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The threat of quantum computers Isogeny Problems

Do quantum computers threaten global
encryption systems?
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Elliptic curves Elliptic curve discrete logarithm problem (ECDLP)

» Set of rational points satisfying some cubic equation ] ]
» Given an elliptic curve E over a finite field K,

Given P € E(K), given Q € G :=< P >,
Find x € Z such that Q = xP.

» Underlies strongest cryptosystems today

» Group structure given by chord and tangent rule

i Elliptic Curve Diffie-Hellman, ECDSA, ...
}p@ » Best solvers are generic DLP algorithms in general
R=P+Q » But : easily broken with a quantum computer
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Isogenies Isogenies

» In fact we can write

» Rational maps from one curve to another o(x)  wxy)
oo = (£ )

6 By — Bt (x,y) = 6(x.y) VAxy) 93 y)

where )2 only depends on x, and w/v* = ys(x)/t(x)
» deg ¢ = max{deg i, deg 1}
9P +Q) =a(P) +9(Q) > Kernel ker¢p = {P € Ey : ¢(P) = O}

» If E; = E; we say ¢ is an endomorphism of £, > (x,y) €Ekerg\ {0} & ¥(x,y) =0

» G = ker ¢ is a cyclic subgroup of Ep[deg ¢]
» Often we write £; = Ey/G

» For separable isogenies deg ¢ = # ker ¢

» Group homomorphisms

» Examples : scalar multiplications, Frobenius
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First computational aspects Structure of the endomorphism ring

» Ring structure : if ¢1, ¢ are endomorphisms of E then
» Given G = ker ¢ can compute ¢ with Vélu's formulae S0 are ¢y + ¢ and b1 0 é»

» Ordinary curves : order in a quadratic imaginary field K

9(P) = (XP+ Z (xp+@ = xq), yp+ Z (yP“‘?_yo)) » K =Q(r) with m™> +tr+p=0where A=t>—4p<0
Qeeral Qeetor » Contains scalar multiplications and the Frobenius 7

using O(#G) operations » Supersingular curves : maximal order in the quaternion
algebra B, o ramified at p (characteristic of K) and R

> Bpoo = Q(irj) with i = —q, j2 = —p, k= ij = —ji
» ¢ prime and under GRH we can take g = O(log p).
» Contains scalar multiplications, the Frobenius 7 and a

third element ¢ such that ¢m # 7o

» Often the isogeny required has large (exponential) degree,
so need some non trivial representation

» If deg ¢ = niny then ¢ = 1 0 ¢ with n; = deg ¢;
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Endomorphism ring computation Isogeny graphs

» Over K the (-torsion E[(] (points of order dividing /)

» Ring structure : if ¢1, ¢> are endomorphisms of E then o .
is isomorphic to Z; X Zy

so are ¢1 + ¢ and @1 0 ¢,
» There are ¢ + 1 cyclic subgroups of order ¢, each one

» Endomorphism ring computation : ; .
corresponding to one isogeny

Given an elliptic curve E defined over a finite field K, _
compute the endomorphism ring of E » (-isogeny graph : each vertex is a j-invariant over K,

» Output = some efficient representation of basis elements each edge corresponds to one degree £ isogeny

» Problem considered by David Kohel in his PhD thesis > Undirected graph : to every ¢ : £ = E; corresponds
(Berkeley 1996) a dual isogeny ¢ : E; — E; with ¢¢ = [deg ¢
> In supersingular case all j and isogenies defined over F

» Explicit version of Deuring correspondence (1931
P & P ( ) and graphs are Ramanujan (optimal expansion graphs)
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Kohel's algorithm for supersingular curves Isogeny computation

» From now on only supersingular curves, defined over F .
» Fix a small ¢. Given a curve E, compute all its neighbors
in the graph. Compute all neighbors of neighbors, etc,

until a loop is found, corresponding to an endomorphism

» Isogeny computation :
Given elliptic curves Ey, E; defined over a finite field K,
compute an isogeny ¢ : Eg — E;
» For the problem to be hard then deg ¢ must be large,
. so ¢ cannot be returned as a couple of rational maps
> » Same hardness as endomorphism ring computation,
at least heuristically (see later)
» May impose some conditions on the degree, for example
deg ¢ = (¢ for some e, with same hardness heuristically
» Can be solved in O(,/p) with two trees from Ey and E;

» Complexity O(+/p) in the isogeny graph
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Special isogeny problems Deuring correspondence

» In Jao-de Feo-Pliit protocols special problems are used » Deuring correspondence (1_931) . bijection from
1. A special prime p is chosen so that p = 2%23%f + 1 supersingular curves over F,, (up to Galois conjugacy)
with 22 ~ 3% ~ \/p to maximal orders in the quaternion algebra B, .,
2. There exists an isogeny of degree O(,/p) power of 2/3 (up to conjugation)
instead of O(p) in general
3. Extra information provided : search for ¢ : Eg — E; E — O =~ End(E)

of degree 2%2 knowing ¢(P) for all P € Ey[3%]
) ) 14 » Under this correspondence translate isogeny ¢ : E; — E;
» Point 2 improves tree-based attacks to O(p'/*) into ideal /, both left ideal of O; and right ideal of O,
» Point 3 allows adaptive attacks on key exchange protocol with degree ¢ = norm of |
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Explicit Deuring correspondence Quaternion ¢ power isogeny algorithm

