Discrete Logarithm Problem (1977)

The new technique makes use of the apparent difficulty
of computing logarithms over a finite field GF(q) with a

Ad Va n Ced C ry ptog ra p h y prime number ¢ of elements. Let

Y = aX mod ¢, forl<X<g-1, (4)

E | | | pt | C C urve C ry ptOgl’a phy where « is a fixed primitive element of GF(g), then X is

referred to as the logarithm of Y to the base a, mod ¢:

X =log, Y mod q, forl<Y=<gqg-1 5)

Christophe Petit

Calculation of Y from X is easy, taking at most 2 X log, ¢
multiplications [6, pp. 398-422]. For example, for X =
18,

University of Oxford

Y =al% = (((a%)?)?)? X o® (6)

Computing X from Y, on the other hand can be much more
difficult and, for certain carefully chosen values of g, re-
quires on the order of ¢/ operations, using the best known
algorithm [7, pp. 9, 575-576], [8].

Source : Whitfield Diffie, Martin Hellman, New directions in Cryptography
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Generalization to other Groups ECRYPT Il key length recommendations (2012)

Factoring  Discrete Logarithm  Elliptic

. . . . . . Level Protection Symmetric Hash
» Given a cyclic group (G, o) (written multiplicatively), o S I VI o
1 Only sccaptabi o sutnonteation g sze a2 -
a generator g of G and a second element h € G, PR e e r— o6 w5 se v s

k h th k h Should not be used for confidentiality in new systems
= Short-term protection against medium organizations,
compute x such that g 3 Tnedumeim protecion agains small oganizatons 72 008 44 w8 a4 1w
Very short-term protection against agencies,
long-term protection against small organizations
4 Smallest general-purpose level, 80 1248 160 1248 160 160
2-key 3DES restricted to 2 plaintext/ciphertexts,
protection from 2015 to 2015
Legacy standard level
5 2-key 3DES restricted to 10° plaintext/ciphertexts, 96 1776 192 1776 192 192
protection from 2015 to 2020
Wedium-term protection
3-key 3DES, protection from 2015 fo 2030
Long-term protection
7 Generic application-independent recommendation, 128 3248 256 3248 256 256
protection from 2015 to 2040
"Foreseeable future”

12 2432 224 2432 224 224

8 Good protection against quantum computers, 256 15424 512 15424 512 512
unless Shor’s algorithm applies
» 1985 : Koblitz and Miller independently propose to use All ey sizes are provided n bits. These are the minimal sizes fr securly

elliptic curves in cryptography

Source : waw.keylength. com
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www.keylength.com

Outline Main references

Elliptic Curves

Elliptic Curve Discrete Logarithm Problem » Silverman, The Arithmetic of Elliptic Curves
» Blake-Seroussi-Smart, Elliptic curve cryptography
Algorithmic Aspects » Blake-Seroussi-Smart, Advances in Elliptic curve
cryptography
Factorization and Primality testing

Pairings

UNIVERSITY OF
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Outline QOutline

Elliptic Curves Elliptic Curves
Weierstrass equations Weierstrass equations
The group law

Rational maps between elliptic curves
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Elliptic Curve Weierstrass equation

» Smooth, projective algebraic curve of genus one,
with a specified point O » Let K be a (finite) field and a; € K
» O is the“point at infinity” in the projective plane > Weierstrass equation

» Abelian variety : forms a commutative group defined by

2 3 2
. . . . + a1xy + azy = X~ + axx® + asx + a
algebraic fomulae, with O as the identity element Y Py asy 2 ‘ °

v

E(K) = {(x,y) € K? satisfying the equation} U{O}
» O is a special point, called point at infinity

» In this course

» Curves over finite fields
» Concrete models

% UNIVERSITY OF UNIVERSITY OF
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Projective coordinates Parameters of Weierstrass curves

V2 + aixy + asy = x>+ aox® + agx + ag.

Y?Z + a1 XYZ + a3YZ? = X? + a,X?Z + a, XZ + 26 Z°. » Define by = a2 + 4ay, by = 234 + a133, bs = a3 + 43,
bg = a?ag + 4aras — arazay + apas — aj,
» Define ¢, = b3 — 24by, cg = b3 + 36byby — 216bg
Define the discriminant
» Point at infinity O = [O 21 0] A — —bgbs _ 8b2 _ 27b§ 1+ Obybybs

. - . . . 3
» Define the j-invariant j = %“

» Homogeneous or projective Weierstrass equation

v
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Regular curves and Discriminant Regular vs Singular Curves (over rational field)

y2=x3 -3x+3
4=-2160

s s s / o v/
Yo+ aixy + a3y = X + axx” + agx + ag. / /\" /

» Let f(x,y) = y? + aixy + asy — x> — axx?® — agx — ag \/J/\ ‘ \/ll
» The curve is regular iff :

f(x0,¥0) = 0 = (67 /0x,6F/6y) (x0.0) 7 (0,0) port |

Otherwise, the curve is singular /‘“" S/
» E regular & A(E) #0 (Proof : Silverman Prop. 111.1.4)

. . . \.\ \\\

» This course : elliptic curves are smooth/regular curves oo twoatstinet | N,

ne
tangent direction

UNIVERSITY OF
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Reduced Weierstrass equation Weierstrass in characteristic 2 and 3

> If p=3: reduced form either

y2=x3+ Ax+B. y? = x>+ ax® + a, A= —233a, j=—a3/a
or
» Suppose p # 2,3. Any Weierstrass equation can be y? = x>+ asx + a, A=-a}j=0

reduced to this form using a linear change of variables
» If p =2 : reduced form either

_ 3 2
» We have A = —16(4A3 + 27B?) V2 4 xy = x3 + ax? + ag, A=ag j=1/a
»Wehavej:w or
y2 4+ asy = x3 + asx + ag, A=a} j=0

Christophe Petit -Advanced Cryptography
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Isomorphisms of curves Isomorphisms and j-invariants

» What are the rational maps that preserve Weierstrass
form and point at infinity, and are isomorphisms ? » j is invariant under isomorphisms
Only some linear transformations

» Thecurve y2?=x>+1hasj=0
2_ 3 L
(X, Y) = (Px + r, Py + uPsx + t) The curve y*= = x +Xl31951—17228 ; . .
The curve y? = x3 + 728X+ 1725 has j-invariant j
for any u# 0 and any r,s, t (j #0,1728)

> Ule(Ez) = A(El) and j(Ez) :./(El)

NIVERSITY OF
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Outline “Inverse” of a point

Elliptic Curves y2 =x3+ Ax+ B.

