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The threat of quantum computers Quantum key exchange

» Quantum computers solve discrete logarithms & factoring
» Hence they break SSH, TLS , ...

» Not known : security of lattice problems,
polynomial systems solving, word problem, etc

» Use quantum physics properties to realize key distribution
with the ability to detect potential eavesdropping

» Not known : hardness of NP-hard problems
» Not known : can (large) quantum computers be built ?
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Credits QOutline

Quantum computation model

» Pictures are from original papers from Grover, Simon and
Schor, Wikipedia or Google image
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qbits Measurements

> A classical bit can have value/state at either 0 or 1 ] o
» A measurement is an operator on superposition states,

» A quantum bit, or g-bit, is a superposition of these states .
returning pure states

b=a-|0)+5-]1) » Measurements are performed with respect to a particular
basis, for example the computational basis {|i)}

where «, 3 € C are coefficients such that |af?> + |8 =1 > If x = Y e10...20_1; i - |i) then the probability to

» A g-bit is in a pure state if all coefficients but one are 0 measure |i) in the computational basis is |a;|?

» Generalization to n gbits is x = Zie{o
2

-1y Qi |i) » Measuring a gbit x is a non reversible operation, which
=1 actually modifies its value to the measured state

where i is written in binary and " |o;

» Other notation : x = (ag, o1, ..., Qn—1) » We also say that the gbit collapses to a pure state
» Coefficients sometimes written up to a scaling factor
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Reversible computation Remarks

) ) » For a classical bit, information ~ bit value
» Quantum comPuters on.Iy perfom.1 reversible operations » A gbit is always a superposition of all possible values
» Any reversible function on n bits corresponds to a . L . . . .
permutation on {0, ...,2" — 1} > !nformatpn within coefficients, as in fact for classical bits
> Any reversible function on n gbits corresponds to a if you write b = ao|0) + a1|1) with a; € {0,1}
unitary matrix U of dimension 2" sending

( ) to 3 such that ' — Ua/ » Superpositions of states looks like parallel computing
a=(ag,...,an_1) to f suc at ' = U«

» Still, cannot use that as such for brute force key search
» Any classical function can be made reversible with the as only pure states are returned

help of ancilla bits : » Quantum algorithms build a superposition of states

> Replace x — f(x) by (x,0) = (x, f(x)) such that coefficients associated to correct outputs
are much bigger than others
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Quantum circuits and CNOT gates Phase shifts and Toffoli gates

i0
» Relative phase shift on a single gbit (e 0)

» Useful to focus on a small number of small/local gates, 0 1
and build arbitrary circuits from there » Toffoli : doubly controlled NOT
» CNOT : controlled NOT gate T,=CC-NOT | {000} .. ANG UL
(D00 1 0 (1] (1] ] (1] o0
x> Ix> @i 01 0o 0 o0 0 0 o0
1 O 0 0 (o il 0 0 1 0 ] i oo [y = 0
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{10 0 ¢ (4] (1] 1 1) LR 1) B — - iy
0001 (1o o0 o0 a0 0 1 o0
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ly> Ix+y>

» Toffoli gates are universal : can build any logical circuit
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Hadamard gates Outline

» Hadamard gate on one gbit

e

Parallel application on n gbits gives H, such that
H = i Hn—l Hn—l
" \/E Hn—l —Iip—1
> (Remark : the matrix for parallel transformations is the
tensor product of individual transformations)

» The n-bit pure state |i) is transformed into > (—1)"/})
where i -j is the scalar product on the n-bit vectors i and j

Simon's algorithm

v
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Simon's problem Simon's algorithm

» Perform the following experiment
» Given : oracle access to a function f : {0,1}" — {0,1}"

n
» Promise : 3s € {0,1}" such that for all y,z € {0,1}" 0) Her U Her
we have f(y) =f(z) ifandonlyif y=z®sory ==z n f
(possibly s = 0 in which case f is bijective) ‘0> 7 E’=

» We want to compute s Here Ur|xi) %) = |x1 @ x2)|f(x))
» Best classical algorithm needs Q(2%/2) : random trials » Output |y)|f(x)) implies that y - s =0

(see next slide)
until a collision is found

» Repeating O(n) times gives enough information
to recover s with linear algebra over F,
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Simon's algorithm Remarks

‘0> D [g®n o Heén
f

/n I (l
|0> 7 » Can relax the promise somewhat : allow some collisions
fy) = f(2) for 2 # y,y ®s

» See Breaking Symmetric Cryptosystems using Quantum
Period Finding for some cool crypto applications

> After first Hadamard transform we have ) _|x)|0)

» After oracle we have Y~ |x)|f(x))

» After second Hadamard transform we have
> (DA

» Observe a particular couple (y, f(x)) with probability
proportional to |(—1)*¥ + (71)(X+s)'y|2

Christophe Petit -Advanced Cryptography j i Christophe Petit -Advanced Cryptography




Outline The search problem

» Given a function C : {1,..., N} — {0,1} such that
C(x) =1 for exactly one value x, compute this value