> Input : two maximal orders Oy and O; in B, o,

» Given supersingular invariant, return corresponding order . .
P 8 P g » Output : a Op-left ideal J = Ig with ¢-power norm, where

= Endomorphism ring computation problem I'is a Op-left ideal and a O;-right ideal, and g € B;

— Believed to be hard
» Following Deuring's correspondence this corresponds to

» Given a maximal order, compute corresponding invariant computing an isogeny o : Eo — E; with power of ¢ degree

= Invertse.endomorph.ism.ring com.putation problem where End(E) ~ Op and End(E;) ~ O,
— Heuristic polynomial time algorithm L . .
» ANTS 2014 heuristic algorithm (Kohel-Lauter-P-Tignol)
» Candidate one-way function! solves the problem with e = log, n(/) ~ £ log p

» Can be adapted to powersmooth norms
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Explicit Deuring correspondence Endomorphism ring vs Isogeny computation

» Given an algorithm to compute isogenies between random

» Given a maximal order Oy and a Oy left ideal /, one can curves, given £
translate the ideal into an isogeny provided 1. Perform 2 random walks from E to E; and E;
» We know Egy and a basis for End(Ep) = Op 2. Compute an isogeny from E; and Ep
» The norm of / is powersmooth 3. Composition gives an endomorphism of E
(achieved by comparing kernels modulo prime powers) 4. Heuristically 3 endomorphisms give a small index subring
» Reverse operation also possible under same conditions » Given an algorithm to compute endomorphism ring of

. . . random curves, given E; and E,
» This constructs I?eurlng correspondence : given O, 1. Perform 2 random walks from Ey and E; to £} and E}
1. Compute an |d.ea| between Op a_"d O ) 2. Compute endomorphism ring of E] and E}
2. Apply quaternion powersmooth isogeny algorithm 3. Deduce endomorphism ring of E; and E»
3. Translate powersmooth ideal to isogeny 4. Use quaternion isogeny algorithms to compute a

powersmooth isogeny between them
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Outline Hash function

H:{0,1}* — {0,1}"

» Collision resistance :
hard to find m, m" such that H(m) = H(m')
Existing Cryptographic Protocols » Preimage resistance :

Collision-Resistant Hash function given h, hard to find m such that H(m) = h
Key Agreement and Public Key Encryption

. - » Second preimage resistance :
Identification Protocols and Signatures

given m, hard to find m’ such that H(m') = h

» Popular ones use block cipher like compression functions
and Merkle-Damgérd ; not based on maths problems
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Charles-Goren-Lauter hash function Charles-Goren-Lauter hash function

Hash of the Future?

Have you ever struggled to solve a maze? Then imagine trying o find a
path
Way. By incorporating such a maze into a hash function, Kristin
Lauter of MicrosoftResearch in Redmond, Washington, s betting
that neither you nor anyone else willsolve that problern.
Technically, Lauter’s maze is called an “expander
graph” (see figure, right). Nodes in the graph corre-
spond to eliptic curves, or equations of the form 17 =
X0 +ax-+b, Each curve leads to three ather curves by
a mathematical rlation, now called isogeny, that

H:{1,...,£}* — {supersingular j-invariants over I}
» Let p, ¢ be prime numbers, ¢ # p, p =1 mod 12

> For every j, define its neighbour set N;

Pierre de Fermat discovered while trying o prove
his famous Last Theorem.

To hash a digital file using an expander
graph, you would convert the bits of data it
into directions: 0 would mean “turn right,” 'c‘

1 would mean “turn left.” In the maze (2 \y’(‘ P
illustrated here, after the initial step 1-2, GXAN het 2 (
the blue path encodes the directions 1,0, 1, 1,0, q‘.t;ﬂ“.!'."l"
0,0,0, 1, ending at point 24, which would be the ,,-9\,-<|\> ‘5."
digital signature of the string 101100001 The red <\

loop shows a collsion of two paths, which would be
practically impossible to find in the immense maze
envisioned by Lauter.

