Why lattice-based cryptography ?

Advanced Cryptography
Lattice-based Cryptography

» Connection to NP-hard problems

» Worst-case vs average-case hardness
. . No quantum attack

Christophe Petit 7 o quantum axack , _

» Assumptions diversity : Don't put all eggs in same basket

University of Oxford » Faster solutions to old problems (encryption, signatures)

» First solutions to other problems
(fully homomorphic encryption, multilinear maps)
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Lattice-based cryptanalysis Outline

. . L Lattices and lattice hard problems
» More parameters than discrete logarithms & factorization

hence somewhat harder to evaluate Lattice-based constructions

» Other schemes also solved by reduction to lattice problem

» Knapsack cryptosystems Solving hard lattice problems
» Factoring with partial key exposure
» Lattice attacks on DSA, ECDSA Hardness results on main lattice problems

(first applications of lattices in cryptography)
Cryptanalysis applications
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References QOutline

Lattices and lattice hard problems

» Micciancio-Goldwasser, Complexity of Lattice Problems
» Joux, Algorithmic cryptanalysis

» Micciancio-Regev, Lattice-based cryptography

v

Peikert, A decade of lattice cryptography
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Lattices Lattices
» Lattice L : discrete subgroup of R”  « « « . v o o oL » A basis of L is a minimal set of elements {v;} such that
» Subgroup : L contains avi + bva . . . . .. L .
fo.r all a.,beZand‘vl.,vzeL '''''''''''''''''' [— Zaivi|3i€Z
» Discrete : non continuous ~ « ¢ e e e e e e . P
(3 centered ball at 0 withno ~ * ° ° " ° """ °°
other lattice element) Picture source : Wikipedia » Rank r of L is the size of a basis
» Dimension of L is n » A lattice is full-rank if r = n
» A lattice is integer if all lattice elements have integer » We often represent a basis {v;} as a matrix V € R™",
coefficients one column for all coefficients of one basis element

> In other words L = {Vx,x € Z"}
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Equivalent bases Fundamental parallelepiped and Determinant
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» Let B be a lattice basis

» The red an black bases generate the same lattice : » We can associate to it a fundamental parallelepiped
vi = 2up — Bu, vo = tp — 3uy, and up = v; — 2vs, U = 3v; — b1y P(B) consisting of all points modulo B

» The sets {u;}, {vi} generate the same lattice iff there > The determinant of lattice L is det(L) = /| det(B - BY)|
exists S € Z™" such that U = VS and det S = +1 (does not depend on basis B) (=|detB|if n=r)

» Determinant is the volume of fundamental parallelepiped
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Scalar product and Euclidean norm The shortest vector problem (SVP)
> Given u = (u,...,up),v=(v1,...,v,) €R",
their scalar product is (u,v) ==Y, u;v; » We call \; the shortest norm in the lattice
» Scalar product is bilinear : Vo € R, _
(au,v) = (u,av) = a{u, v) (L) = VET"%&OHVH

» u,v € R” are orthogonal if (u,v) =0
» Euclidean norm of v € R" is

vl = v =V " hen s e (o o L
» Basis {b1, ..., b,} is orthogonal if (b;, b;) =0 Vi# j, > T '
in other words iff B* - B is a diagonal matrix find v € L with [Jv]| = Ay (L)

» u,v € R" are parallel if (u,v) = [|u]| - ||v]]
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Good and bad bases Upper bounding shortest vectors (1)

L » Convex body theorem : For any lattice L of rank n,
I . any convex set S C span(L) symmetric about the origin,
S if vol(S) > 2"det L then S contains nonzero lattice point
l"j//. ‘ Proof :
o T » Consider a fundamental parallelipiped P(B)
consisting of all points modulo a basis B of L
» Some bases make SVP easier > Consider the set S" = {x | 2x € 5}
» By volume condition there exist z;,z € S’
reducing to same point in P(B), i.e. z1 —zm € L
» A “good” basis has nearly orthogonal vectors » By definition 221,22z, € S and since S symmetric and
(as nearly parallel vectors can lead to shorter vectors) convex we have z; —z» € S

» A "good” basis has shorter vector norms
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Upper bounding shortest vectors (2) Expected size of shortest vector

» Minkowski's first theorem : we have
A\ < V/n(det L)M/"
Proof : remark that volume of ball B(0, r) is bigger than (2r/\/n)"

» Gaussian heuristic : let V = det(L).
If L is a reasonably random lattice we expect that

and apply previous theorem on S = B(0, \/n(det L)'/") A1 ~ radius of a ball with volume V
> Minkowski's second theorem : we have (only a factor 2 smaller than Minkowski's bound)
n 1/n . n/2
» For Euclidean norm we have V(B(0, R)) = ~=;R"
(H /\,-> < /n(det L)V/" (B0 R)) = Gy
i=1 » This heuristic works well for many cryptographic lattices
where the successive minima (L) are the smallest A » Some crypto lattice distributions have very small \;
such that there are at least k linearly independent vectors by construction; then use similar heuristic for other ;

with norms at most A (proof : see Goldwasser-Micciancio)
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The closest vector problem (CVP) Good and bad bases

» For a lattice L and a point t € R", define distance

d(t, L) := min v — ¢ T o

» Closest vector problem : . _
Given a basis {vi, ..., Vo) for L and given t € R” » Good bases also make CVP easier : all points in the

find v € L with ||v|| = d(t, L) fundamental parallelepiped are close to basis vectors
» See later Babai's nearest plane algorithm
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Decisional SVP and CVP Are SVP and CVP hard?

» Decision-SVP : Given a basis {Vl, R V,,} for L and » Decisional CVP is NP-hard
a rational r € Q, determine whether A;(L) < r or not

> Decision-CVP : Given a basis {vi,...,v,} for L,
a point t € Z" and a rational r € Q, determine whether
d(t,L) <rornot

» Search and Decisional CVP are equivalent
» Search and Decisional SVP are equivalent
» Can solve SVP if can solve CVP

» Heuristically the converse if also true
» Can solve decision problems if can solve search problems

» Converse also true, but needs some work  (see later) > See later!
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Approximate SVP and CVP Are approximate SVP and CVP hard ?