The group law » Let P :=(x,y) be a point of a curve

» Define —P as the symmetric of P by the x-axis, that is
—P:= (X7 _.y)

X UNIVERSITY OF UNIVERSITY OF
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More generally Adding two distinct points

y2=x3+ Ax+B.

y2 + aixy + azy = x4+ 32x2 + asX + 36
B » Let P:=(x1,y1) and Q := (x2, y2) where x; # x»
i Let.P = (xy) € E(K). ) ) » Draw the line through P and Q
> Define —P as the other point on the curve with the same » Call —R the third intersection of this line with the curve

x-coordinate » Define P + Q as the symmetric of —R by the x-axis

P = (x,—y — ax — a) /

» Define P + (—P) = O the point at infinity

b 229
» Define P+ O0O=P=0+P QQ\‘)WR

UNIVERSITY OF

UNIVERSITY OF
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Doubling a point Secant and tangent rules

y?=x3+ Ax + B.
» Similar definitions for more general equations :
> Let P:=(x,y)
D he t ¢ line th hop » Draw tangent or secant
» Draw the tangen ine throug o . > Intersect with the curve to get —(P + Q)
Call —R the second intersection of this line with the curve » Take second point on the curve with same x coordinate

» Define P + P as the symmetric of —R by the x-axis

v

» Any non vertical line intersects the curve at exactly
three points (counted with multiplicities)
A tangent point is counted twice
The point at infinity O intersects every vertical line

UNIVERSITY OF
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Adding two distinct points Doubling a point

_)/2 + aixy + azy = X3+ 32x2 + asx + 6. y2 + aixy + a3y = x4 32)(2 + asx + ag.
» Suppose p # 0,2,3. » Suppose p # 0,2, 3.
» Let Pr = (x1,01), P2=(x,y2) € E(K) > Let P = (x,y) € E(K)
> Let A= % > Let A= ‘3X2;5j-2ax11—j—4a;aly
» Let v = % > Let v = —x3+agx+2ag—azy

2y+aix+as
» Let P+ P := (x3,y3) where x3 := A\®> + a;\ — a, — 2x and
ysi=—(A+a)xs—v—a3

> Let Py + P> := (x3, y3) where
X3 Z:)\2+31/\—82—X1 — X2 and
ysi=—(A+a)xs—v—as

» y = Ax + v is the line through P; and P, > ¥ =Ax+vis the tangent line at P

UNIVERSITY OF

Christophe Petit -Advanced Cryptography OXEORD Christophe Petit -Advanced Cryptography
),

UNIVERSITY OF

XFORD

A group law ? Scalar multiplication

» The sum of two points of the curve is a point of the curve
(including the point at infinity) y?=x3+ Ax + B.

» The point at infinity is the neutral element .
P ¥ » For k € Z, define

» Every element has a unique inverse
» Associativity? (P+ Q)+ R=P+(Q+R) [K(P)=P+P+...+P
—_——

Consider 6 homogeneous lines defined by the above operations, and

kti
the 8 points O, P, Q, R, (P + R), =(P + Q), plus 2 points S, T me
that we must show equal. Suppose they are distinct. Multiplying » If K finite, then for any P € E(K)’ there is m € Z such
the line equations you get two homogeneous cubics. The space of that [m](P) -0 (m is called the order of P)

homogeneous cubics vanishing at 8 given points has dimension 2,
so the curve equation must be linear combination of the two cubics.
Evaluation at S, T shows the curve equation is identically 0.

UNIVERSITY OF
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Scalar multiplication Scalar multiplication

kP=P+P+---+P
|

P > In reduced Weierstrass form there exist polynomial maps
mes

U, Vi, Sk, ti such that

K0 = (209559

vk(x)"7 t(x)

» Proof :

\/

» Start with arbitrary rational maps in x,y
» Use curve equation to replace any non linear term in y
» Complete the squares in the denominators

> Use —[k]P = [k](—P) to deduce [k](P) = (gxgy%o

/\
N

» Replace in equation y? = f(x) to deduce v3|t? and t2|fv3

% UNIVERSITY OF UNIVERSITY OF
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Torsion points Division polynomials

» Division polynomials Wy(x, y) : polynomial with degree

» Let N € Z*. The N-torsion Ex[N] over K is at most 1 in y and minimal degree in x such that
Ex[N] := {P € E(K) | [N](P) = O} Un(xy) =0 & 3(x,y) € Ex[N]\ {0}
» Ex[N] is a subgroup of E(K) » Recursive formulae
» Example for y2 = x3 + Ax + B, the 2-torsion is Yo =0, ¢ =1, ¥»=2y,
P Y 1h3 = 3x* + 6ax? + 12bx — a2,
EK[2] _ {(X, 0) ‘ X3 +Ax+ B = 0} 1/)4 = 4y(X6 + 5ax* + 20bx® — 5a°x%2 — 4abx — 8b% — 33),

w2m+1 = 1/Jm+2’L/13m - @mflwamﬂ,

w2m = (1/1m+21/),2nf1 - wm—2’(/)2m+1)1/}m/2y
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Division polynomials (2) Number of rational points

y2 + arxy + ay = X3 —+ 82X2 —+ ag X + dg.
» Can prove
» Pick a random x € F .
[K(x,y) = (‘»ﬁk(x) wk(X#)) _ ( k1t 1l}zk(><7y)) 2 solutions for y with probability ~ 1,2
7 Ve(x) Yi(x.y) Vi) T 20R(x) 0 solution for y with probability ~ 1/2

‘ P2~y o » In fact : Hasse's theorem
_ 2 / Yk Yk, :
where ¢ = XUZ — Vit 1, wp = Sttt

» Over algebraic closure of K we have |[#E(Fy) — (p"+ 1) <24/p" I

Ex[N] ~ (Z/NZ) x (Z/NZ)

proof : see Silverman, Chapter V.

2 UNIVERSITY OF UNIVERSITY OF
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Number of rational points Group structure over finite fields

» Finite, Abelian group of rank at most 2

» We have
> Weil-Deligne theorem (Riemann hypothesis for EC) E(F,) = Zpy X Zn,
imoli
IMples . n =n n where ni|ny and my|g — 1
#HEFy)=1—a"—7"+p
where 72 — 7wt +p=0and t € Z

(7 and 7 complex conjugates) (proof : see Silverman, Chapter V)

> Value t, ;== 7"+ 7" < 2,/p" called trace of E(Fyn)
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Outline Isogeny

» Group homomorphism defined by a rational map

W:E1‘>E2

Elliptic Curves

Rational maps between elliptic curves » Example : scalar multiplications when E; = E;

> In reduced Weierstrass form there exist polynomial maps
Uy, Vi, Sk, tx such that

V(x,y) = <%y%>

and moreover v3|t? and £2|fv3
» Proof identical as for scalar multiplications
» lsogeny is separable if (u/v)' # 0

% UNIVERSITY OF UNIVERSITY OF
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Isogeny kernel Dual isogeny

> Kernel ker¥ ={P e E; | V(P) =0}

» Degree W = max(deg u, deg v)

» For example ker[k] = E[k] and deg[k] = k® A
» Degree deg W = # ker W when W separable VoW = [deg V]

» For any isogeny W : E; — E,, there exists a dual isogeny
V : E, — E; such that

> ker W is a subgroup of order deg W in E(K) » deg U = deg ¥

» For any curve E there are { + 1 isogenies of degree ¢ V(E[deg V]) = ker ¥
(defined over K) from this curve, and each one defines » WoW =[degV] on E,
a quotient curve E/W

v
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Endomorphism Frobenius endomorphism

» Let A,B e K:=TFg, for g:=p™
Let E:y?=x3+Ax+ B

» The map

» An endomorphism of E is an isogeny E — E [7] : (x,y) = (x%, y)

» Example : scalar multiplications ) )
is an endomorphism

» Called the Frobenius endomorphism
» Commutes with scalars : [k]([7](P)) = [#]([k](P))

» Unseparable isogeny

Christophe Petit -Advanced Cryptography i S Christophe Petit -Advanced Cryptography

The endomorphism ring Trace of the Frobenius

» Frobenius endomorphism for a curve defined over Fg
» If ¢1 and ¢, are endomorphisms, then

¢1 + ¢2 is an endomorphim (+ is addition on E) [7]: E(Fgr) — E(Fqr)
¢1 0 ¢y is an endomorphism (o is composition) (x,y) = (x9,59)
> Therefore Va, b € Z, the map » Satisfies a quadratic equation
[a+ b7 : (x,y) = [al(x, ) + [B]([7](x, y)) [7? — tr + q] = [0]
is an endomorphim meaning V(x,y) € E(K), (xqz,yq2) —[t](x9, y9) + [q](x,y) = O
» Addition and composition define a ring structure » Note E(F,) = ker(1 — 7)