Grover's search algorithm . .
& » Classically, given only black box access to C :

N /2 random trials succeed with probability at least 1/2
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Grover's algorithm Inversion about average

> Initialize n-qbit register with uniform superposition > |)
using Hadamard transform (here we assume N = 2")
» Repeat the following unitary operations O(v/N) times
» Phase shift : if C(S) =1 then phase shift by ,

» P such that P; = & is
S e averaging operator

(before) » Dv=Pv—(v—Pv)

Average (@)

otherwise do nothing » D = H,RH, where
» Inversion about average : apply D = -/ +2P, - ————~— — — — - Average (a) » Ry =0ifi#}j,
where Pjj = 4 : » Rij=—-1if i #0,
(after) > ROO — 1

» Measure the register
» Return the value measured
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Intuition Complexity

» Start from uniform superposition with coefficients 2~"/2

» All coefficients remain real values
n/2 » Lemma : as long as the coefficient corresponding to x

» After first phase shift, all coefficients have norm 2~ - ) 1 . )
with C(x) = 1 is smaller than —, each loop iteration

all coefficients but one are positive )
increases this coefficient by at least 2\% and leaves the

» First inversion about average slightly decreases the o -
other coefficients positive

positive coefficients, and roughly brings the negative
coefficient to a positive value 3 - 27"/ » Constant probability of success after O(v/N) iterations
» The next phase shift turns this coefficient negative again

» The next inversion about average increases again its
absolute value
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Remarks QOutline

» Does not use any structure of the function C
(C can be accessed as a black box)

» Continuing the loop will decrease the success probability
» Can be adapted when there are several x with C(x) =1

» See Quantum Amplitude Amplification and Estimation
by Brassard-Hoyer-Mosca-Tapp for some generalizations Factorization and discrete logarithms

» Cryptographic consequences : double your key sizes
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Discrete Fourier Transform Quantum Fourier Transform

» Linear transformation A, sending a state > f(a)|a) to
» Let f:[1,...,N] = C an Ly-bounded function

q—1 q—1q-1
. . . L= . 1 .
Fgurler transform of f is a function f : [1,...,N] = C F(o)lc) = o f(a) exp(2riac/q) |c)
with M c=0 97" = =0
Fy) = 3 Fxge 2
1 » Equivalently, linear transformation sending any pure state
(up to some normalization factor) |a) to o1
» Well-known in engineering for sending periodic functions 2 ZGXP@W"‘?C/q) |c)
to a sum of Dirac's delta functions and vice-versa c=0

» Construction easier when g = 2¢, but adapt otherwise
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Local gates used Local gates used (2)

» Hadamard transform on gate j

1 /1 1
Rjzi( _) » Swap gates
V2l -l 1000
» Special phase shifts S; x with k > j _({0010
o Wis=1o0 100
100 0 0001
010 0
S«=loo1 o _
000 &2’
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Fast Fourier Transform Quantum Fourier transform circuit

» We have
Zf(x)ef27rixy/2[ _ Zf(2xl)ei27”—x/y/2[71

+e—27riy/2“7 Z f(le + 1)6727rix’y/2[’1

x!

» Do QFT on the £ — 1 most significant bits
Phase shift by e=2™¥/2" if the least significant bit is 1

v

» QFT on one bit is just Hadamard transform

» Writing y = >~ yx2k the phase shift is implemented
with £ — 1 elementary phase shifts by e=2™%2“"*

» Recursive formula reduces DFT complexity » Only O(f?) quantum gates needed
from O(g?) to O(qlog q)
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Quantum Fourier transform circuit (2) Correctness (sketch)

» Compute from right to left

RoS0,1502 - -~ So.e-1+ RiS12513. .- S1e-1 » Overall amplitude change is OK
R253504. . S20m1 - Re2 S0 0-1 - Rer » Phase change from |a) to |b) is
» This gives the transformation m
g Z 7rajbj + Z Fajbk
0<j<t 0<j<k<t

q—1

1
= — 27, b
12} 2¢/2 gexp( miac/q) [b) and this is equal to 27ac/2¢ modulo 27

where b is the bit-reversal of ¢

» Use swap gates to get the QFT
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Period finding From factoring to period finding

» Given f : Z — Z a periodic function, compute the period » General idea to factor n : find non trivial square root of 1
(smallest T such that f(t) = f(t+ T) for all t) » Take random x
» Find smallest r such that x" =1 mod n

Intuition : periods are easier to see in frequency domain .
- P q y » If r is even compute gcd(x"/2 4 1, n)

» Apply Fourier transform to f

> If f(t) = ™™ then its transform is just a Dirac at w,
so a measurement on it will return the frequency w, » risodd = x was a quadratic residue
from which we deduce T = w™! > ris even but x"/? = £1 mod n

» When f is more complicated, the Fourier transform may
have several peaks but the main peaks can all be related
to the period

» Gives a non trivial factor of n unless

> Note : for n = pq period divides p(n) = (p — 1)(g — 1)
(if p, g strong primes, solve a single quadratic equation!)
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Computing the order of x Computing the order of x