» Still NP-hard for < n'/'oglogn

» ~y-approximate shortest vector problem : » Becomes easier for larger v

Given a basis {vi,...,v,} for L, » Unlikely to be NP-hard for v > \/n/logn

find v € L with [|v][ < vA:(L) » LLL achieves v = 2("=1)/2 in polynomial time (see later)

» ~-approximate closest vector problem :
Given a basis {vi,...,v,} for L and given t € R",
find v € L with ||v|| < ~d(t, L)

> In cryptography we need v = n€ hard with ¢ > 1

» Intuition : secret key will be a short vector or good basis,
but other reasonably short vectors or good bases can act

» Standard SVP and CVP if v = as equivalent secret keys

» Note that NP-hardness is not known for these parameters,
so we need to assume that these problems are hard
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Worst case vs Average case hardness Other lattice problems

» NP-hardness refers to worst-case hardness » Gap SVP : for approximation factor v > 1 and radius r,

» In cryptography we want average case hardness returns YES if A; < r, return NO if A; > ~r, and may
since we need some entropy on the keys return YES or NO otherwise

» Average case hard = worst case hard, » ISVP : find vectors with norms equal to successive
but not other way around in general minima : A,(L) is the smallest X such that there are at

. . least k linearly independent vectors with norms at most A
» Interesting property of lattice-based cryptography :

. »>
worst-case to average-case reductions! (see later) And many others...
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Modular lattices SIS

> A lattice is modular if 3g < det(L) with L D gZ"

» In cryptography we often use » Small integer solution (SIS) : given g, A and v,
find x with Ax =0 mod g and ||x|| < v

Lpg = R"|Ax = 0 mod
nq = {x € R7|Ax mod q} » A short vector in La 4 gives a solution to SIS

for some matrix A € Z™" with entries reduced modulo g » SIS harder when A has less columns and more rows
» Typically n =~ mlog m » SIS has solutions when v and n large enough

(Caution : here columns of A are not lattice vectors!)
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Learning with errors (LWE) Learning with errors (2)

> Let g a modulus and let s € Zj
» CVP-type problem for the matrix A generated by a; :

Given A and t, find As € L such that e = t — As is small
(in fact bounded distance decoding : such solution exists)

» Let B << g some noise bound

» LWE sample is (a, t) with a uniformly chosen in Z7,

e uniformly chosen in [-B, B], and t = (a,s) + e . . . . .
» Extension of Learning Parity with Noise,

» LWE problem : given m samples (a;, t;), recover s a NP-hard problem from coding theory

> Could use linear algebra if B =0 » Decision LWE : given samples (a;, t;) that are either

» Other distributions for e can be used LWE samples or random samples, guess distribution

(in fact, we usually use Gaussian distributions)
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Some relationships between lattice problems Ideal lattices

— S
cvp, ¢ Hsvp, ML ygvp,

» Lattice-based schemes need to include a basis of the
lattice in the public key, typically n? coefficients
> |deal lattices :
» Choose a polynomial ring R = Z[x]/f(x)
(typically f(x) = x" 41 and n = 2¢)
» See a vector v = (v, ..., Vs—1) as a polynomial
v(x) = vo + vix + vox? 4 ... 4 v,_1x"" 1 in that ring
» Ideal lattice is generated by x'v(x) mod f(x)
» Only store the n coefficients of v

GapSVP,
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Laarhoven, van de Pol, de Weger, Solving Hard Lattice Problems and the Security of Lattice-Based Cryptosystems
Arrow from Problem A to Problem B means “Problem A can be solved using an algorithm for Problem B”
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Ideal lattices are modular QOutline

Lattice-based constructions
Hash functions
» Taking Hermite normal form, we get g € Z N (v(x)) Public key cryptosystems

. Digital signatures
1 n
» Deduce gx’ € (v(x)) hence L D qZ Fully homomorphic encryption
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Outline Remember : hash functions

H:{0,1}" x K — {0,1}"

Lattice-based constructions » A hash function satisfies
Hash functions > Collision resistance
if hard to find m, m’ such that Hx(m) = Hi(m')
» Preimage resistance
if given h, hard to find m such that Hy(m) = h
» Second preimage resistance
if given m, hard to find m’ such that Hx(m') = h
for a uniformly generated key k € K

» We usually build a fixed-length hash function and then
use Merkle-Damgaard transform
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Ajtai’s hash functions Worst case to average case reduction

» Goal : solve any instance of O(n)-SIVP given an
» Key generation : choose a random modular lattice algorithm that solves random instances of SIS
(7-SIVP = finding n linearly independent lattice vectors,
Lga={x € R"|Ax = 0 mod q} the largest one being as small as possible, up to factor 7)
» Define H: {0,1}" = Z™ : x — Ax mod g » Let B a lattice basis, defining an SIVP problem
{0, 4
» Collisions Ax = Ax’ implies solving SIS on average
A(x — x') = 0 mod g with (x — x’) € {-1,0,1}" small

» Consider parallelepiped P(B) consisting of all points
of R" modulo B

» Divide P(B) into g" regularly spaced cells
> Associate cells to Zg elements (use map z = f(z) = [¢B72])
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Worst case to average case reduction (2) Using ideal lattices

» Informal lemma : large enough random vectors modulo B
lead to uniformly distributed points on P(B)
(usually take normal distributions with o = c\,) » Taking circulant matrices is a bad idea

» Improve efficiency using A with special structure

. " . » Lattice points correspond to elements in a principal ideal
» Choose large enough r; € R” with additional requirement P P princip

that r; mod B is the corner of a cell (a(X)) C R =Z[X]/(X" —1)
» Provide g and a; = f(r;) to the SIS solver and receive
solution z € {—1,0,1} with > a;z;=0mod g
» Deduce lattice point z =Y, r;iz; with ||z]]> < cn), a(X)zo(X) = 0 mod (X" — 1)

> If ged(a(X), X" — 1) # 1 then there exists zy # 0 with

» Note that A, can be guessed with binary search, » Deduce collision (z, z + zo) for every z
or take the current best approximation and repeat
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Using ideal lattices (2) Further readings

