  $G_3$  multiplicative)

► Bilinear :

$$e(P_1 + Q_1, P_2) = e(P_1, P_2)e(Q_1, P_2)$$
  
$$e(P_1, P_2 + Q_2) = e(P_1, P_2)e(P_1, Q_2)$$

▶ Non-degenerate : for all  $P_1 \in G_1$ ,  $P_1 \neq O$ , there exists  $P_2 \in G_2$  such that  $e(P_1, P_2) \neq 1$  (and vice-versa)

OXFORD

Christophe Petit -Advanced Cryptography

# Properties

- e(P, O) = e(O, P) = 1
- $e(-P, Q) = e(P, Q)^{-1} = e(P, -Q)$
- $e(jP,Q) = e(P,Q)^j = e(P,jQ)$  for any  $j \in \mathbb{Z}$
- We say the pairing is symmetric if  $G_1 = G_2$
- For symmetric pairings

$$e(P_1, P_2) = e(P_1, kP_1) = e(kP_1, P_1) = e(P_2, P_1)$$

# Pairings : applications

- Tripartite Diffie-Hellman
- Identity-based encryption
- Short signatures
- Groth-Sahai zero-knowledge proofs of knowledge
- ► ...
- Building new primitives
- Improving efficiency
- Removing random oracles in security proofs (replacing them with new pairing computational assumptions)

Christophe Petit -Advanced Cryptography

# Remember : (Elliptic curve) Diffie-Helman

- Goal : key agreement
   Two parties want to build a common secret key
- Alice chooses random  $r_a$ . She sends  $Q_a := [r_a](P)$  to Bob
- Bob chooses random  $r_b$ . He sends  $Q_b := [r_b](P)$  to Alice
- Alice computes  $K_a := [r_a](Q_b)$
- Bob computes  $K_b := [r_b](Q_a)$
- We have  $K_a = [r_a r_b](P) = K_b$

|   | UNIVERSITY OF |  |
|---|---------------|--|
| - | OXFORD        |  |

Christophe Petit - Advanced Cryptography 126

# 3-partite Diffie-Hellman

Goal : key agreement

Three parties want to build a common secret key

- Public parameters
  - Symmetric pairing  $e: G_1 imes G_1 o G_3$ 
    - A generator P in  $G_1$
- ▶ Party *i* chooses random *r<sub>i</sub>* and sends *Q<sub>i</sub>* = [*r<sub>i</sub>*]*P<sub>i</sub>* to the other parties
- ► On receiving Q<sub>i</sub> and Q<sub>j</sub>, party k computes the common secret key

 $e(Q_i,Q_j)^{r_k}=e(P,P)^{r_ir_jr_k}$ 

Christophe Petit -Advanced Cryptography

- 3-partite Diffie-Hellman (2)
- Originally described for asymmetric pairings, in which case two elements are sent instead of one in first round
- ▶ Bilinear Diffie-Hellman problem (BDH) : given P, P<sub>i</sub> = [r<sub>i</sub>]P for random r<sub>i</sub>, compute e(P, P)<sup>r<sub>1</sub>r<sub>2</sub>r<sub>3</sub></sup>
- ► BDH must be hard for secure 3-partite Diffie-Hellman
- BDH hard implies DH (hence DLP) hard in  $G_1$  and  $G_3$

# Identity-based cryptography

# Boneh-Franklin

- Identity (ID)-based cryptography
  - Public key is (some hash of) identity
    - No need for certificates
    - Trusted Authority (TA) generates private keys
- Simplifies public key infrastructure at the price of key escrow : Trusted Authority knows all secret keys
- Idea of ID-based encryption suggested by Shamir; solution using bilinear pairings by Boneh-Franklin

| See. | UNIVERSITY OF |
|------|---------------|
|      | OXFORD        |

Christophe Petit -Advanced Cryptography

- Identity-based encryption scheme
- Public parameters
  - Pairing  $e: G_1 \times G_1 \rightarrow G_3$
  - Generator  $P \in G_1$
  - ▶ Hash function  $H_1: \{0,1\}^* \to G_1$
  - ▶ Hash function  $H_3$  :  $G_3 \rightarrow \{0,1\}^n$
- ► TA chooses a master secret key s randomly and publishes master public key Q = [s]P

| UNIVERSITY OF | Chuistanka Datit Advanced Counterworky  | 120 |
|---------------|-----------------------------------------|-----|
| STORD OXFORD  | Christophe Petit -Advanced Cryptography | 130 |