» Let g such that n? < g =2¢ < 2n?
» Use two registers
» Put first register in uniform superposition 391 |a)|0)

> Let T be the period of f : a — f(a) = x? mod n
» Probability to observe |c, x* mod n) proportional to

» Compute x? mod n in second register 2 2
2
- 2mi( %) 2mi( %) 2mik( 12)
E |a)|x? mod n) E el = g el = g e a
a=0 a: x?=x" mod n a=A+kT 0<k<q/T
0<a<q 0<k<q/T

» Apply Fourier transform on first register

gtat ] . » If Tc/q close to an integer, then all elements in the sum
> exp(2miac/q)|c)|x* mod n) have roughly the same phase (constructive interference),
a=0 c=0

otherwise they will average to a small value
» Observe the state
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Computing the order of x Computing the order of x

Probability of observing values of ¢ between 0 and 255,
given g =256 and T =10

0.12

» Quantum algorithm more likely to return |c)|x® mod n)
when Tc/q close to an integer

» Let Tc = dq + € with |[¢] < T/2
» Lemma : any such ¢ occurs with probability > 1/(372)

0.10

0.08+

» We have

P 0.06—

c d 1
- <=
0.04 g T[ 2
0.02 ‘ ‘ » Since g > n? > T?2 the fraction d/T must be a continued
L . ‘ fraction approximation of ¢/q

0.00 | W :
0 32 64 96 128 160 192 224 256
’

» Use Euclide algorithm to compute T
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Discrete logarithms Discrete logarithms

» Given p, g, h we want to find r such that g" = h mod p
> Now use 3 registers and p < g < 2p » Observe state |c, d, y) with probability
» Put first two registers in uniform state then compute

2
2 p— 1 27i
1 2322 2l b _— Z exp <—(ac+ bd))
p— 1 Z g ‘37 b7g h~* mod p> (p - 1)q (a,b) |a—rb=k mod (p—1) q
a=0 b=
» Apply Fourier transform on first two registers » Analysis : split the exponential in two parts; distinguish

good and bad events; show that good ones occur with

1 p=2 -1 o constant probability, and that they allow to recover r
-1)q exp (ﬂ(ac + bd)) la, b, g?h™® mod p)
P=39 520 a0 q
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Remarks QOutline

» Period-finding can be adapted to any Abelian group
» In practice one must deal with errors

» Coppersmith : approximate FFT enough

Quantum Key Exchange
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Key Distribution Physical Set-up

v

Polarized photons in 4 directions 1, —, 7, N\,
_ (with angles 0, 90, 45, 135 )
» Alice and Bob want to agree on a sequence of secret » Alice sends polarized photons over a quantum channel

random bits, in the presence of an eavesdropper Eve o
. » Bob makes polarization measurements on these photons
» They also want to detect eavesdropping if it occurs ] ) ]

» Alice and Bob also communicate over a classical channel

» Eve potentially makes measurements on the quantum
channel and listens to the classical channel
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Information Encoding and Measurement By quantum physics laws. . .

» |f Bob chooses the same basis as Alice, then he recovers

» Bits are encoded as photon polarization, using either one . I
P P J the correct bit with probability one

of two orthogonal bases

>+ =0, =1 » If Bob chooses the other basis, then the measurement will
» =0, \=1 produce either vector basis with probability 1/2
» Alice chooses either basis randomly, chooses a random bit, > If Eve makes a measurement in the same basis as Alice,
encodes this bit as above and sends the photon to Bob she recovers the correct bit without modifying the photon
» Bob chooses either basis randomly, then measures the > If Eve makes a measurement in the other basis,
polarization with respect to this basis she gets either vector basis with probability 1/2,

resulting in a change of basis for the photon sent to Bob
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Protocol completion Eavesdropping detection analysis

» Alice and Bob use the classical channel to communicate

] : » No eavesdropping : all bits will match
each other which basis they used for each photon

» When Alice and Eve use the same basis,

» Photons measured with respect to the wrong basis Bob's measurement is unchanged

are discarded » When Alice and Eve use different bases,

» A subset of n remaining bits are compared over the Bob's measurement wrong with probability 1/2

classical channel to detect eavesdropping, with error

detection probability 1 — (3/4)" » Eve has a probability 1/2 of using Alice’s basis
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In “practice” References

» Large scale proof-of-concept experiments

» Commercial devices (but still limited use)
» Protocol described is Bennett-Brassard 1984

» Practical issues/ attacks :
» Ekert 1991 uses entangled photons

» Random measurement errors (not adversarial)

» Man-in-the-middle attacks (need for authentication)
» Two photons sent instead of one

» Information on Alice/Bob basis choice
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Conclusion

» Quantum computers will kill currently deployed protocols
based on discrete logarithm and factorization poblems

» Also need to double all key sizes

» Quantum key exchange still needs classical authentication

» Some research challenges
» Build a quantum computer
» New crypto protocols based on alternative problems
» Are those new problems hard for quantum/ classical
computers ?
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