» Solution : replace X" — 1 by an irreducible polynomial
» Taking f(X) = X" + 1 and n = 2 has some efficiency » Papers by Ajtai, Lyubashevski-Micciancio, Peikert-Rosen
advantages (use Fast Fourier transform, etc) » Micciancio-Regev, Lattice-based cryptography

» Security still based on worst case hardness assumptions
but for ideal lattice problems
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Outline GGH cryptosystem : basic idea

» Private key is well-chosen good basis of a lattice
Lattice-based constructions (basis with short, nearly orthogonal vectors)
» Public key is well-chosen bad basis A for the same lattice

Public key cryptosystems (for example, the Hermite normal form of the lattice)

» Encryption of m is As + m, for well-chosen s
(so that result is reduced modulo Hermite basis)
» Decryption is LWE / CVP like problem

(in fact bounded distance decoding),
easy given the private key but hard otherwise
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GGH cryptosystem : remarks NTRU cryptosystem (sketch)

» Let p, g coprime integers with p << g

» Let R=Z[X]/(X"—1)

» Private key : polynomials f, g € R with small coefficients
such that f invertible modulo p and g

» Similar to McEliece's code-based cryptosystem (1978)
» Probabilistic by padding the message with random noise
(for example m — m + 2r)

» No formal reduction to a hard problem and original

: b — pf-l
parameters broken, but eventually led to LWE schemes > Public key : h=pf~"g mod g

» Not CCA secure (given a ciphertext, can re-randomize it » Encryption of small m € R : take random small r € R
and ask the decryption oracle for plaintext) and return ¢ = m+ hr mod g

» Can use hash functions / random oracles to transform » Decryption of ¢ is m’ = (cf mod q) f~! mod p
CPA encryption into CCA encryption (Fujisaki-Okamoto) » Correctness : modulo g we have cf = mf + pgr

and right-hand term is small so no reduction modulo g
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NTRU : link with lattices NTRU : security

> Public key is » Recommended parameters (Wikipedia, citing NTRU website)

/| 0
A:(H q/) ] o

p
. . . . Moderate Security | 167 1 128 | 3

where H is cyclic matrix corresponding to h
. . . Standard Security | 251 | 128 ' 3

» Private key is short vector corresponding to f, g.
Equi . High Security 347 128 |3
quivalently a matrix

Highest Security | 503 | 256 | 3

s (F F
“\Gg ¢ » No security proof for original scheme

» If secret polynomials are generated in a proper way then
becomes CPA-secure under ideal lattice assumptions
(see Stehlé-Steinfeld 2011)

where F, G are cyclic matrices corresponding to f, g
and F, G are well-chosen matrices so that £(A) = L(B)
» Encryption of mis (—r, m)T modulo £(A)
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LWE-based cryptosystem LWE-based cryptosystem (2)

» Private key is S € ngz uniformly random

» Parameters : integers n,m,(,t,r,q and real a« > 0 Public key is (A, P) € Z™*" x Zm™¢ with
) q q

v

»Letf:Zﬁ%Zédefinedby » P=AS+E
» Ec ZZ’X” normal distribution with o = aq/\/ﬂ
z— f(z) =[(q/t)Z] » A€ Z7*" uniformly random
“rounded scaling” (here g > t) » Encryption of v € Z{ is
> Let f_y : ZS — Zj defined by (u,c) = (ATa, PTa+ f(v))
z = f1(2) = [(t/q)Z] with a uniformly random in {—r,..., r}"

» Decryption of (u, ) is
“inverse” of f
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LWE-based cryptosystem (3) Security

> Kind of lattice version of ElGamal » Distinguishing (A, P) from uniformly random pairs implies

» Correctness : we have solving Decisional LWE

» Encryptions with random pairs leak no information on

c—S"u = Pla+ f(v)— STATa messages (when #inputs = (2r + 1)™ >> #outputs = g"**)
= (AS+E)Ta+f(v)—STATa) » Together these two observations imply CPA security
= ETa4+ f(v) (if you distinguish two ciphertexts then the keys are not random)

» Concrete hardness of LWE : see Albrecht-Player-Scott

» CCA encryption scheme follows from generic reductions
HET.QHOC < q/2t such as Fujisaki-Okamoto (more direct constructions now exist)

hence f_1(c — STu) = v as long as
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Further readings Outline

Lattice-based constructions

» Micciancio-Regev, Lattice-based cryptography
‘ . Dicital <i
» Peikert, A decade of lattice cryptography 'gital signatures
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Digital signatures : basic idea

» Private key is a good basis B of a lattice
» Public key is a bad basis for the same lattice
» Let H a collision resistant hash function with image in R”

» To sign, compute H(m), use nearest plane algorithm
(see later) with good basis to obtain close lattice point s,
and return it

» To verify, check that s and H(m) are close

» Examples : GGH signatures, NTRU signatures
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Further readings

» Peikert, A decade of lattice cryptography
and references therein
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Digital signatures : improvements

» Basic idea broken [Nguyen-Regev]
» Signature (m, s) leaks s — H(m) a uniformly distributed
point in (a translation of) the fundamental parallelipiped

» Attacker obtains several (m;, s;) then recovers B
by solving an optimization problem

» Solution : signature a quite close vector (distance = c),),
making sure distribution of s — H(m) is independent of B
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Lattice-based constructions

Fully homomorphic encryption
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Fully homomorphic encryption (FHE) FHE key ideas

» Encrypt your messages as noisy ring elements like in

» RSA is multiplicatively homomorphic : previous encryption schemes based on ideal lattices
Enc(myimy) = (mimz)® mod n = Enc(my)Enc(m,) » This gives somewhat fully homomorphic encryption

» Additively homomorphic schemes have also been known Homomorphic additions and multiplications of ciphertexts,
for a long time Enc(my + m,) = Enc(my) 4+ Enc(my) but not too many as each operation increases the noise

» Satisfying both properties simultaneously allows cool stuff, (hence at some point you cannot decrypt correctly anymore)
such as statistics on encrypted data » Could decrease the noise by decrypting and re-encrypting,