Boneh-Franklin (2)

- Public key of user *i* computed as  $Q_i = H_1(ID_i)$
- Private key of user i computed as S<sub>i</sub> = [s]Q<sub>i</sub> by TA, and sent to user i using a secure channel
- Encryption of n-bit message M for party i is

$$C = (C_1, C_2) = ([t]P, M \oplus H_3(e(Q, Q_i)^t))$$

for a randomly chosen t

▶ Party *i* uses its private key *S<sub>i</sub>* to decrypt as

$$M = C_2 \oplus H_3(e(C_1, S_i))$$

UNIVERSITY OF OXFORD Christophe Petit -Advanced Cryptography

# Security notions

- IND-ID-CPA security
  - Adversary can get encryptions on messages of his choice
    Adversary can also get secret keys on identities of his
  - choice
  - ► Adversary chooses two messages *M*<sub>1</sub>, *M*<sub>2</sub>
  - Adversary must distinguish encryptions of M<sub>1</sub> and M<sub>2</sub>
- IND-ID-CCA2 security
  - After receiving an encryption of either M<sub>1</sub> or M<sub>2</sub>, adversary can additionally make decryption queries on other ciphertexts of his choice

# Boneh-Franklin security

▶ IND-ID-CPA secure if BDH is hard & random oracles Proof : H<sub>3</sub> is random oracle so only way to distinguish is to guess pairing value.

Guessing the pairing value corresponds to BDH. Indeed, let r such that  $Q_i = rP$  then adversary sees P, rP, sP, tP and must produce  $e(P, P)^{rst}$ 

- ► Not IND-CCA2 Given  $C = (C_1, C_2)$ , ask for a decryption of  $C' = (C_1, C_2 \oplus R)$
- Can be extended into an IND-CCA2 secure version See paper for details.

Christophe Petit -Advanced Cryptography

# Boneh-Lynn-Sacham (BLS) signatures

- Public parameters
  - $\blacktriangleright \text{ Pairing } e: \textit{G}_1 \times \textit{G}_1 \rightarrow \textit{G}_3$
  - Generator  $P \in G_1$
  - Hash function  $H: \{0,1\}^* \to G_1$
- ▶ User public key is Q = [s]P, for randomly chosen s User secret key is s
- Signature on  $M \in \{0,1\}^*$  is  $\sigma = [s]H(M)$
- Signature  $\sigma$  on M is verified by

$$e(P,\sigma)=e(Q,H(M))$$

| UNIVERSITY OF | Christopho Potit - Advanced Cryptography | 13/ |
|---------------|------------------------------------------|-----|
| Ø OXFORD      | Christophe i etit -Auvanceu Cryptography | 134 |

# BLS signatures (2)

- ► Existentially unforgeable under chosen message attacks if CDH is hard in G<sub>1</sub> & random oracles Intuition : as H is random oracle R = H(m) cannot be manipulated, hence adversary left with computing [s]R from R, P and [s]P
- Very short signatures : one element in G<sub>1</sub> Paper suggests elliptic curve pairing parameters such that security 168-bit BLS signatures ~ 1024-bit RSA at the time (needs revision)

Christophe Petit -Advanced Cryptography

135

# Outline

Elliptic Curves

Elliptic Curve Discrete Logarithm Problem

Algorithmic Aspects

Factorization and Primality testing

### Pairings

Concrete Implementations

# Divisors

- Let *E* be an elliptic curve over a finite field  $K = \mathbb{F}_q$
- A divisor D on E is a formal sum of points

$$D=\sum_{P\in E(\bar{K})}n_P(P)$$

where  $\textit{n}_{\textit{P}} \in \mathbb{Z}$  and all but a finite number of them are 0