» Remember t = g + 1 — #E(F,) with [t| < 2,/q

), UNIVERSITY OF
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Structure of the endomorphism ring Outline

» Scalar multiplications {[k] : k € Z} = Z
» The endomorphism ring of an elliptic curve is either Z, o ) .
an order in a quadratic imaginary field, or an order in a Elliptic Curve Discrete Logarithm Problem

. R Definition and Protocols
quaternion algebra [Silverman 111.9.4] Recommended Curves

» Over finite fields it is always bigger than Z Anomalous attack
» Ordinary curves : order in a quadratic imaginary field

End(E) CZ x nZ with m®> — tn + p =0
» Supersingular curves : order in a quaternion algebra

dr,¢: E — E sit. m¢ # ¢7 and

End(E) CZ X 7Z x ¢Z X wpZ

NIVERSITY OF
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Outline Elliptic curve discrete logarithm problem (ECDLP)

» Let K be a finite field, let E be a curve over K,
let P € E(K) and let Q € (P).
Find k such that Q = [k]P.
» Fields used in cryptography are prime fields (mostly)
and binary fields with a prime degree extension
(for efficiency, particularly in hardware devices)

Elliptic Curve Discrete Logarithm Problem
Definition and Protocols

» Typically the order of P is a large prime, at least 160 bits

X UNIVERSITY OF 2 UNIVERSITY OF

OXFORD Christophe Petit -Advanced Cryptography , ' OXFORD Christophe Petit -Advanced Cryptography




Elliptic Curve Diffie-Helman problem (ECDHP) Elliptic curve Diffie-Helman

» Goal : key agreement
Two parties want to build a common secret key
> Given P and [a]P and [b]P, compute [ab]P
» Also believed to be very hard
» Can solve ECDHP if can solve ECDLP,
but other way around not known in general » Alice computes K, := [r.](Qp)

» Bob computes Kj, := [r](Qa)

» Alice chooses random r,. She sends Q, := [r,](P) to Bob
» Bob chooses random ry,. He sends Qp := [rp](P) to Alice

» We have K, = [r.rp](P) = Kp

Christophe Petit -Advanced Cryptography i S Christophe Petit -Advanced Cryptography

Elliptic curve EI Gamal Elliptic curve El Gamal (2)

» Goal : public key encryption

» Key generation : choose K, E and P € E(K). » Elliptic curve decisional Diffie-Hellman :
Choose secret key x. Reveal public key E, P, Q = [x](P) Given P and [a]P and [b]P and [c]P,
If ECDLP hard, x cannot be recovered from Q. decide whether ¢ is ab or random
» Encryption : to encrypt M € E(K), choose random r. » Theorem : elliptic curve El Gamal is IND-CPA secure
Compute C; = [r](P) and G = M + [r](Q) under ECDDH assumption
Both C; and G, are random points on the curve. (proof is the same as over finite fields)

» Decryption : compute
G — [X(G) = M+ [(XI(P)) = [XI([11(P)) = M

UNIVERSITY OF ), UNIVERSITY OF
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ECDSA ECDSA : signature

» Public key signature standard »letf : E—-TF, : P=(x,y) = xmodgq
» Parameters defined by where x is some well-defined integer representation

» H a hash function of the x-coordinate of P
> K a finite field » To sign a message m :
> g a prime .

. Ch k randomly in {1,..., -1
» E an elliptic curve over K with gh points, h < 4 oose k randomly in { 4 }

. Let T = kP
» Pa pon.wt of order g on £ Let r = f(T). If r = 0 start again
» Key generation Let e = H(m)

» Choose secret key x randomly in {1,...,qg —1}
» Set public key Q = xP

Let s = (e + xr)/k mod q. If s = 0 start again
Return (r, s)

ook wnN
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ECDSA : verification ECDSA : security

» Existential unforgeability, if we replace the hash function
by a random function and the group by a generic group,

» To verify signature (r,s) on a message m ! - :
and suppose f is almost invertible

» Reject if ry,s ¢ {1,...,q—1}

» Let e = H(m) » Essential that k does not repeat as otherwise two

> Let 1y = e/s mod q and uy = r/s mod q signatures (r,s) and (r',s") give

» Let T =P+ wn@ / /

> Accept iff r = f(T) XZSE*SEmOdq
r(s’'—s)

» Correctness : uj + xup = (e + rx)/s = k mod g
hence thyP+ Q=T (used to recover the secret key of Sony PS3)

» More attacks if some bits of k leak or repeat

(see later for lattice-based attacks)
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Christophe Petit -Advanced Cryptography OXFEORD Christophe Petit -Advanced Cryptography
),

UNIVERSITY OF




Outline ECDLP cryptanalysis : state-of-the-art

» Generic attacks : Pollard’s rho, Pohligh-Hellman,. ..

. ) ) » Anomalous attack if |E(F,)| = p (see later in these slides)
Elliptic Curve Discrete Logarithm Problem

» MOV attack if efficient pairings (see later in these slides)
Recommended Curves » Weil descent reduction to hyperelliptic curve discrete
logarithms (not covered in this course)

» Index calculus attacks being developed, perhaps
subexponential but worse than generic ones in practice

(see bonus slides; ask me for a dissertation project)

» Best attacks are generic ones for well-chosen parameters
160-bit ECDLP ~ 1024-bit RSA

UNIVERSITY OF UNIVERSITY OF
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NIST curves NIST curves (2)

» 15 curves and base points on these curves,
to be used by US federal government

» 5 curves over prime fields, with pseudo-Mersenne primes > De facto world standard
for efficiency » Ongoing revision, likely to drop most curves including all
» 5 curves with parameters defined over IF> binary curves, and to include a few other popular curves

» 5 additional curves in characteristic 2 . .
» Seed claimed to derive from some passphrase

» Curve parameters are derived from a given seed,
using SHA-1, until the curve has prime order

» See http://csrc.nist.gov/groups/ST/toolkit/
documents/dss/NISTReCur.pdf

» Suspicion seed chosen to allow trapdoor attacks
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Other commonly used curves

» See http://safecurves.cr.yp.to/

for a classification and analysis of curves recommended by

ANSI, IEEE, BSI,...and the one used in Bitcoin

UNIVERSITY OF
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Anomalous attack

» Let E be an elliptic curve over IF,, with p prime

» Assume #E(F,) =p

» In that case, we can lift the discrete logarithm problem
over the p-adic numbers, where it turns out to be easy

» Remark : condition #E(F,) = p can be checked easily,
and very unlikely to hold for random curves

2% UNIVERSITY OF
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QOutline

Elliptic Curve Discrete Logarithm Problem

Anomalous attack

UNIVERSITY OF
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p-adic numbers (informally)

> Let p be a prime
» LetreQ
» We can write r = %pi with a, b, p coprime
» p-valuation of r defined by |r|, = p~’
> |.|p defines a norm hence a distance d(ri,n) =|rn — r|,
» Considering all limits of Cauchy sequences of rationals
under |.|, norm, we get the p-adic numbers Q,
(the same way we get R using usual |.| norm)
» Any p-adic number can be uniquely written as » ., aip'

» Practical computations up to some precision (modulo p‘)
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Lifting from F,, to Q, A group homomorphism

» Let y? = x® + Ax + B defining an elliptic curve over Qq

2 _ 3 -~ i
> Let y* = x*+ Ax + B defining an elliptic curve £ over I, » Let w(z) be the power series solution to the equation

