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The threat of quantum computers

I Quantum computers solve discrete logarithms & factoring

I Hence they break SSH, TLS , . . .

I Not known : security of lattice problems,
polynomial systems solving, word problem, etc

I Not known : hardness of NP-hard problems

I Not known : can (large) quantum computers be built ?

Christophe Petit -Advanced Cryptography 4

Quantum key exchange

I Use quantum physics properties to realize key distribution
with the ability to detect potential eavesdropping
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Main reference
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Credits

I Pictures are from original papers from Grover, Simon and
Schor, Wikipedia or Google image

Christophe Petit -Advanced Cryptography 8

Outline

Quantum computation model

Simon’s algorithm

Grover’s search algorithm

Factorization and discrete logarithms

Quantum Key Exchange



Christophe Petit -Advanced Cryptography 9

qbits

I A classical bit can have value/state at either 0 or 1

I A quantum bit, or q-bit, is a superposition of these states

b = α · |0〉+ β · |1〉

where α, β ∈ C are coefficients such that |α|2 + |β|2 = 1

I A q-bit is in a pure state if all coefficients but one are 0

I Generalization to n qbits is x =
∑

i∈{0,...,2n−1} αi · |i〉
where i is written in binary and

∑
|αi |2 = 1

I Other notation : x = (α0, α1, . . . , α2n−1)

I Coefficients sometimes written up to a scaling factor
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Measurements

I A measurement is an operator on superposition states,
returning pure states

I Measurements are performed with respect to a particular
basis, for example the computational basis {|i〉}

I If x =
∑

i∈{0,...,2n−1} αi · |i〉 then the probability to

measure |i〉 in the computational basis is |αi |2
I Measuring a qbit x is a non reversible operation, which

actually modifies its value to the measured state

I We also say that the qbit collapses to a pure state

Christophe Petit -Advanced Cryptography 11

Reversible computation

I Quantum computers only perform reversible operations
I Any reversible function on n bits corresponds to a

permutation on {0, . . . , 2n − 1}
I Any reversible function on n qbits corresponds to a

unitary matrix U of dimension 2n sending
α = (α0, . . . , α2n−1) to β such that β′ = Uα′

I Any classical function can be made reversible with the
help of ancilla bits :

I Replace x → f (x) by (x , 0)→ (x , f (x))
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Remarks

I For a classical bit, information ∼ bit value

I A qbit is always a superposition of all possible values

I Information within coefficients, as in fact for classical bits
if you write b = α0|0〉+ α1|1〉 with αi ∈ {0, 1}

I Superpositions of states looks like parallel computing

I Still, cannot use that as such for brute force key search
as only pure states are returned

I Quantum algorithms build a superposition of states
such that coefficients associated to correct outputs
are much bigger than others
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Quantum circuits and CNOT gates

I Useful to focus on a small number of small/local gates,
and build arbitrary circuits from there

I CNOT : controlled NOT gate
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0
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Phase shifts and Toffoli gates

I Relative phase shift on a single qbit

(
e iθ 0
0 1

)
I Toffoli : doubly controlled NOT

I Toffoli gates are universal : can build any logical circuit
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Hadamard gates

I Hadamard gate on one qbit

H1 =
1√
2

(
1 1
1 −1

)
I Parallel application on n qbits gives Hn such that

Hn =
1√
2

(
Hn−1 Hn−1
Hn−1 −Hn−1

)
I (Remark : the matrix for parallel transformations is the

tensor product of individual transformations)
I The n-bit pure state |i〉 is transformed into

∑
(−1)i ·j |j〉

where i · j is the scalar product on the n-bit vectors i and j
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Simon’s problem

I Given : oracle access to a function f : {0, 1}n → {0, 1}n
I Promise : ∃s ∈ {0, 1}n such that for all y , z ∈ {0, 1}n

we have f (y) = f (z) if and only if y = z ⊕ s or y = z
(possibly s = 0 in which case f is bijective)