- Support of *D* is the set of all points with  $n_P \neq 0$
- Degree of *D* is  $\sum n_P$
- Natural group structure, with neutral element written 0

Christophe Petit -Advanced Cryptography

# Divisor of a function

- Let f be a function on E, and P a point on E
- Write ord<sub>P</sub> f for the order of P at f sign depends on whether P is a zero or a pole of f
- Define the divisor of f as  $(f) = \sum_{P \in E(\bar{K})} \operatorname{ord}_P f(P)$
- (fg) = (f) + (g)
- $(f) = 0 \Leftrightarrow f$  is constant
- (f) defines f up to a constant factor
- D is called a principal divisor if D = (f) for some f
- Define equivalence relation  $D_1 \sim D_2$  if  $D_1 D_2$  principal

|  | Christophe Petit -Advanced Cryptography | 138 |
|--|-----------------------------------------|-----|
|--|-----------------------------------------|-----|

# Addition law

- Any vertical line corresponds to a linear function  $v(x, y) = x \hat{x}$  with divisor (P) + (-P) 2(O)
- Any non vertical line corresponds to a linear function  $\ell(x, y)$  with divisor  $(P_1) + (P_2) + (-P_1 P_2) 3(O)$
- Equation  $P_1 + P_2 = P_3$  equivalent to divisor equality  $(P_3) - (O) = (P_1) - (O) + (P_2) - (O) - (\ell/\nu)$
- Group homomorphism  $P \rightarrow (P) (0)$ up to principal divisors
- Let  $D = \sum_{P} n_{P}(P)$  be a degree 0 divisor on E. Then  $D \sim 0$  if and only if  $\sum_{P} [n_{P}]P = O$ .

Christophe Petit -Advanced Cryptography

# Weil reciprocity

- Let  $D = \sum_{P} n_{P}(P)$  a divisor and f a function on E
- Define
- $f(D) = \prod_P f(P)^{n_P}$
- If deg D = 0 and g = cf for a constant c then f(D) = g(D)
- ► Weil reciprocity : if the support of (f) and (g) are disjoint then

$$f((g)) = g((f))$$

See [BSS], chapter 9 for a proof.

# Tate pairing

- Let *E* defined over a finite field  $K_0 = \mathbb{F}_q$ , and  $n \in \mathbb{Z}_+$
- Let  $K = \mathbb{F}_{q^k}$  be the extension of  $K_0$  containing all the *n*th roots of unity
- Let  $E(K)[n] = \{P \in E(K) \mid [n]P = 0\}$
- Let  $nE(K) = \{[n]P \mid P \in E(K)\}$
- Let  $(K^*)^n = \{u^n \mid u \in K^*\}$
- ► Tate pairing  $e : E(K)[n] \times E(K)/nE(K) \rightarrow K^*/(K^*)^n$  defined by

$$e(P,Q)=f(D)$$

where (f) = n(P) - n(0) and  $D \sim (Q) - (0)$  have disjoint supports

# 

Christophe Petit -Advanced Cryptography

# Properties of the Tate pairing

- ▶ Result independent of the choice of  $D \sim (Q) (0)$ :  $D' \sim D$  implies  $f(D')/f(D) \in (K^*)^n$ Proof : write D' = D + (g). Then f(D') = f(D)f((g)) and  $f((g)) = g((f)) = g(n(P) - n(0)) = (g(P)/g(0))^n$
- ▶ Result independent of representative of  $Q \in E(K)/nE(K)$  Q' = Q + [n]R implies  $f(D')/f(D) \in (K^*)^n$ Proof : we have  $D' \sim D + n(R) - n(0)$  hence up to *n*th powers  $f(D') = f(D + n(R) - n(0)) = f(D)(f((R) - (0)))^n = f(D)$
- ► Can replace (f) = n(P) n(0) by (f') = n(P+R) n(R)Proof : let h so that (h) = (P+R) - (P) - (R) + (0). Let  $f' = fh^n$ so  $f'(D)/f(D) \in (K^*)^n$  and (f') = (f) + n(h) = n(P+R) - n(R)

| <u>ARA</u> | UNIVERSITY OF | Christophe Datit Advanced Counterworks  | 140 |
|------------|---------------|-----------------------------------------|-----|
| U          | OXFORD        | Christophe Petit -Advanced Cryptography | 142 |