» See E as an elliptic curve E defined over Qp

» Lift P and Q to points P and Q over E w = 2*+ Azw® + Bw®
To lift a point (x,y) keep x and solve y? = x> + Ax + B R
up to some precision over Q, using Hensel's lemma » There is a group homomorphism Hq : El(Qq) — Gq
(solve the equation modulo p?, then p3, etc) defined by

> Let £1(Q,) = {P € E(Q,) | P mod p = 0} 0w
subgroup of £(Q) 0ulP) = ( [ wladiz) @) = 2+ F2z 4 Tt

» We have E(Q,)/E1(Q,) = E(F,)
where d; are polynomials in A, B and z; = —x(P)/y(P)

% UNIVERSITY OF UNIVERSITY OF
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Anomalous attack QOutline

» Assumption : p = #E(F,)
» Lift P and @ to points P and Q over E
» Compute 0,(pP) and 6,(pQ) up to O(p?) terms

» The equation @ — kP = 0 implies Algorithmic Aspects
Faster arithmetic
ep(PQ) - kep(p/s) =0 mod p? Alternative Models
Generating good curves
» Compute _
0
k = P(p(_?) mod p
0p(PP)
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Outline Point addition and point doubling

> Let E:y?2=x3+ asx + a3 and let P; = (x;,y;) € E
> If (x2,52) = (x1, —y1) then Py + P, = O
» Otherwise P; + P> = (x3,y3) with

2
N X3 = AN —x3—Xx
Algorithmic Aspects 3 ! 2
Faster arithmetic 3 = —Ax3—VU
where
A\ = 27N gpd p = Axe—yex if Pl 7& P2
xz;xl X2;><1
)\ — 3x2+a4 and V= —x>+agx+2ap If P1 — 'D2
y 2y

» How to compute [k]P?
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Double and add algorithm Double and add algorithm ( “left-to-right”)

» Scalar multiplication : given k and P, return [k]P

) Scalar multiplication : given k and P, return [k]P
I Let k=30 k2 - P & [K]

L Let k=21 4+ 377 k2

2. P P;

< PiQ [P L
3: for i=1 to n do - for ie 1d
4 P« [2)P 3: or i=n to ) o
5 Qe Q+[kIP “ Q“[]Qk ,
6: end for 5 Q < Q+ [kii]

6: end for
7: return Q
e . 7: return Q@
» Let n = log k. Scalar multiplication requires
> n point doublings » Same cost as the “right-to-left” version

» n/2 point additions on average
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Projective coordinates Window methods

» Goal : avoid divisions in addition/doubling formulae
(more expensive than additions and multiplications)

» A point P = (x,y) is now represented as P = (X, Y, Z)
where x =X/Z and y = Y/Z

» P, = +P; tested as x120 = xoz1 and Y120 = £y»zy

» Goal : reduce the number of additions with
precomputation
» Simplest variant
» Precompute P; = [i]P for i =0,...,2k — 1
> In left-to-right version, perform at least k doublings

» Doubling and addition re-written without division before each addition
» Double-and-add algorithm performed without division » Cost is now n doublings, 2;;1 - % additions,
» If needed, a single division 1/Z is performed at the end plus a precomputation of 2% — 2 additions

to recover affine coordinates

NIVERSITY OF
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Non adjacent form representations Cost of NAF representation
» Goal : reduce the number of additions » Cost is n doublings and an additions/substractions
» Observe addition and substraction have the same cost > What is a?

Consider a state automaton with two states 0 and +1
State goes from +1 to 0 with probability 1

» Use signed representations with k; € {—1,0,1} >
>
» State goes from 0 to £1 with probability 1/2
>
>

to ensure that 1 or -1 is always followed by 0
» Algorithm to compute signed representations :

. State goes from 0 to 0 with probability 1/2
1: while k>0 do

At equilibrium we have o = (1 — a)1 hence o = £

2 !f kodd then k; = 2 — (k mod 4) » Cost is n doublings and n/3 additions or substractions
3: if k even then k; =0 o / ) )

4 k (k—K)/2 > B.etFer addl'tlon/subs.tractlon chains may exist, but

5. i+l finding optimal one is NP-hard

6: end while » Can be combined with window methods
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Multi-exponentiations Frobenius expansions

» Goal : compute > [k;]P; faster than by serial computation

> Idea : do the doublings only once » Goal : for elliptic curves defined over 5,

> Algorithm . replace double-and-add by Frobenius-and-add
L Let kj =3 7o k;i2' » Note that Frobenius map (x,y) — (x2,y?) is a very

2: Q < Zj Pjn efficient operation, especially if elements of Fon are

3: for i=n t°21 do represented using a normal basis {a?,i=0,...,n— 1}

:' @« 21Q » There is efficient algorithm writing k = >_, ki’

6 (use 9% — tp+2 =0) (see BSS IV.3 and references therein)

Q <+ Q+ > [ki-1]P;
: end for
7: return @

» Can be combined with other tricks

UNIVERSITY OF
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Gallant-Lambert Vanstone Euclide algorithm

» Goal : given integers a and b, find d = gcd(a, b)
> dla, d|b imply d|(a + kb) for any integer k
Require: a > b
Ensure: ged(a, b)
1. if b|a then
return b

» Goal : exploit efficient endomorphism when we have one

» Example : if 12 = —1 then ¢ : (x,y) — (—x,ty) is an
endomorphism of E : y? = x3 + ax, with ¢2 = [~1]
» Let f(x) = x? + tyx + ny characteristic polynomial of ¢
> Let N order of P 2
» Assume there is A € Z/NZ such that f(A\) =0 mod N 3: else
4 Compute g such that 0 <a—gb< b
5 return ged(b, a — gb)
6: end if
» Complexity O(]a|?); best algorithms achieve O(|a| log|a)

» Then ¢ = [\] or [ty — A] on (P) (assume first case)
> ldea : write k = aA + b mod N with a, b about n/2 bits
then compute ag(P) + bP using multi-exponentiation
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Extended Euclide algorithm Gallant-Lambert Vanstone

» Goal : compute r and s such that ra+ sb = gcd(a, b) » Goal : exploit efficient endomorphism when we have one
Require: a > b > Idea : write k = aA + b mod N with a, b about n/2 bits
Ensure: d = gcd(a, b) and r, s, such that ar + bs = d then compute ag(P) + bP using multi-exponentiation

1. if b|a then » To find a. b
2: return 3,0,1 )

» Run extended Euclide algorithm with inputs N, A and

3: else stop it at the middle, when all coefficients are ~ /N
4 Compute g such that 0 <a—gb < b » Deduce u;, v; of size about /N s.t. uiA + v; = 0 mod N
5: d,r,s < gcd(b,a — gb) » Compute C1, G € Rs.t. (0, k) = Gi(ur, vi) + Go(uz, v)
6 return d,s,r —gs » Round Cj, G, to nearest integers c1, &
7: end if » Return (a,b) = (G — c1)(u1, v1) + (G — &)(u2, v2)

> Indeed if rb+ s(a — gb) = d then sa+ (r — gs)b=d » Equivalently, apply Babai's nearest plane algorithm

» Complexity O(|al?); best algorithms achieve O(|a| log|a|) to a well-chosen lattice (see later)

NIVERSITY OF
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Point compression Outline

» Goal : reduce both memory and scalar multiplication costs
by projecting points on x coordinates
» Observation :

. . - . . Algorithmic Aspects
» x coordinate determines an elliptic curve point up to sign

» x([k]P) only depends on x(P)
» Some existing tricks :

Alternative Models

» Represent (x, y) by x and an additional bit for y
» Only use x in signature schemes
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Birrational equivalence Why other models 7

» Informal definition : two curves E and E’ defined by the » Any elliptic curve can be written in (short) Weierstrass
equations F(x,y) = 0 and F/(X,Y) = 0 are birrationally form, but other forms may be better in practice
equivalent if there exist rational maps » Faster arithmetic, in particular decreasing the number

of field multiplications for one scalar multiplication
» Complete addition formula (“no special case”)

» Preventing implementation bugs
» Side-channel resistance

p:E—E and ¢:E' - E

such that ¢ o ¢ is the identity map on E for all but a few

exceptional points ) o . )
» Special curves with “useful” properties

(definition makes sense over characteristic 0 fields) (but beware cryptanalysis)

X UNIVERSITY OF
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Elliptic curve formula database Edwards curves

Genus-1 curves over large-characteristic fields

» Defined by an equation (assume characteristic not 2)

2 2
2=xHarx?+16%a*x
Tripling-oriented Doche-lcart-Kohel curves: y2=x>+3*a*(x+1)?