I We want to compute s

I Best classical algorithm needs Ω(2n/2) : random trials
until a collision is found
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Simon’s algorithm

I Perform the following experiment

Here Uf |x1〉|x2〉 = |x1 ⊕ x2〉|f (x1)〉

I Output |y〉|f (x)〉 implies that y · s = 0 (see next slide)

I Repeating O(n) times gives enough information
to recover s with linear algebra over F2
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Simon’s algorithm

I After first Hadamard transform we have
∑

x |x〉|0〉
I After oracle we have

∑
x |x〉|f (x)〉

I After second Hadamard transform we have∑
x ,y (−1)x ·y |y〉|f (x)〉

I Observe a particular couple (y , f (x)) with probability

proportional to
∣∣(−1)x ·y + (−1)(x+s)·y

∣∣2
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Remarks

I Can relax the promise somewhat : allow some collisions
f (y) = f (z) for z 6= y , y ⊕ s

I See Breaking Symmetric Cryptosystems using Quantum
Period Finding for some cool crypto applications
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The search problem

I Given a function C : {1, . . . ,N} → {0, 1} such that
C (x) = 1 for exactly one value x , compute this value

I Classically, given only black box access to C :
N/2 random trials succeed with probability at least 1/2

Christophe Petit -Advanced Cryptography 23

Grover’s algorithm

I Initialize n-qbit register with uniform superposition
∑

i |i〉
using Hadamard transform (here we assume N = 2n)

I Repeat the following unitary operations O(
√
N) times

I Phase shift : if C (S) = 1 then phase shift by π,
otherwise do nothing

I Inversion about average : apply D = −I + 2P,
where Pij =

1
N

I Measure the register

I Return the value measured
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Inversion about average

I P such that Pij = 1
N

is
averaging operator

I Dv = Pv − (v − Pv)
I D = HnRHn where

I Rij = 0 if i 6= j ,
I Rii = −1 if i 6= 0,
I R00 = 1
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Intuition

I Start from uniform superposition with coefficients 2−n/2

I All coefficients remain real values

I After first phase shift, all coefficients have norm 2−n/2,
all coefficients but one are positive

I First inversion about average slightly decreases the
positive coefficients, and roughly brings the negative
coefficient to a positive value 3 · 2−n/2

I The next phase shift turns this coefficient negative again

I The next inversion about average increases again its
absolute value

Christophe Petit -Advanced Cryptography 26

Complexity

I Lemma : as long as the coefficient corresponding to x
with C (x) = 1 is smaller than 1√

2
, each loop iteration

increases this coefficient by at least 1
2
√
N

and leaves the
other coefficients positive

I Constant probability of success after O(
√
N) iterations
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Remarks

I Does not use any structure of the function C
(C can be accessed as a black box)

I Continuing the loop will decrease the success probability

I Can be adapted when there are several x with C (x) = 1

I See Quantum Amplitude Amplification and Estimation
by Brassard-Hoyer-Mosca-Tapp for some generalizations

I Cryptographic consequences : double your key sizes
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Discrete Fourier Transform

I Let f : [1, . . . ,N]→ C an L2-bounded function

I Fourier transform of f is a function f̃ : [1, . . . ,N]→ C
with

f̃ (y) =
N∑

x=1

f (x)e−2πixy/N

(up to some normalization factor)

I Well-known in engineering for sending periodic functions
to a sum of Dirac’s delta functions and vice-versa
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Quantum Fourier Transform

I Linear transformation Aq sending a state
∑

a f (a)|a〉 to

q−1∑
c=0

f̃ (c)|c〉 =
1

q1/2

q−1∑
a=0

q−1∑
c=0

f (a) exp(2πiac/q) |c〉

I Equivalently, linear transformation sending any pure state
|a〉 to

1

q1/2

q−1∑
c=0

exp(2πiac/q) |c〉

I Construction easier when q = 2`, but adapt otherwise
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Local gates used

I Hadamard transform on gate j

Rj =
1√
2

(
1 1
1 −1

)
I Special phase shifts Sj ,k with k > j

Sj ,k =


1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 e iπ/2
k−j
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Local gates used (2)