# Properties of the Tate pairing(2)

- Linearity wrt first term Proof : let  $P_1 + P_2 = P_3$  and g a function such that  $(P_3) - (0) = (P_1) - (0) + (P_2 - 0) + (g)$ . Let  $f_i$  such that  $(f_i) = n(P_i) - n(0)$  for i = 1, 2. Then  $f_3 = f_1 f_2 g^n$  satisfies  $(f_3) = n(P_3) - n(0)$ .
- ▶ Linearity wrt second term Proof : let  $Q_1 + Q_2 = Q_3$ . Let  $D_i \sim (Q_i) - (0)$  for i = 1, 2, 3. Then  $D_3 \sim D_1 + D_2$  hence  $f(D_3) = f(D_1)f(D_2)$ .
- Non-degenerate

Christophe Petit -Advanced Cryptography

# Reduced Tate pairing

- The output of the Tate pairing is an element in  $K^*/(K^*)^n$
- Representation as an element of  $K^*$  not unique
- Let  $\mu_n = \{u \mid u^n = 1\} \subseteq K^*$  be the *n*th roots of unity
- Reduced Tate pairing

$$e: E(K)[n] \times E(K)/nE(K) \rightarrow \mu_n$$

defined by

$$e(P,Q) = e'(P,Q)^{(q^k-1)/n}$$

where e' is the Tate pairing

# Embedding degree

- ▶ To define the Tate pairing we need an extension  $\mathbb{F}_{q^k}$  of  $\mathbb{F}_q$ , such that *n* divides  $q^k 1$
- The smallest such k is called the embedding degree
- k is the order of q modulo n i.e. k divides  $\varphi(n)$
- Construction only practical for small embedding degrees
- ► Given any reasonably large n dividing #E(𝔽<sub>q</sub>), unlikely that n divides q<sup>k</sup> - 1 for small k
- We will need special curves to implement pairings

| 12:00 | UNIVERSITY OF |
|-------|---------------|
| 있무요   | OVEODD        |
| 100   | UAFURD        |

Christophe Petit -Advanced Cryptography

# Weil pairing

- ▶ Let  $\mu_n = \{u \mid u^n = 1\} \subseteq K^*$  be the *n*th roots of unity
- Weil pairing is a map

 $e_n: E(K)[n] \times E(K)[n] \rightarrow \mu_n$ 

defined by

$$e_n(P_1, P_2) = f_1(D_2)/f_2(D_1)$$
  
where  $D_i \sim (P_i) - (0)$  and  $(f_i) \sim nD_i$ 

145

Christophe Petit -Advanced Cryptography 146

# Properties of Weil pairing

- Bilinearity
- Alternating :  $e_n(P, P) = 1$  so  $e_n(P, Q) = e_n(Q, P)^{-1}$
- Non-degenerate : if  $e_n(P, Q) = 1$  for all  $Q \in E[n]$  then P = 0
- Let *n* prime and  $P \neq 0$  in E[n]. Then  $e_n(P, Q) = 1$  if and only if  $Q \in \langle P \rangle$ .
- Often for cryptographic parameters

$$e_n(P,Q) = e'(P,Q)/e'(Q,P)$$

where e' is the Tate pairing

Christophe Petit -Advanced Cryptography

- FR / MOV reduction
- Let E an elliptic curve over 𝔽<sub>q</sub>, let P ∈ E(𝔽<sub>q</sub>) a point of prime order r, and let Q ∈ ⟨P⟩
- Let *e* a bilinear pairing on *E* with images in  $\mathbb{F}_{a^k}^*$
- ► Frey-Rück / Menezes-Okamoto-Vanstone reduction
  - Find S such that  $e(P,S) \neq 1$
  - Let g = e(P, S) and h = e(Q, S)
  - Find x such that  $h = g^x$
- The last step is subexponential in q<sup>k</sup>, hence subexponential in q when k is not too large