Edwards curves: x2+y2=c2¥(1+d*x2*y?) X2+ y2 = c2(1 + dX2y2)

Hessian curves: x>+y3+1=3*d*x*y

Doubling-oriented Doche-Icart-Kohel curves:

2.2 L)
bi intersections: s™+¢*=1, a*s*+d“=1

» Addition of two points (xi, 1) and (x2, y») defined by

Short Weiers
Twisted Edwards curve:
Twisted Hessian curves:

ey ( X1y + X0 N2 — xix )
) ) C(l + dX1X2_y1y2)7 C(]. — dX1X2y1_y2)

Ordinary genus-1 curves over binary fields
» Neutral element is (0, c) and —(x,y) = (—x,y)

» (0, —c) has order 2 and (—c,0) has order 4

Short Wei curves: y*+x*y=x3+a2*x>+a6

Source : www.hyperelliptic.org/EFD/

UNIVERSITY OF

Christophe Petit -Advanced Cryptography j Christophe Petit -Advanced Cryptography



www.hyperelliptic.org/EFD/

Edwards curves (2) Outline

Only elliptic curves with order divisible by 4
can be written in this form
» Complete addition law : no special case

» Efficient arithmetic

v

Algorithmic Aspects

» See Bernstein-Lange, Faster addition and doubling on Generating good curves

elliptic curves

e Christophe Petit -Advanced Cryptography
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Generating good curves Random Curves

> In cryptography we need curves defined over IF,

with a large subgroup of prime order g » ldea :
» Two methods » Generate random A, B € K with 4A%3 +27B? £0

» Random generation : generate random curves and » Compute the order of E: y?> =x34+ Ax+ B
compute their orders » Repeat until the order is good

» Complex multiplication method : choose suitable » We need an efficient algorithm to compute the order
p and g then compute a corresponding curve
» The second method is faster but it produces special curves

o Christophe Petit -Advanced Cryptography
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Remember : CRT Point counting

» Goal : given E defined over F, return #E(Fn)

» By Hasse's theorem, we have lower and upper bounds

» Chinese Remainder Theorem
» Let p; =2,3,5,... be prime numbers, let €; be integers

let t; € {0,1,...,p — 1} » By Weil-Deligne's theorem, sufficient to compute #E(F,)
» The congruence system t = t; mod p;, Vi » We know that [7* — t7 + g] = [0]

has a unique solution modulo [T pf’ » On the m-torsion, we have
» This solution can be computed efficiently [7? — tm + q] = [7* — (t mod m)7 + (g mod m)]

> If [m](P) = O and [72 — t,m + g](P) = O then

» Example : t =3 mod 2%, t =2 mod 5 = t = 7 mod 20 t—t mod m
- m

2 UNIVERSITY OF UNIVERSITY OF
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Schoof's algorithm Further on point counting

1. Use Hasse's theorem to bound #E(F,)

2. Find primes p; s.t. ] pi > 2,/q
3. For each p;
3.1 Find P,' c E[p,‘], P,‘ 75 (0]
32 Fortj=0,...,pi — 1,
compute [72 — t;7 + q](P;)
until we get O
3.3 Deduce t = t; mod p;
4. Use CRT to recover t.
Deduce #E(F,).

» Can also use powers of primes
» Improvements by Elkies, Atkin,...

» p-adic methods
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Complex multiplication method Complex multiplication

» Remember
2t =0 and N=#E(F,)= 1—t
» Two steps : T TP an #E(Fp) = p+

» Choose suitable P and N > By Hasse's theorem'
» Compute the curve using complex multiplication theory

. . 2
» Faster than random curves/ point counting A=t"—4p<0

but it produces special curves
Careful : this A is not the discriminant defined before

» End(E) is an order in an imaginary quadratic field
(we say E has complex multiplication by this order)

NIVERSITY OF
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Deuring's lifting theorem Computing CM j-invariants over C

. . » Let p and N fixed, hence fixing A as well
» For any E/F,, there exists E/K such that E mod p = E

(where K is some number field such that p is split in K)
and moreover any ¢ € End(E) arises as ¢ mod p

» j-invariants with complex multiplication by a given order
with discriminant A satisfy some symmetry property

where ¢ € End(E) > This symmetry Ieads.to an _equatlon in j that can be
solved numerically with arbitrary precision
> Efficient to compute elliptic curves over C » Non trivial fact : all such j are roots of a polynomial Hp
with complex multiplication by a given order, with integer coefficients

as long as the discriminant is small enough » Hp is called the Hilbert class polynomial

» deg Ha = the class number of K
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Reduction modulo p Curve equation from j-invariant

» E:y?=x3+1hasj=0
» Ha can be computed exactly using finite precision for j » E:y?=x3+x hasj = 1728

since its coefficients are integer 27

2(1728—))

» E:y?2=x3+ax — awith a=
» The j-invariants over F, with complex multiplication by has j-invariant j # 0, 1728

an order of discriminant A are the roots of Ha mod p
» E:y?2=x3+ Ax+ B and E9 : y?2 = x3 + Ad?x + Bd®

» Coefficients of Ha are huge, so only practical for small A have the same j invariant
> In fac_t if A = Df? then Ha mod p = Hp mod p » If d is a quadratic non residue then £ is called the
so it is enough to compute Hp quadratic twist of £ and t(E) = —t(E?)

» f #E=p+1-+tthen #E9=p+1—t

UNIVERSITY OF
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CM method Finding a suitable p

» There exists an elliptic curve E with discriminant D < 0

» Choose a small D and a suitable p (see next slide) reducing modulo p to a curve of order N if and only if

» Compute the Hilbert polynomial Hp DfP =t —4p=(p+1—N)32—4p=(N+1-p)—4aN

(computation complexity is quasi-linear in D)

» Compute j as a root of Hp modulo p for some integer f
» Compute E()) » Simple algorithm
» Return E(j) if #E(j) =N 1. Choose a random prime p

Use Cornacchia’s algorithm to solve p = u? — Dv?
If there is a solution deduce N = p+ 1+ 2u
Repeat until either Ny or N_ is “good”

» Otherwise return its quadratic twist

bl SN
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Best rational approximations Cornacchia’s algorithm

» Euclide algorithm can also be used to compute Require: Squarefree d > 0 and prime p
best rational approximations : given y € R Ensure: A solution to p = u? + dv?, if one exists
(not necessarily rational) find p, g such that 1: Compute r such that r> = —d mod p
p/q is closer to x than any fraction with a smaller 2: Compute continued fraction approximations a,/b, to r/p,
or equal denominator until b, < \/p < bny1
» Roughly : run Euclide algorithm with inputs x, 1 3: Set v = b, and compute u = P%d"z