] ) but that would reveal intermediary plaintexts
» FHE was long-standing open problem until 2009

» Bootstrapping : encrypt noisy ciphertext again usin
First solution by Gentry, followed by many other ones PPINg yp ycp & 8

] ] somewhat homomorphic scheme, do internal decryption
> All solutions based on lattices ! and re-encryption homomorphically using an encrypted
decryption key, and remove second level of encryption
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Simple example Further readings

» Symmetric version

» Secret key is a large prime p

» To encrypt a bit m, choose random r << p and large g,
then return ¢ = m+2r 4+ pq

» To decrypt ¢, compute m’" = (¢ mod p) mod 2

» Homomorphic + and X as long as noise << p

» CPA secure if approximate gcd problem is hard
(given several samples pg; + s;, return p)
(can be reformulated as lattice problem)

» Peikert, A decade of lattice cryptography
and references therein

» Asymmetric version
» Public key has several encryptions of 0 (¢; = 2r; + pq)

» Encryption of mis c = m+4 3, ¢ 4 2r for a subset /
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Outline Some relationships between lattice problems

cve, HSVPy 0 ysve,

Solving hard lattice problems
Lattice reduction algorithms
Exact solvers
Further algorithms

« IMR1]

Vi, IMG]

g1 SSTX]
SIVPy -
Vii/2. IMG] ~—
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Laarhoven, van de Pol, de Weger, Solving Hard Lattice Problems and the Security of Lattice-Based Cryptosystems
Arrow from Problem A to Problem B means “Problem A can be solved using an algorithm for Problem B"

Christophe Petit -Advanced Cryptography

Christophe Petit -Advanced Cryptography

Outline Lenstra-Lenstra-Lovacz

Solving hard lattice problems
Lattice reduction algorithms

» Factoring polynomials with rational coefficients, 1982

» The paper defines a notion of reduced basis and
gives an algorithm to compute them

» Solve v-SVP with approximation factor 2("~1)/2
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Orthogonal projections Gram-Schmidt orthogonalization

> Given u = (ug,...,up), v=_(v1,...,v,) € R",

. . » Given a basis B, compute an orthogonal basis B* and
their scalar product is (u,v) = > 7, ujv; P s

upper triangular matrix M with ones on the diagonal

» The orthogonal projection of v on v is u, := 25:; % (in particular det M = 1) such that B* = BM
» The orthogonalization of u wrt v is » The orthogonal basis is computed as
) b; = by, b; = Perp(bz, {b1}),
Uy, i=u—u,=u———=+v by = Perp(bs, {b], b3}), b = Perp(bs, {b1, b3, b3}),
(v,v) etc
» For any / > j, we have M;; = — (b07)
We have (u,,,v) = (u,v) — 25:;0’7 v)=0 yr=4J AR C )

Define P K (o) (in general M will not be integer)
> Define Perp(u, {w, ..., vi}) = u =305y (i) Vi » May depend on the ordering of the basis vectors
We have (Perp(u, {v1,...,v}),v;) =0
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LLL for n = 2 : Gauss algorithm Gauss algorithm : example

» Goal : given a lattice basis { by, by},
find v in the lattice with minimal norm
> Ideas :
» Swapping two vectors preserves the lattice
» Adding an integer number of times one vector to the
other one preserves the lattice
» When two vectors are “nearly parallel”, reducing the
largest one by the smallest one provides a smaller vector

Picture credit : Antoine Joux, Algebraic Cryptanalysis
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Gauss algorithm Gauss algorithm : analysis

L: Swe'ap by and b, if needed to ensure [|by[| = ||b| » The lattice is preserved at all steps
2: while |[by|| > ||| do » The algorithm terminates
3 A<= [(by, bo) /(b2, b2) ] _

. _ » At each step A minimizes the value of
4: by < by — b, 2 2
5: Swap by and b, [|b1 — Abo||* = A?(b, ba) — 2X(by, ba) + (bn, b1)
3 f:tclll:l]hizz ) » Final basis (by, by) satisfies ‘Eﬁiif; <3

' b » Final b; has minimal norm

» Similar to Euclide algorithm, continued fractions,. . . (see Joux for details of the proof)
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Reduced basis LLL-reduced basis

»Let1/4<(5§1

» In dimension 2, we can say a basis is reduced when
» We say a basis {by, ..., b,} is 6-LLL-reduced iff

(bi,bo)| _ 1
ol < 1l ane |22 < 3 o I
(b1, br) Vi<j oo [b bl <
This guarantees that b; has minimal norm . (biy1, bY)?
Vi o SR < (||br || e i
» In larger dimension there is no similar condition ! 18711 < <|| iall”+ 652

(and corresponding algorithm) that guarantees that ) )
. » Here b} are the Gram-Schmidt basis vectors
» However, the vectors of an LLL-reduced basis are never

too far from optimal » First condition identical to dimension 2

» Second condition is called Lovdsz condition
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Properties of LLL basis Properties of LLL basis

» The two conditions imply

. o 1 » We have det(L) = [];||bf]| hence
52l > 11651 (5 - 3
(n-1)/4
» A1 must be at least as large as some ||b}]| det(L) > (5 - Z) |16

Hence for some i we have
1) (-1/2
ez ll= (5-3) el

Hence for 0 = 3/4 and some i we have » Similar bounds can be derived for the other b;

11l = 15| < 2070720 < 207072y,

v

hence for § = 3/4

[|by]| < 2 =D/* det(L)/"

v
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LLL algorithm Length reduction
» Maintains a counter k such that the basis is LLL-reduced » Length reduction of b;
up to index k —1 1: for j=i—1to1do
» Updates the basis via two operations 2: bi < b;i — Ugti”})-‘ b;
» Reduction of by by all b; with j < k to satisfy the first 3. end for i

condition

» Swap of by and by_; if Lovacz condition not satisfied . .
» Sort of approximation of

» Maintains a Gram-Schmidt basis B* and corresponding 1 (b b
matrix M with respect to the current basis B Perp(b;, {br,...,bi_1}) = b — Z ;: j* ;
(in fact, only M and the norms of b; are needed) = (b, b})
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LLL algorithm Complexity (sketch)