I Swap gates

Wj ,k =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1
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Fast Fourier Transform

I We have∑
x

f (x)e−2πixy/2
`

=
∑
x ′

f (2x ′)e−2πix
′y/2`−1

+e−2πiy/2
`
∑
x ′

f (2x ′ + 1)e−2πix
′y/2`−1

I Recursive formula reduces DFT complexity
from O(q2) to O(q log q)
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Quantum Fourier transform circuit

I Do QFT on the `− 1 most significant bits

I Phase shift by e−2πiy/2
`

if the least significant bit is 1

I QFT on one bit is just Hadamard transform

I Writing y =
∑

yk2k the phase shift is implemented
with `− 1 elementary phase shifts by e−2πiyk2

k−`

I Only O(`2) quantum gates needed
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Quantum Fourier transform circuit (2)

I Compute from right to left

R0S0,1S0,2 . . . S0,`−1 · R1S1,2S1,3 . . . S1,`−1

·R2S2,3S2,4 . . . S2,`−1 · . . . · R`−2S`−2,`−1 · R`−1

I This gives the transformation

|a〉 → 1

2`/2

q−1∑
c=0

exp(2πiac/q) |b〉

where b is the bit-reversal of c

I Use swap gates to get the QFT
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Correctness (sketch)

I Overall amplitude change is OK

I Phase change from |a〉 to |b〉 is∑
0≤j<`

πajbj +
∑

0≤j<k<`

π

2k−j ajbk

and this is equal to 2πac/2` modulo 2π
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Period finding

I Given f : Z→ Z a periodic function, compute the period
(smallest T such that f (t) = f (t + T ) for all t)

I Intuition : periods are easier to see in frequency domain
I Apply Fourier transform to f
I If f (t) = e2πiωt then its transform is just a Dirac at ω,

so a measurement on it will return the frequency ω,
from which we deduce T = ω−1

I When f is more complicated, the Fourier transform may
have several peaks but the main peaks can all be related
to the period
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From factoring to period finding

I General idea to factor n : find non trivial square root of 1
I Take random x
I Find smallest r such that x r = 1 mod n
I If r is even compute gcd(x r/2 ± 1, n)

I Gives a non trivial factor of n unless
I r is odd ⇒ x was a quadratic residue
I r is even but x r/2 = ±1 mod n

I Note : for n = pq period divides ϕ(n) = (p − 1)(q − 1)
(if p, q strong primes, solve a single quadratic equation !)
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Computing the order of x

I Let q such that n2 < q = 2` < 2n2

I Use two registers
I Put first register in uniform superposition

∑q−1
a=0 |a〉|0〉

I Compute xa mod n in second register

q−1∑
a=0

|a〉|xa mod n〉

I Apply Fourier transform on first register

q−1∑
a=0

q−1∑
c=0

exp(2πiac/q)|c〉|xa mod n〉

I Observe the state
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Computing the order of x

I Let T be the period of f : a→ f (a) = xa mod n

I Probability to observe |c , xA mod n〉 proportional to∣∣∣∣∣∣∣∣
∑

a : xa=xA mod n
0≤a<q

e2πi(
ac
q )

∣∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣∣
∑

a=A+kT
0≤k≤q/T

e2πi(
ac
q )

∣∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
∑

0≤k≤q/T

e2πik(Tc
q )

∣∣∣∣∣∣
2

I If Tc/q close to an integer, then all elements in the sum
have roughly the same phase (constructive interference),
otherwise they will average to a small value
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Computing the order of x

Probability of observing values of c between 0 and 255,
given q = 256 and T = 10
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Computing the order of x

I Quantum algorithm more likely to return |c〉|xa mod n〉
when Tc/q close to an integer

I Let Tc = dq + ε with |ε| ≤ T/2

I Lemma : any such c occurs with probability ≥ 1/(3T 2)