4: If u is an integer, return u, v
X=%-1+n, l=s-n+n n=sntn...
» Remark : when there is a solution we have u = rb, — a,p

simultaneously compute p,, g, such that r, = —p, +
y P Pn: Gn " P 7 GnX » Proof when d =1 : show that u? 4+ v? = 0 mod p,
» Can prove that ‘X — % = ;—” <3 qlﬂ and u? 4+ v2 < 2p using continued fraction properties
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Generating good curves Outline

» In cryptography we need curves defined over IF,
with a large subgroup of prime order g

» Two methods
» Random generation : generate random curves and
compute their orders
» Complex multiplication method : choose suitable Factorization and Primality testing

p and g then compute a corresponding curve Elliptic Curve Factorization Method
. . . Elliptic C Primality Provi
» The second method is faster but it produces special fptic urve Frimality Froving

curves with small discriminant
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Outline Pollard’'s p — 1 factorization method

» Goal : factor n = pg assuming p — 1 is B-powersmooth
(recall x =[] p/" is B-powersmooth if pf' < B)

> Let s be the product of all pj" < B

» By assumption (p — 1)|s, hence g°=1mod p

Factorization and Primality testing

S __ —
Elliptic Curve Factorization Method > We deduce ng(g 1, n) =p

» Only works if some factor p such that p — 1 smooth!

NIVERSITY OF
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Elliptic curve factorization method Elliptic curve addition law

»let E:y?=x34+Ax+B
> Let Py = (x1,%1), P2 = (x2, ) two points on the curve

» The chord-and-tangent rules lead to addition formulae :

for example we have P; + P> = (x3, y3) where

A= Lon o, esyx
xo—x1' Xo—X1

X3:)\2—X1—X2, y3=—Ax3 — v

)

> Idea : generalize previous method when > These formulae involve divisions

neither p — 1 nor g — 1 are smooth » Over F,, a division by 0 means P; is point at infinity

» The group order #E(Fp) of an elliptic curve can be » Over Z,, a division fails if (X2 — Xl) is not invertible

smooth even when p — 1 is not! .
P » A failure reveals a factor of n!
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Elliptic curve factorization method Elliptic curve factorization method

» For a random curve, we expect #E(F,) to be roughly
Choose E and P = (x,y) € E(Z,) uniformly distributed in

Let B be a smoothness bound on #E(Z,) for p|n
Compute s — [t where pt* < B HE(F,) € [(p+1) — 2V (p+ 1) + 27

We have [s]P = O in E(Z),) » Let B~ L,(1/2)

Try to compute [s](P) in E(Z,) : division by p occurs » Probability to be B-smooth is about

and produces an error (Lp(1/2))7 = exp(—c(log p)*/?(log log p)*/?)

6. When a division by some d fails, compute » Repeat with random curves until you get a factor

ged(d, n) #1

oA~ W

» Remark : runtime depends on the smallest factor

» In practice, the method is used as subroutine to factor
middle-size integers when log, n ~ 60 — 80 bits
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Factorization in practice : Magma Outline

I Factorization

The general Factorizaton function is designed to give close to optimal performance for the factorization of integers that may be
encountered in the course of daily computations. The strategy employed is as follows (the next subsection gives a more detailed
description of the individual methods). Fist of al a compositeness test is used to ensure that the argument is composite; if not the
primality proving algorithm is invoked (unless a flag s set to avoid this - see below). See the previous node for compositeness
testing and primalty proving. This operation is repeated for any non-trivial factor (and cofactor) found along the way. Before any of
the g iques is employed, itis Il is of the special form b+-1, in which case an inteligent
database look-up is used which s likely to be successful f b and k are not too large. This is equivalent to the Cunninghan function
on'b, , +-1, described in the next node. In the firsttrue stage of factorization triaf ivision is used to find powers of 2 and other
small primes (by default up to 10000). After this it s checked whether the remaining composie number is the power of a positive
integer, i 50 the appropriate oot is used henceforth. Afte this Pollarc’s p method is applied (using 8191 iterations by default). The.
bound on tialdivision factors and the number of terations for p can be set by the optional parameters Trialbivisiontinit and
PollardihoL init. Itis possible, from this point on, that several composite factors il need factorization. The description below

appls 0 6achof hese Factorization and Primality testing

o sl o g depoyed ars usul indicatd by ECM (forEftc Curve Method and MPQS (o e Poynora
st v, By ceh Lo i ' el 10 st aciors f n o) aod with pvamlors it cipaon

size of the remaining (composite) factors. After that, if a composite factor of at least 25 digits remains, MPQS is used; it is the best H H H H H
Tt ikt o et rogasof v hr Aot 4 decknr i specity o roauct o o e of o o0l Elliptic Curve Primality Proving
oa ¥t o cmpoats e smate o 3t ECM B agah ke, w1 s s 100 a1 e

T st i oo oot 1o wer. i g s k. etes vt WPGS vk o pple i mamers of o iz,

and provided the user has not limited the number of ECM trials by setting the ECHLinit. Thus, unless both MPQSLinit and
ECMLinit are set as optional parameters by the users, the algorithm will continue unti the complete factorization has been
completed.
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Primality test vs Primality Proof Main idea

» Let E be an elliptic curve over Z,, let P # O € E

» When p|n can consider E and P “modulo p”

» Fermat and Miller-Rabin algorithms are primality tests : » If ord(P) is prime then ord(P mod p) = ord(P)
they return a definitive no or a plausible yes

» Given n € Z, is n prime?

> Let p|n with p < \/n

» Goldwasser-Killian algorithm aims at primality proving : » ord(P mod p) is bounded above by Hasse's theorem
returns a short proof that a number is prime ord(Pmod p) < p+ 1+ 2\/p= (\/,3+ 1)2 < (n1/4 T 1)2

» So if ord(P) is prime and > (n'/* 4 1)? then n is prime
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Goldwasser-Killian Algorithm Remarks

1. Randomly choose A, B such that gcd(4A% + 2782, n) = 1
and E : y? = x3 + Ax + B has order 2q with g prime
» GCD condition ensures E regular modulo any divisor of n
» Order of E computed with Schoof’s algorithm, assuming
n is prime : if algorithm fails then n is composite
» Primality of g tested with Miller-Rabin algorithm
2. Find P of order g in E
» Select random x until x3 4 Ax 4 B is square

» Compute corresponding y assuming n is prime :
if algorithm fails then n composite

» Heuristically expect O(log g) trials until g is prime, and
polytime algorithm

» Atkin-Morain : avoid point counting and use complex
multiplication instead

3. Recursively prove that g is prime : if not then restart
4. Return A, B, P, q and a proof that g is prime
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Outline QOutline

Pairings Pairings
Definition and Protocols Definition and Protocols
Concrete Implementations
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Cryptographic pairings Properties

» Pairings are non-degenerate, bilinear maps
e:G1><Gg—>G3 >e(P,O)=e(O7P)=1
here G; are all cycli f th d »e(“P. Q) = (P, Q) = &(P, ~Q)
where G; are all cyclic groups of the same order r v ol 7 - . .
(usually consider Gi, G, additive and Gz multiplicative) e(P, Q) = e(P, QY = e(P.jQ) for any j € Z
» Bilinear : » We say the pairing is symmetric if G; = G,

» For symmetric pairings
e(Pi+ QuPy) = e(Py,P)e(QuP2) &

E(Pl,P2+QQ) e(Pl,PQ)e(P].,Qz) e(Pth):e(PhkPl)=e(kP17P1)=e(P2,P1)