1: Let k+ 2 » Let d; be the determinant of the ith sublattice generated
2: while k < n do by basis vectors by, ..., b;
3: bk — LengthReduce(bk,{bl,....,bk,l}) > d = Hi Hb*HZ
. .- . ! J=111%j
4: if Lovacz condition holds for i = k — 1 then . . n
. K ki1 » Consider the quantity D =[]}, d;
6: else » D only changes when there is a swap
7: Swap bx_1 and by » At each swap of b, and b, _1,
8: k < max{2,k — 1} [|b;_,||? is decreased by a factor at least 571,
9: end if dy_1 is decreased by a factor at least 671,
10: end while and none of the other d; changes
11: return (by, ..., b,) » D cannot be arbitrary small, so LLL must stop

UNIVERSITY OF UNIVERSITY OF
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Improvement : BKZ A folklore statement

» Stronger notion of reduced basis : Korkine Zolotarev,
giving the shortest vector

» Corresponding algorithm has exponential time

» Block Korkine Zolotarev : variant of LLL with exact SVP » Lattice-reduction algorithms perform much better
search on sublattices (bk, b1, - - - » brir) in practice than what is predicted by the theory

» Lead to shorter vectors at some efficiency cost
» Requires efficient exact solvers in larger dimensions !

» See CP Schnorr, Block Korkin-Zolotarev Bases and
Successive Minima
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Gama-Nguyen experiments

Lattice reduction hall of fame

» Goal was to evaluate folklore statement

» Warning : experiments necessarily on certain lattice
distributions, basis distributions, limited size parameters

» Some observations :

» Approximation factor of LLL and other algorithms is ~",
exponential in dimension as predicted by theory, but
with a much lower constant « than predicted

» In practice v is small enough that " ~ 1+ (y — 1)n
when n < 450, and n-SVP could be solved for those
lattices

UNIVERSITY OF UNIVERSITY OF

XFORD Christophe Petit -Advanced Cryptography OXFORD

Lattice-reduction hall of fame

TGS
TU DARMSTAD T,
LATTICE S
CHALLENGE

Christophe Petit -Advanced Cryptography

QOutline

» Methodology to generate lattice challenges

» Challenges solved by research teams around the world,
competing to appear in the “Hall of Fame”

» Goal is to find the shortest possible vectors in lattice

Solving hard lattice problems

challenges Exact solvers

» Also adapted to ideal lattices
» See http://www.latticechallenge.org/

UNIVERSITY OF
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http://www.latticechallenge.org/

Exact solvers Principle of enumeration

» Exact solvers not directly needed as approximate solutions
usually enough to break lattice-based schemes

» However, approximate solvers also use exact solvers

on smaller problems internally » |dentify a finite set of possible solutions

» Two main approaches for exact SVP » Perform (intelligent) brute force on it

» Enumeration
» Sieving
» Note that exact solvers can also be accelerated with an
approximate solver pre-processing step

X UNIVERSITY OF
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Enumeration bounds Enumeration bounds

» Let b; be a basis for L and let b} the corresponding
Gram-Schmidt basis

» We search for a; € Z such that v = Y"1, a;b; has
minimal norm

» For each «, possible value, we can iterate the reasoning
and find a bound on |a,_1], etc

i ; N
» Given any v/ € L, we know ||v|| < ||V/]| » Only a finite number of options to test for all «; !

» v=1> 1, Bib; for some n, where 8, = a,, and 3; € R » Note that as we find smaller and smaller vectors
2 _ -1 52 2 2 2 2 we also decrease our search space

> From [|v]| 72,-":‘% @H;Hbfﬂ + ozl < V]2, P

4

I3

» So only a finite number of options to test for a, !

we deduce |a,| <

UNIVERSITY OF
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Preprocessing with lattice reduction Pruning

» Idea : remove some branches of the enumeration tree with

» Starting from an LLL-reduced basis is a good idea : a certain probability when they are “unlikely” to contain a

» Taking v/ = by leads to a small ||V/|| shortest vector

> The last b} are the largest ones » For example, it is unlikely that all components are as
» Hence |ay| < M are smaller large as the bounds allow
k . . e
» So better to do LLL or BKZ before enumerating! » Can miss the shortest vector with some probability

» Extreme pruning by Gama-Nguyen : compensate for low
probabilities by repeating the search

UNIVERSITY OF UNIVERSITY OF

XFORD Christophe Petit -Advanced Cryptography OXEORD Christophe Petit -Advanced Cryptography

Sieving SVP Hall of Fame

» |dea of sieving : maintain a long list of reasonably short
vectors in the lattice, and combine them pairwise to
obtain some even shorter vectors

» Lead to exponential running time algorithms
(vs super-exponential running time for enumeration)
but they also require exponential space

» See D. Micciancio and P. Voulgaris, A Deterministic
Single Exponential Time Algorithm for Most Lattice
Problems based on Voronoi Cell Computations

» Or Solving Hard Lattice Problems and the Security of
Lattice-Based Cryptosystems for a short description

UNIVERSITY OF
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SVP Hall of Fame QOutline

» Note that SVP are not known by the challenge
organizers, so Gaussian heuristic approximation is used to

assess the quality of short vectors Solving hard lattice problems

» Also adapted to ideal lattices

» See http://www.latticechallenge.org/ Further algorithms

UNIVERSITY OF UNIVERSITY OF
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Combinatorial solvers Generalized Birthday Attacks

] ] ] » Divide A into 2% groups of n/2* columns
» Suppose we want to find vectors with coordinates

bounded by b in the modular lattice » For each group, build a list with all linear combinations

with coefficients in {—b,..., b}
Lag = {x € R"|Ax = 0 mod q} » There are L = (2b+ 1)"/2k vectors per list

» Combine the lists pairwise as follows
» Take all sums v; + v» with v; in list /
» Can use Wagner's generalized birthday algorithms > Keep sums where first log, L coordinates are 0