# Symmetric pairings

- In many protocols we need symmetric pairings  $e: G_1 \times G_1 \rightarrow G_3$
- Tate and Weil pairings are such that e(P, P) = 1
- Idea to build symmetric pairings
  - Find an endomorphism  $\phi: E \to E$  sending some  $G_1 = \langle P \rangle$  of prime order to  $G_2 \neq G_1$
  - Define a modified Weil/Tate pairing as

$$\hat{e}_n(P,P) = e_n(P,\phi(P))$$

Christophe Petit -Advanced Cryptography

# Distortion maps

- Let  $P \in E(\mathbb{F}_q)$  with prime order r, and suppose k > 1
- A distortion map is an endomorphism  $\phi : E \to E$ , defined over  $\mathbb{F}_{p^k}$ , sending  $P \in E(\mathbb{F}_q)[r]$  to  $\phi(P) \notin E(\mathbb{F}_q)[r]$
- Example :
  - Let  $p = 2 \mod 3$
  - ▶ Let  $E: y^2 = x^3 + a$  with  $a \in \mathbb{F}_{p^2}$  square but not cube ▶ Let  $u \in \mathbb{F}_{p^6} \setminus \mathbb{F}_{p^2}$  such that  $u^6 = a/a^p$

  - Define  $\phi(x, y) = (u^2 x^p, u^3 y^p)$
- ▶ If E has a distortion map then E is supersingular Proof : let  $\pi$  be the Frobenius. For  $P \in E(\mathbb{F}_q)$  we have  $\pi(\phi(P)) \neq \phi(P) = \phi(\pi(P))$  hence End(E) is non-Abelian.

| UNIVERSITY OF | Christopho Botit Advanced Cryptography  | 150 |
|---------------|-----------------------------------------|-----|
| 🐷 OXFORD      | Christophe Fetit -Auvanceu Cryptography | 130 |

# Trace map

- Let *E* defined over  $\mathbb{F}_q$
- Let P be a point of order r in  $E(\mathbb{F}_{q^k})$
- Trace map defined as

$$Tr(x, y) = \sum_{i=0}^{k-1} (x^{q^i}, y^{q^i})$$

• The map  $\phi: P \rightarrow [k]P - \operatorname{Tr}(P)$  is a homomorphism, with the trace zero subgroup as image

• Can ensure  $e(P, \phi(P)) \neq 1$ 

Christophe Petit -Advanced Cryptography

# Miller's algorithm

- Both Tate and Weil pairing require the evaluation f(D)where (f) = n(P) - n(0) and  $D \sim (Q) - (0)$
- ► As *n* is of cryptographic size, even storing *f* could take prohibitive time and space
- Miller's algorithm uses a variant of square-and-multiply algorithm to successively compute  $f_i(D)$  where

$$(f_i) \sim i(P) - ([i]P) - (i-1)(0)$$

The algorithm uses recursive formula

$$\begin{aligned} (f_{i+j}) &= (f_i) + (f_j) + ([i]P) + ([j]P) - ([i+j]P) - (0) \\ &= (f_i) + (f_j) + (\ell_{i+j}/v_{i+j}) \end{aligned}$$

# Pairing-friendly elliptic curves

- Efficient arithmetic on the elliptic curve (q not too big)
- Efficient pairing computation (q<sup>k</sup> not too big)
- Elliptic curve discrete logarithm hard (elliptic curve subgroup of size r at least 160 bits)
- ► Discrete logarithm problem hard in image group (q<sup>k</sup> at least 1000-2000 bits, sometimes bigger)
- We want  $\rho = \log q / \log r$  as small as possible

| ۲    | UNIVERSITY OF | Christo |
|------|---------------|---------|
| - CC | UAPUKD        |         |