» Non-degenerate : for all P; € Gi, P; # O, there exists
P, € G such that e(Py, P;) # 1 (and vice-versa)
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Pairings : applications Remember : (Elliptic curve) Diffie-Helman

» Tripartite Diffie-Hellman » Goal : key agreement

> Identity-based encryption Two parties want to build a common secret key

» Short signatures Alice ch d <h J p Bob
» Groth-Sahai zero-knowledge proofs of knowledge > Alice chooses random r,. She sends Q, := [1.](P) to _0
» Bob chooses random ry,. He sends Qp := [rp](P) to Alice

» Building new primitives > Alice computes K := [r;](@)
» Improving efficiency » Bob computes Kj := [r](Qa)
» Removing random oracles in security proofs (replacing » We have K, = [r.r](P) = K

them with new pairing computational assumptions)
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3-partite Diffie-Hellman 3-partite Diffie-Hellman (2)

» Goal : key agreement

Three parties want to build a common secret ke
P Y » Originally described for asymmetric pairings, in which

case two elements are sent instead of one in first round
» Bilinear Diffie-Hellman problem (BDH) :

given P, P; = [r;]P for random r;, compute e(P, P)""
» BDH must be hard for secure 3-partite Diffie-Hellman
» BDH hard implies DH (hence DLP) hard in G; and G3

» Public parameters
» Symmetric pairing e : G1 X G — G3
» A generator P in Gy
» Party i chooses random r; and sends Q; = [r;]P; to the
other parties
> On receiving Q; and @;, party k computes the common
secret key

(@i Q) = e(P.P)"™"
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Identity-based cryptography Boneh-Franklin

> ldentity (ID)-based cryptography » |dentity-based encryption scheme
» Public key is (some hash of) identity » Public parameters
» No need for cer.tificates . » Pairing e : Gy x G, — G3
» Trusted Authority (TA) generates private keys » Generator P € G;
» Simplifies public key infrastructure at the price of » Hash function H : {0,1}* — Gy
key escrow : Trusted Authority knows all secret keys » Hash function H3 : Gz — {0,1}"
» ldea of ID-based encryption suggested by Shamir; » TA chooses a master secret key s randomly and
solution using bilinear pairings by Boneh-Franklin publishes master public key Q = [s]P

NIVERSITY OF
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Boneh-Franklin (2) Security notions

v

Public key of user i computed as Q; = Hy(ID;)

Private key of user i computed as S; = [s]Q; by TA,
and sent to user / using a secure channel

» IND-ID-CPA security

» Adversary can get encryptions on messages of his choice
» Adversary can also get secret keys on identities of his

v

» Encryption of n-bit message M for party i is choice
» Adversary chooses two messages My, M,
C=(G,G)=(t]P,Ma Hs(e(Q, @)Y)) » Adversary must distinguish encryptions of M; and M>

» IND-ID-CCA2 security
» After receiving an encryption of either M; or My,
adversary can additionally make decryption queries
on other ciphertexts of his choice

for a randomly chosen t

v

Party i uses its private key S; to decrypt as

M= G @ Hs(e(G, S)))
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Boneh-Franklin security Boneh-Lynn-Sacham (BLS) signatures

> IND-ID-CPA secure if BDH is hard & random oracles > Public parameters
Proof : Hs is random oracle so only way to distinguish is to guess » Pairing e: G x G — G3
pairing value. » Generator P € Gy
Guessing the pairing value corresponds to BDH. Indeed, let r such » Hash function H: {0,1}* = G
that Q; = rP then adversary sees P, rP, sP, tP and must produce

v

User public key is @ = [s]P, for randomly chosen s
User secret key is s

Not IND-CCA2 » Signature on M € {0,1}* is o = [s]H(M)
Given C = (Cy, ), ask for a decryption of C' = (G, G; ® R)

e(P, Py

v

» Signature ¢ on M is verified by
» Can be extended into an IND-CCAZ2 secure version

See paper for details.

e(P,0) = e(Q, H(M))

UNIVERSITY OF
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BLS signatures (2) Outline

» Existentially unforgeable under chosen message attacks
if CDH is hard in G; & random oracles
Intuition : as H is random oracle R = H(m) cannot be manipulated,

hence adversary left with computing [s]R from R, P and [s|P

» Very short signatures : one element in G;
Paper suggests elliptic curve pairing parameters such that security

168-bit BLS signatures ~ 1024-bit RSA at the time (needs revision) Pairings

Concrete Implementations
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Divisors Divisor of a function

» Let E be an elliptic curve over a finite field K = Fq » Let f be a function on E, and P a point on E

Write ordpf for the order of P at f
sign depends on whether P is a zero or a pole of f

b= Z np(P) > Define the divisor of f as (f) = }"pc gz ordpf(P)

PeE(K
o (f8) = () + (&)
(f) =0« f is constant

v

A divisor D on E is a formal sum of points

v

v

where np € 7Z and all but a finite number of them are 0

v

» Support of D is the set of all points with np # 0 > (f) defines f up to a constant factor
» Degree of D is > np » D is called a principal divisor if D = (f) for some f
» Natural group structure, with neutral element written 0 » Define equivalence relation D; ~ D, if D; — D, principal

Christophe Petit -Advanced Cryptography i S Christophe Petit -Advanced Cryptography

Addition law Weil reciprocity
» Any vertical line corresponds to a linear function > Let D =} p np(P) adivisor and f a function on £
v(x,y) = x — X with divisor (P) + (—P) — 2(0) > Define
» Any non vertical line corresponds to a linear function f(D) = H f(P)™
P

E(X,_y) with divisor (Pl) + (Pz) + (_'Dl - P2) - 3(0)

» Equation P; + P, = P equivalent to divisor equality > If deg D = 0 and g = cf for a constant ¢

(Ps) = (0) = (P1) = (0) + (P2) = (0) = (¢/v) then (D) = (D)

» Group homomorphism P — (P) — (0) » Weil reciprocity : if the support of (f) and (g) are
up to principal divisors disjoint then

» Let D =", np(P) be a degree 0 divisor on E. f((g)) = &((f))

Then D ~ 0 if and only if 3 5[np]P = O. See [BSS], chapter 9 for a proof.
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Tate pairing Properties of the Tate pairing

> Let E defined over a finite field Ky =Fg, and n € Z » Result independent of the choice of D ~ (Q) — (0) :

» Let K = Fy be the extension of Ky containing D’ ~ D implies f(D')/f(D) € (K*)"
all the nth roots of unity Proof : write D' = D + (g). Then f(D’) = f(D)f((g)) and

» Let E(K)[n] = {P € E(K) | [n]P = 0} f((g)) = &((f)) = g(n(P) — n(0)) = (g(P)/&(0))"

> Let nE(K) = {[n]P | P € E(K)} » Result independent of representative of Q € E(K)/nE(K)

» Let (K*)" = {u" | uec K*} Q = Q + [n]R implies f(D")/f(D) € (K*)"

» Tate pairing e : E(K)[n] x E(K)/nE(K) — K*/(K*)" Proof : we have D’ ~ D 4 n(R) — n(0) hence up to nth powers
defined by f(D’) = £(D + n(R) — n(0)) = f(D)(f((R) — (0)))" = (D)

e(P,Q) =f(D) » Can replace (f) = n(P) —n(0) by (') = n(P+ R) — n(R)

where (f) = n(P) — n(0) and D ~ (Q) — (0) Proof : let h so that (h) = (P + R) — (P) — (R) + (0). Let f' = fh"
have disjoint supports so f'(D)/f(D) € (K*)" and (') = (f) + n(h) = n(P + R) — n(R)

UNIVERSITY OF
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Properties of the Tate pairing(2) Reduced Tate pairing

» Linearity wrt first term » The output of the Tate pairing is an element in K*/(K*)"

Proof : let P, + P, = P5 and g a function such that » Representation as an element of K* not unique
(P3) = (0) = (P) = (0) + (P2 — 0) + (). > Let p, = {u |u" =1} C K* be the nth roots of unity
Let f; such that (f;) = n(P;) — n(0) for i = 1,2.