» Sometimes more efficient than lattice reduction » Keep about L elements on average, since there are
L2 sums and L values for first coordinates

defined by the matrix A € Z™*"
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http://www.latticechallenge.org/

Generalized Birthday Attacks (2) Babai's nearest plane algorithm

» Goal is to solve y-approximate closest vector problem :
» We now have 2%~ [ists with roughly L elements given B, t, find x € £(B) close to t
» Combine them again and again, until you get one list

. . LLL th latti
of vectors that are 0 in the klog, L coordinates > Use then reduce ¢ by lattice vectors

» One element in the last list is expected to have L B« LLL(B)
(k + 1) log, L coordinates at 0 2bet
q 3: for j=ntoldo
4 beb— |2
» To solve SIS problem choose k such that : Wby | 2
5: end for
m = (k+1)log, L 6: return x =t —b

» Achieves approximation v = 2(2/+/3)"

NIVERSITY OF
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Babai's nearest plane algorithm (2) Analysis (sketch)
» Nearest plane algorithm : after initial LLL step
> Find A = {(ﬁ,bzf;)-‘ such that hyperplane » Goal : prove that ||x — t|| < 2"/2d(t, B)
Ab} + span(by, ..., bp—1) » Let y € L a closest lattice vector

v

_ _ Goal is to prove ||x — t|| < 27/2||y — ¢||
is as close as possible to b

» Recurse on b — Ab, and L(by,. .., bp_1) » Proof by recursion on the dimension
» When n = 1 closest vector is returned
- . - }\m . » Larger n : either X is “correct guess” or not, namely
i ! either y € Ab, +span(by, ..., b,—1) or not
e

Picture credit: Oded Tegev, Tel Aviv course 2004
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Case y € Ab, +span(by, ..., b,_1) Case y & Ab, + span(by, ..., b,_1)

» Let t' = projection of (t — Ab,) on span(bs, ..., b, 1)
» Babai on (', {b1,..., by_1}) returns X' = x — A\b,
> Since y € Ab, + span(bi, ..., b,_1) then
y' :=y — Ab, is closest vector to t’ in sublattice
» By induction we have

I = || < 2002y — 1|

v

Let dk = ||t — (kbn +span(b1, ey bnfl))H
di < [|b;|| when k =X, and di > 3||b}|| when k # A
So [ly — tl| > 353l

v

v

v

By construction we have [|x — t|[> < 2 37 ||bf|[?
From LLL basis properties with 6 = 3/4

v

» We deduce

1
—tll < 72n/2 b*
el lbe—tll < 32726}

X = 12+ [t = b, — ¢

< 277Hly = IR+t = Ab, — t|?
< 27(|ly' = IR+t = Ab, — 1) » We deduce ||x — t|| < 27/2[]y — ¢]
= 2"y —t|P » Can improve ~y by changing LLL parameters

Christophe Petit -Advanced Cryptography i S Christophe Petit -Advanced Cryptography

LWE solvers QOutline

» Many approaches to solve it

=

‘ BOD in L(A) ‘ SIS in dual of L(A) Recover s ‘ o
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‘ Lattice Reduction

/

SVP Oracle

Hardness results on main lattice problems

3y234qTy UTIJeN :34n3DTd 3TPaU)

» Concrete hardness still an open problem!
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Are SVP and CVP hard? Solving Search CVP with Decisional CVP

» Lemma : Search CVP can be solved in polynomial time
given an oracle that solves Decisional CVP

» Decisional CVP is NP-hard » Let B and t be a search CVP instance

» Search and Decisional CVP are equivalent » First recover r = d(t, £(B))

» Search and Decisional SVP are equivalent » Notice r < R=1Y";||bj|| and r? € Z

» Can solve SVP if can solve CVP » Use binary search and Decision SVP oracle to find r
» Heuristically the converse if also true » Then recover v € L(B) such that ||[v —t|| =r

(a) Find t' = t — u with u € £(B) and d(t',2¥B) = r
with k = n+logr

(b) Find w € L£(2XB) with ||w — t/||=r

(c) Retunv=u+w

% UNIVERSITY OF UNIVERSITY OF
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Solving (a) : iterative procedure Solving (b) : nearest plane algorithm

» Goal : find w € L(2%B) with ||w — t/|| = r
» Goal : find t' =t — u with u € £L(B) and d(t',2“B) = r
with k = n+logr

» Given B = {by, by, ..., by} build B' = {2by, by, ... by}

» This w exists by construction
» Distance between any two vectors in £(2%B) at least 2" - r

. » Second closest vector at distance at least
» Call Decisional CVP oracle on B, t and r

» If d(L£(B'), t) = r then keep t as it is 2" r—r>2"ty
» If d(L(B'),t) # r then d(by + L(B'), t) = r, in other
words d(L(B'),t — b1) = r, so replace t by t — by » Apply nearest plane algorithm to get a closest vector
» Repeat this procedure, building sparser and sparser up to approximation bound smaller than 271,
lattices, and t’ as required hence the closest vector

» Polynomial time reduction
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Decisional CVP is NP-complete Subset-sum problem

» Subset-sum problem : given integers a; and target sum S,

» Decisional CVP is in NP : witness is closest lattice point, find a subset of the a; that sum up to 5

solution checked in polynomial time » Often called knapsack problem in cryptography

.. . . » Equivalent decision variant : decide if there is a solution
» Decisional CVP is NP-hard : reduction from the d

subset sum problem » Equivalent to have S =0

» Equivalent to consider sums modulo an integer
» Problem NP-hard in general

NIVERSITY OF
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Decisional Subset Sum from Decisional CVP Analysis
» Let a1,...,a, S defining a decisional subset sum problem » Consider lattice vectors Bx with x; € {0,1}
» Build the decision CVP instance defined by > If we have >, a;x; = S then
» First coordinate of Bx — t is 0
a a ... ap S » Other coordinates are +1
0 1 > [|Bx—t]| <v/n
B=lo 2o . : =11 r=+/n » Decisional CVP oracle returns yes
. 0 : » |If decisional CVP oracle returns yes then
6 0 2 1 » There is x with ||Bx — t|| < v/n
» First coordinate of Bx — t is 0 and other ones are +1
» Return answer from decisional CVP instance » We have 3 aix; = S