stophe Petit -Advanced Cryptography

# Supersingular curves

### Embedding degree is at most 6

| k                                                              | Elliptic curve data                                                                                           |  |  |
|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--|--|
| 2                                                              | $E: y^2 = x^3 + a \text{ over } \mathbb{F}_p$ , where $p \equiv 2 \pmod{3}$                                   |  |  |
|                                                                | $#E(\mathbb{F}_p) = p+1$                                                                                      |  |  |
|                                                                | Distortion map $(x, y) \mapsto (\zeta_3 x, y)$ , where $\zeta_3^3 = 1$ .                                      |  |  |
| 2                                                              | $y^2 = x^3 + x$ over $\mathbb{F}_p$ , where $p \equiv 3 \pmod{4}$                                             |  |  |
|                                                                | $#E(\mathbb{F}_p) = p + 1.$                                                                                   |  |  |
|                                                                | Distortion map $(x, y) \mapsto (-x, iy)$ , where $i^2 = -1$ .                                                 |  |  |
| 3                                                              | $E: y^2 = x^3 + a$ over $\mathbb{F}_{p^2}$ , where                                                            |  |  |
|                                                                | $p \equiv 5 \pmod{6}$ and $a \in \mathbb{F}_{p^2}$ , $a \notin \mathbb{F}_p$ is a square which is not a cube. |  |  |
|                                                                | $#E(\mathbb{F}_{p^2}) = p^2 - p + 1.$                                                                         |  |  |
|                                                                | Distortion map $(x, y) \mapsto (x^p/(\gamma a^{(p-2)/3}), y^p/a^{(p-1)/2}),$                                  |  |  |
| where $\gamma \in \mathbb{F}_{p^6}$ satisfies $\gamma^3 = a$ . |                                                                                                               |  |  |
| Picture source : Advances in ECC, p204.                        |                                                                                                               |  |  |

 Small characteristic curves (k = 4, 6) are now broken by MOV + quasipolynomial time algorithm in image field

| OXFORD Christophe Petit -Advanced Cryptography | 154 |
|------------------------------------------------|-----|
|------------------------------------------------|-----|

# Miyaji-Nakabayashi-Takano (MNT) curves

▶ Suppose  $#E(\mathbb{F}_q) = q + 1 - t$  prime and  $k \in \{3, 4, 6\}$ . Then q and t must satisfy the following relations

| <i>k</i> | q                   | t                   |
|----------|---------------------|---------------------|
| 3        | $12\ell^2 - 1$      | $-1\pm 6\ell$       |
| 4        | $\ell^2 + \ell + 1$ | $-\ell$ or $\ell+1$ |
| 6        | $4\ell^{2} + 1$     | $1\pm 2\ell$        |

- Fix small D and search for solutions of t<sup>2</sup> − 4q = −Dy<sup>2</sup> with q + 1 − t prime (quadratic diophantine equation in y and ℓ solved with Euclidean algorithm, & primality test)
- Use CM method to generate curves

# Other methods

- Cocks-Pinch method
- Barreto-Naehrig curves
- Dupont-Enge-Morain method
- Brezing-Weng curves
- Barreto-Lynn-Scott curves
- •
- ► See Freeman-Scott-Teske, A taxonomy of pairing-friendly elliptic curves

155

Christophe Petit -Advanced Cryptography

# Security considerations

- Hardness of pairing problems typically implies but is not implied by ECDLP/ECDHP hardness
- Besides BDHP, many other assumptions suggested, but they have not been well-studied (see Koblitz-Menezes, The brave new world of bodacious assumptions in cryptography)
- Even the "purest" pairing problems probably need more study (ask me for a research project in that direction)

Christophe Petit -Advanced Cryptography

# Outline

Elliptic Curves

Elliptic Curve Discrete Logarithm Problem

Algorithmic Aspects

Factorization and Primality testing

Pairings

Christophe Petit -Advanced Cryptography

158

# Conclusion on Elliptic Curve Cryptography

- ECDLP is typically much harder to solve than DLP, hence allowing smaller keys
- Assumptions related to the Weil and Tate pairings have allowed to build many schemes with interesting properties
- Extra structure (endomorphisms, isogenies) used to improve efficiency, without affecting security so far