I We have ∣∣∣∣cq − d

T

∣∣∣∣ ≤ 1

2q

I Since q > n2 > T 2 the fraction d/T must be a continued
fraction approximation of c/q

I Use Euclide algorithm to compute T
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Discrete logarithms

I Given p, g , h we want to find r such that g r = h mod p

I Now use 3 registers and p < q < 2p

I Put first two registers in uniform state then compute

1

p − 1

p−2∑
a=0

p−2∑
b=0

|a, b, g ah−b mod p〉

I Apply Fourier transform on first two registers

1

(p − 1)q

p−2∑
a,b=0

q−1∑
c,d=0

exp

(
2πi

q
(ac + bd)

)
|a, b, g ah−b mod p〉
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Discrete logarithms

I Observe state |c , d , y〉 with probability∣∣∣∣∣∣ 1

(p − 1)q

∑
(a,b) |a−rb=k mod (p−1)

exp

(
2πi

q
(ac + bd)

)∣∣∣∣∣∣
2

I Analysis : split the exponential in two parts ; distinguish
good and bad events ; show that good ones occur with
constant probability, and that they allow to recover r
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Remarks

I Period-finding can be adapted to any Abelian group

I In practice one must deal with errors

I Coppersmith : approximate FFT enough
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Key Distribution

I Alice and Bob want to agree on a sequence of secret
random bits, in the presence of an eavesdropper Eve

I They also want to detect eavesdropping if it occurs
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Physical Set-up

I Polarized photons in 4 directions ↑, →, ↗, ↘
(with angles 0, 90, 45, 135 )

I Alice sends polarized photons over a quantum channel

I Bob makes polarization measurements on these photons

I Alice and Bob also communicate over a classical channel

I Eve potentially makes measurements on the quantum
channel and listens to the classical channel
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Information Encoding and Measurement

I Bits are encoded as photon polarization, using either one
of two orthogonal bases

I ↑ = 0, →= 1
I ↗= 0, ↘= 1

I Alice chooses either basis randomly, chooses a random bit,
encodes this bit as above and sends the photon to Bob

I Bob chooses either basis randomly, then measures the
polarization with respect to this basis
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By quantum physics laws. . .

I If Bob chooses the same basis as Alice, then he recovers
the correct bit with probability one

I If Bob chooses the other basis, then the measurement will
produce either vector basis with probability 1/2

I If Eve makes a measurement in the same basis as Alice,
she recovers the correct bit without modifying the photon

I If Eve makes a measurement in the other basis,
she gets either vector basis with probability 1/2,
resulting in a change of basis for the photon sent to Bob
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Protocol completion

I Alice and Bob use the classical channel to communicate
each other which basis they used for each photon

I Photons measured with respect to the wrong basis
are discarded

I A subset of n remaining bits are compared over the
classical channel to detect eavesdropping, with error
detection probability 1− (3/4)n
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Eavesdropping detection analysis

I No eavesdropping : all bits will match

I When Alice and Eve use the same basis,
Bob’s measurement is unchanged

I When Alice and Eve use different bases,
Bob’s measurement wrong with probability 1/2

I Eve has a probability 1/2 of using Alice’s basis
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In “practice”

I Large scale proof-of-concept experiments

I Commercial devices (but still limited use)
I Practical issues/ attacks :

I Random measurement errors (not adversarial)
I Man-in-the-middle attacks (need for authentication)
I Two photons sent instead of one
I Information on Alice/Bob basis choice
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References

I Protocol described is Bennett-Brassard 1984

I Ekert 1991 uses entangled photons
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Conclusion

I Quantum computers will kill currently deployed protocols
based on discrete logarithm and factorization poblems

I Also need to double all key sizes

I Quantum key exchange still needs classical authentication

I Some research challenges
I Build a quantum computer
I New crypto protocols based on alternative problems
I Are those new problems hard for quantum/ classical

computers ?


	Quantum computation model
	Simon's algorithm
	Grover's search algorithm
	Factorization and discrete logarithms
	Quantum Key Exchange