X UNIVERSITY OF 2 UNIVERSITY OF
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Decisional SVP from Decisional CVP Analysis

> Assume A\ (L(B)) > r
» Letie{l,..., n} and v € L(B))

> Wehavev/—b/,-EL(B)and v—bi #0

» Let B, r defining a decisional SVP instance .
» By assumption ||v — bi|| > r

» Suppose we can solve Decisional CVP instances » Hence oracle returns NO for all i
» Let B; generated by (by, ..., bi_1,2b;, biy1,..., by) » Assume \i(£(B)) < r
» Use Decisional CVP oracle on B;, b;, r for all i » Let shortest vector v = 3", a;b; with a; € Z and ||v|| < r

» Return YES iff DCVP oracle returns YES at least once > At least one a; is odd, otherwise v not shortest
» Let k such that a, is odd

» Then by + v € L(By)

» Then d(bx, L(Bk)) < ||v|]|=r

>

Hence oracle returns YES for i = k

UNIVERSITY OF
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Computational CVP from Computational SVP Some relationships between lattice problems

cve, Hsvp, ML ygvp,

» Let B, t be a computational CVP instance

» Expand all basis vectors by a 0 coordinate vual| | w
|

(GMSS]

» Expand target vector by a 1 coordinate |

» Solve Computational SVP problem for a basis containing

all expanded vectors including the target one
\itay’ Vi, IMG] + IMR1]
» Heuristically, we expect a short vector in the new lattice
to be short in its first components P VRO S

Ji/2.1MG] —

» Remark : SVP problem slightly bigger dimension —

Temi

Laarhoven, van de Pol, de Weger, Solving Hard Lattice Problems and the Security of Lattice-Based Cryptosystems
Arrow from Problem A to Problem B means “Problem A can be solved using an algorithm for Problem B"
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Further readings Outline

» Micciancio-Goldwasser, Complexity of lattice problems
» Oded Regev's lecture notes at Tel Aviv university, 2004

Cryptanalysis applications
Knapsack cryptosystems
Factoring with partial key exposure
Lattice attacks on DSA, ECDSA and ElGamal

NIVERSITY OF UNIVERSITY OF
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Outline Subset-sum problem

» Subset-sum problem : given integers a; and target sum S,
find a subset of the a; that sum up to S

» Often called knapsack problem in cryptography

» Equivalent decision variant : decide if there is a solution

» Equivalent to have S =0

» Equivalent to consider sums modulo an integer

Cryptanalysis applications )
Knapsack cryptosystems » Problem NP-hard in general

UNIVERSITY OF
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Merkle-Hellman cryptosystem Knapsack cryptosystems and lattices

» Private key is an easy knapsack instance a;,

and two integers r and g
» Example of easy knapsack : superincreasing sequence » Knapsack cryptosystems were broken with lattices
ai > 2.j<idj » On the other hand, knapsack cryptosystems can also be

» Public key is knapsack instance b; — a;r mod g seen as ancestors of current lattice-based cryptosystems

» Message bits define a subset ; encryption is subset sum

» Decryption of ¢ : solve easy knapsack for ¢/r mod g

UNIVERSITY OF UNIVERSITY OF
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Short relations Analysis

> Goal : given vectors v;, find small A; such that 3 Ajv; = 0 » The lattice contains vectors with 0 first components,

» Build a lattice generated by the columns of matrix and other vectors
Ku Kv ... K » Expected size of shortest vector can be bounded,
1 0 0 say ||A|| < B, using pigeonhole principle
0 1 0 » LLL will find a vector v in the lattice with length smaller
0 0 0 than B2(n-1)/2
0 0 1 » Any vector in the lattice with nonzero first component

) has length at least K
> Lattice elements are (K 3. Aivii Auj-. 1 Ar) » Choose K > B2("=1)/2 sych that LLL will necessarily
» If K is large enough, the first components of small vectors return a vector with 0 first components
must be 0

UNIVERSITY OF
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Knapsack hash function Short modular relations

» Goal : given vectors v; and N,

» Fix some integers a; find small \; such that >_ \;v; = 0 mod N

» H {0,1}" 5 Z:x =, xa; » Build a lattice

» Can break H by finding collisions, that are messages Kv Kvz ... Kv, KNI
(x, x') with 37, xiai = 3, xjaj é ! g 8

» Attack : build the lattice as before (with v; = a;), 0o 0 0 0
and hope to get a small vector (0, A, ..., A,) with 0 0 1 0
A\ € {—].7 O, 1}

where [ is an identity matrix
> Lattice elements are (K(D_ A\ivi + N Y- pie), A1y .., Ar)
If K is large enough, the first component of small vectors
must be 0

» Attack only heuristic but parameters with 128 numbers of
120 bits each can be broken in practice [Joux]

v
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Outline RSA with small decryption key

» Using a small decryption key d for RSA is appealing
for efficiency reasons, moreover

» If d has 80 bits then exhaustive search not possible
» If n= pq is large enough then factoring is not possible

» Is this secure?
Cryptanalysis applications

Factoring with partial key exposure
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Small root attacks Don Coppersmith

Don Coppersmith

From Wikipedia, the free encyclopedia

» Problem : given a polynomial f modulo an integer N
with small roots, compute these roots
Don Coppersmith (born c. 1950) is a
» The small root condition is crucial : no hope to compute cryptographer and mathematician. He was

2 . . . involved in the design of the Data Encryption
roots of x> — 1 in general, equivalent to factoring N Standard block cipher at B\, partiularly the

H H H H design of the S-boxes, strengthening them against
» Application to RSA with small decryption key i
differential cryptanalysis.!'! He has also worked on
algorithms for computing discrete logarithms, the

de — kw(N) + 1= k(N _ Z) + 1 cryptanalysis of RSA, methods for rapid matrix
multiplication (see Coppersmith-Winograd
where z = O( /N) and d k are “small” algorithm) and IBM's MARS cipher. Don is also a

co-designer of the SEAL and Scream ciphers.