Then f; = fifg" satisfies (f3) = n(Ps) — n(0). > Reduced Tate pairing

» Linearity wrt second term e: E(K)[n] x E(K)/nE(K) — fin
Proof : let @ + Q> = Q5. Let D; ~ (Q;) — (0) for i = 1,2,3.
Then D3 ~ Dy + Ds hence f(D3) = f(D1)f(D2). defined by

e(P7 Q) = e’(P./ Q)(qkfl)/n

» Non-degenerate ) -
where €’ is the Tate pairing
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(0),43(0)23D]

Christophe Petit -Advanced Cryptography g Christophe Petit -Advanced Cryptography




Embedding degree Weil pairing

» To define the Tate pairing we need an extension IF » Let p, = {u |u" = 1} C K* be the nth roots of unity
of F,, such that n divides ¢ — 1 B

» The smallest such k is called the embedding degree
» k is the order of g modulo n i.e. k divides ¢(n) e, : E(K)[n] x E(K)[n] — un

» Construction only practical for small embedding degrees

» Weil pairing is a map

Gi bly | dividing #E(F,) defined by
> Iveén any reasonably large n dividing q) en P, P,) = f D. f D
unlikely that n divides g* — 1 for small k (Pr. P2) = A(D2)/(D1)

» We will need special curves to implement pairings where D; ~ (Pi) = (0) and (f) ~ nD;

Christophe Petit -Advanced Cryptography i S Christophe Petit -Advanced Cryptography

Properties of Weil pairing FR / MOV reduction
» Bilinearity
> Alternating : en(P7 P) =1 so en(P’ Q) = en(Q7 P)*l » Let E an elliptic curve over Fq, let P € E(Fq) a point
> Non-degenerate : if ,(P, Q) =1 for all Q@ € E[n] of prime order r, and let Q € (P)
then P =0 » Let e a bilinear pairing on E with images in sz

» Let n prime and P 0 in E[n]. » Frey-Riick / Menezes-Okamoto-Vanstone reduction

— 1 : Find S such that e(P,S) # 1
Th P.Q)=1if ly if P). g

en e,(P, Q) if and only if Q € (P) " Let g — e(P.S) and h— (@.5)
» Often for cryptographic parameters » Find x such that h = g*

, , » The last step is subexponential in g, hence
en(P,Q) =€ (P,Q)/€(Q. P) subexponential in g when k is not too large

where €’ is the Tate pairing
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Symmetric pairings Distortion maps

. » Let P € E(FF,) with prime order r, and suppose k > 1
» In many protocols we need symmetric pairings

e: Gl X Gl — G3
» Tate and Weil pairings are such that e(P,P) =1

» A distortion map is an endomorphism ¢ : E — E, defined
over F i, sending P € E(F,)[r] to ¢(P) ¢ E(Fq)[r]

» Example :
» |dea to build symmetric pairings > Let p=2 mod 3
» Find an endomorphism ¢ : E — E sending some » Let E:y?=x*+awithae F2 square but not cube
Gy = (P) of prime order to G, # Gy » Let u € Fus \ Fj2 such that u® = a/aP
» Define a modified Weil /Tate pairing as » Define ¢(x, y) = (uxP, uyP)
. » If E has a distortion map then E is supersingular
én(P, P) = en(P.#(P)) Proof : let 7 be the Frobenius. For P € E(Fg) we have

w(¢(P)) # ¢(P) = ¢(n(P)) hence End(E) is non-Abelian.

UNIVERSITY OF
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Trace map Miller's algorithm

» Both Tate and Weil pairing require the evaluation f(D)

> Let E defined over F, where (f) = n(P) — n(0) and D ~ (Q) — (0)
» Let P be a point of order r in E(Fg) » As n is of cryptographic size, even storing f could take
» Trace map defined as prohibitive time and space

» Miller's algorithm uses a variant of square-and-multiply
algorithm to successively compute f;(D) where

(£) ~ i(P) = ([11P) — (i — 1)(0)
» The map ¢ : P — [k]P — Tr(P) is a homomorphism, » The algorithm uses recursive formula

with the trace zero subgroup as image _ . : ; 1PY — (I + 1P —
» Can ensure e(P,¢(P)) #1 (fivs) = gg i g?; i EL]JFP;‘:()[J]P) (i +41P) = (0)

x
-

Tr(x,y) =Y (x7,y%)

i

Il
o
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Pairing-friendly elliptic curves Supersingular curves

» Embedding degree is at most 6

» Efficient arithmetic on the elliptic curve k | Elliptic curve data
bi 2 [ E:y* =2+ a over F,, where p = 2 (mod 3)
(g not too big) #E(F,) =p+1
- .. . Distortion map (z.y) — (G2, y), where ¢ = 1.
» Efficient pairing computation 2 [ y? =2 + x over F,,, where p = 3 (mod 4)
(g* not too big) #E(F,) =p+1.
Lo K . Distortion map (z,y) — (—x,iy), where i = —1.
» Elliptic curve discrete logarithm hard 3[E:y? =2+ a over Fye, where
D . . =5 (mod 6) and a € Fye, a ¢ F, is a square which is not a cube.
(elliptic curve subgroup of size r at least 160 bits) ;;E(fpf:;‘i 5 and o 5 e o £ Fy I 2 square which s 1ot cube
. . A Distortion map (z,y) — (27/(ya®=2/3), y? Ja®=D/?),
> D|icrete logarithm proble_m hard in image group where 7 € Fp satisfies 1  a.
(g* at least 1000-2000 bits, sometimes bigger) Picture source : Advances in ECC, p204.
» We want p = log g/ log r as small as possible » Small characteristic curves (k = 4,6) are now broken

by MOV + quasipolynomial time algorithm in image field

UNIVERSITY OF UNIVERSITY OF
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Miyaji-Nakabayashi-Takano (MNT) curves Other methods

» Suppose #E(F,) = q+1—t prime and k € {3,4,6}.

Then g and t must satisfy the following relations » Cocks-Pinch method
kg t » Barreto-Naehrig curves
3[12¢2—-1 | -1+6/ » Dupont-Enge-Morain method
4| P+L+1| ~Lorl+1 » Brezing-Weng curves
6|42 +1 1+2¢ » Barreto-Lynn-Scott curves
» Fix small D and search for solutions of t?> — 4q = —Dy? Yo
with g+ 1 — t prime (quadratic diophantine equation in » See Freeman-Scott-Teske, A taxonomy of pairing-friendly
y and ¢ solved with Euclidean algorithm, & primality test) elliptic curves

» Use CM method to generate curves
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Security considerations

QOutline

» Hardness of pairing problems typically implies
but is not implied by ECDLP/ECDHP hardness

» Besides BDHP, many other assumptions suggested,
but they have not been well-studied (see Koblitz-Menezes,
The brave new world of bodacious assumptions in cryptography)

» Even the “purest” pairing problems probably need more
study (ask me for a research project in that direction)
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Conclusion on Elliptic Curve Cryptography

» ECDLP is typically much harder to solve than DLP,
hence allowing smaller keys

» Assumptions related to the Weil and Tate pairings have
allowed to build many schemes with interesting properties

» Extra structure (endomorphisms, isogenies) used to
improve efficiency, without affecting security so far
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