Also invented small root attacks. . .

UNIVERSITY OF
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Small root attacks : idea Building a lattice

» Let us start with f univariate » Let B be a bound on |r]

» In fact, we will consider equations satisfied modulo
powers of N instead of just N to facilitate lifting to Z

> Let Fiji(x) = x'f(x)y N

> If f(r) =0 mod N then F;;(r) =0 mod N*k
and the same is true for their linear combinations

) . . » Let D, t € N to be fixed later

> Idea : find h = gf with small values of |h;] - x|’ v Let F:= {Fiy., | degFi.; < D}

ing LLL ll-ch latti
using on & wefl-chosen fathce » We have F(r) =0 mod N* for all F € F

» Solving polynomials modulo N is hard,
but solving them over Z is easy

» f(x)=0mod N = g(x)f(x) =0mod N forall g
» If h(x) =0mod N and |3, hix'| < 3 |hi| - [x] < N
then h(x) = 0 over the integers

UNIVERSITY OF UNIVERSITY OF
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Building a lattice Short vectors

To any F with deg F < D, we associate a vector .
g y er= » A short vector in L corresponds to F such that

=(Fo, B, F,B?, ..., FpBPY ,
ve = (Fo A8, RE,.... FoB7) 1vell2 = [|(Fo. F1B. B2 FoBY |l

» Let L be the lattice generated by {vr | F € F}
» Any vector v € L is equal to vg for some F such that

F=3 aiFije
i

» This F satisfies F(r) = 0 mod N*

is small
» This also implies ||ve||y = 327 |Fi|B' is small
If [|ve|ls < N* then F(r) = 0 over the integers

» If F(r) = 0 over the integers, we can compute its roots,
including the roots of f

v
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Analysis (sketch) Bivariate polynomials

» Take D = (t+1)degf —1
» Evaluate the determinant of L as > Let f(x,y) and bounds B, and B,
det(L) — N(D+D/2gD(D+1)/2 » Now construct polynomials £k = f(x, y)'x/y“N*
et(L) = » Construct a lattice in a same way
» LLL can return v satisfying » Recover the two smallest vectors instead of just one
D/a njt/2 pD)2 » Deduce a system of two equations in x and y over Z
< . . .
Vil < 2°7N7°B » Heuristically, can recover x, y by solving this system
» Translate this bound to L1 norm » Analysis is more complex, but except for the last step

» Deduce it works as long as (Bﬁ)p ~ Nt everything is guaranteed to work
» For large t we can achieve B ~= N/ df /\/2
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RSA with small decryption key Factoring with implicit hints

» Using a small decryption key for RSA is appealing for

efficiency reasons, however we have . .
» Suppose you know some continuous bits of p and/or g

de = kp(N)+1=k(N—2)+1 » Suppose two RSA moduli share some continuous bits

» Can reduce these problems to some polynomial equation
where z = O(v/N) and d, k are small with small roots

» Wiener's attack using continued fractions
» Improvements by Boneh-Durfee using lattices

UNIVERSITY OF
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Further references QOutline

» Joux, Algorithmic cryptanalysis, Chapter 13.2,
and references therein

Cryptanalysis applications

Lattice attacks on DSA, ECDSA and ElGamal
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DSA, ECDSA and ElGamal signatures Attack model

» Parameters : cyclic group G of order p, generator g € G,
and a mapping f : G = Z,

> Secret key s random x € Z, » Attacker receives several signatures (m;, g%, b;)

> Public key is h = g* » Attacker also receives some bits of each y;, for example

» Signature of message m € Z, they know .
» Pick random y € Z, yi =zl + 2z + 212!

> Find b such that m = by — xf(g”) mod p entirely except for z; with 0 < z; < B = 2+~

» Return (m, g¥, b)

» Verification : check that

grnb’lhf(gy)b’1 _ gy

UNIVERSITY OF UNIVERSITY OF

OXFORD Christophe Petit -Advanced Cryptography OXEORD Christophe Petit -Advanced Cryptography

Small root problem Lattice reduction step

. » Build a lattice generated by columns of
» Deduce several equations in z; and x

100 ...0
m; = bi(zl + 2%z + 2#2") — xf(g”) mod p
ST P
» Eliminate x to get equations A=|s 0 p
zi = s;zg + t; mod p . .o
s, 00 ... p

for some known s;, t;

. . . . » Use nearest plane algorithm to find a vector close to
» Obtain a system of equations, with solutions smaller than

expected from random systems of this size t=(0 bt t,)
- ? ) ) n
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Analysis (sketch) Analysis (sketch)

» By construction there is a lattice vector Au with » Except for small vector Au we heuristically expect the

lattice to follow Gaussian heuristic, hence

1B 2] A~ c2 det(A)/(D) = cypn/(r+)

hence ||Au —t|| < /(n+1)B

. . . for some small ¢, > 1
» Nearest plane algorithm returns lattice vector w with

» If \/(n+1)B < c16p™ (") then

» Au is within range of nearest plane algorithm
» We don't expect any other vector to be that close

[lw — ]| < allbyll

(we proved ¢; < 2(n=1)/2)
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Remarks QOutline

A\

Neglecting factors \/(n+ 1) and ci¢c, we get condition
B < p"/(’H’l)

» Attack works if we know a fraction e = 1/(n+ 1) of y;

» Time complexity better for smaller n

» Attack can be generalized to different bit patterns

» Bits of y; can be obtained from side-channel attacks,
weak pseudorandom generators,. . .
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Conclusion on Lattice-based cryptography Open problems

» Lattice problems are appealing
» Worst case to average case reductions
» Mostly resist quantum computers so far
» Basic problems are NP-hard » Note that parameters used in cryptography are not
believed to be NP-hard
» Practical parameter evaluation is underway
» We now have a quantum algorithm for special lattices

» Faster, smaller, simpler, more secure constructions
» Classical and quantum resistance

» Lattice problems are useful
» Signature and encryption schemes, hash functions
» Fully homomorphic encryption, multilinear maps
» Original motivation was cryptanalysis » Many DPhil challenges!!
» Very active research field, now moving towards practice
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