Although her hash function (developed with colleagues
Denis Charles and Eyal Goren) s provably secure, Lauter admits
that it s not et fast enough to compete with iteative hash func-
tions. However, fo applications in which speed s less of an issue—
for example, where the file to be hashed are relatively small—Lauter
believes it might be a winner. EYS

» For two neighbours ji_1, j; and for m;q € {1,...,(},
define a rule 0’(‘/',;1,_[','7 m,-H) =Jjiy1 € Nj,. \ {j,;l}

> Let jo € F2 be a supersingular j-invariant,
and let j_; be one of its neighbours

» To hash a message, start from j_i, jo, compute ji; with
o recursively, return last j-invariant

www.sciencemag.org on March 13, 2008
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Properties Cryptanalysis

» Uniform output distribution for large enough messages

» Preimage problem for CGL hash function : » Collision algorithm for special jy (see later)
Let £y and E; be two supersingular elliptic curves over .
F > with |Eo(F,2)| = |Ey(F )| = (p+ 1) » Trapdoor collision attack : NSA can cho_ose paramgters
Find e € N and an isogeny of degree ¢° from E, to E;. such that they can compute co_II,smns_ without solving the
+ Collision problem for CGL hash function : hard problem (however the collision will leak the trapdoor)
Let Ey be a supersingular elliptic curve over F .. Find » Still secure for random and honestly generated jj : relies
e, & € N, a supersingular elliptic curve E; and two on endomorphism ring computation

distinct isogenies (i.e. with distinct kernels) of degrees
respectively (¢ and ¢ from Ey to E;.
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Outline Key agreement

» Alice and Bob want to agree on a common secret key
Existing Cryptographic Protocols > They only exchange public messages
Collision-Resistant Hash function » Eve can see all messages exchanged, yet she should not

Key Agreement and Public Key Encryption be able to infer the secret key
Identification Protocols and Signatures
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Diffie-Hellman Key Exchange Supersingular key agreement protocol

» Choose /4, g small, distinct primes.

» Choose g generating a cyclic group Chogse p=LI3lEf+1 primfe and E/F supersingular.
» Alice picks a random a and sends g? For i = A, B choose P;, Q; with (P;, @Q;) = Eo[(f].
» Bob picks a random b and sends g° > Alice chooses Ra = aaPa + baQa with order £3'; she

computes ¢a : Eg = Ea = Eg/(Pa) and sends E,4 to Bob.
She also computes and sends @a(Pg) and pa(Qg).
Bob proceeds similarly.

» Alice computes (g°)? = g2*
» Bob computes (g?)° = g2

» Eve cannot compute a, b or g?® from g2 and g°

» U iving Eg, P dey , Ali t
(discrete logarithm, Diffie-Hellman problems) pon receiving Eg, 05(Pa) and ips(Qa), Alice computes

©8(Ra) = aaps(Pa) + baws(Ra), then she computes
Eas = Eg/(¢8(Ra)) = Eo/(Ra. Re) = Ea/(0a(Rg))
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Supersingular key agreement protocol Remarks

» Choice of p ensures that E[¢] is defined over F e,
can be generalized at an efficiency cost

% \ > There is ¢; of “small” degree (i ~ ,/p from E; to E;,
Eo/(Ra, Rg) implies more efficient isogeny tree attacks;
/ ’ can be avoided at an efficiency cost

» Extra data ¢a(Ps), ¢a(Q@g) leads to active attacks
Eo/{Rg) (Galbraith-P-Shani-Ti, Asiacrypt 2016);
impact on passive attacks remains unclear
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Public Key Encryption Public Key Encryption

» Diffie-Hellman-like key exchange protocol leads to
ElGamal-like public key encryption

» Ry is secret key and (Ea, ¢a(Pg), 9a(@s)) is public key

» Alice chooses keys SK, PK
» She publishes PK but keeps SK secret

» Boc can use PK to encrypt messages for Alice » Encryption of m is (¢, ;) where

> Alice can decrypt using SK » c1 = (Eg,pB(Pa), v58(Q4))

» Eve sees PK, yet they cannot distinguish encryptions of > cp is some one-time pad of m with shared key Eag
any two chosen messages » To decrypt : first recompute the shared key then undo

one-time pad

Christophe Petit -Advanced Cryptography j i Christophe Petit -Advanced Cryptography




Outline Identification protocol / proof of knowledge

» Prover wants to prove knowledge of a secret to Verifier
without revealing it (can be used for authentication)

» Often 3-round protocol, with commitment, challenge
and answer messages

Existing Cryptographic Protocols » Security requirements :
Collision-Resistant Hash f_unctlon . » Correctness : if Prover knows the secret then
Key Agreement and Public Key Encryption he can convince Verifier
Identification Protocols and Signatures » Soundness : if Prover convinces the Verifier then

he must know the secret
» Zero-knowledge : nothing is leaked about the secret
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Jao-de Feo-Plit identification protocol Jao-de Feo-Plit identification protocol

» Proof of knowledge of an isogeny ¢ between two given

curves Ey and E; » Correctness : clear
» Proof inspired by classical proof for graph isomorphism, » 2-special soundness : answer for both bit values gives
and commutative diagram in key agreement protocol & = 1" 0 ¢/ 0. Compute ker ¢ = B¢ n ker(q;).
10} ,
5 g £t E
N
¥ v v v’
/
/
E; Es E E

» 3-round protocol : Prover commits with £, and Ez;
Verifier answers with one bit ; depending on this bit
Prover either reveals ¢’ or Prover reveals both ¢ and 1’

» Zero-knowledge : relies on ad hoc isogeny problems
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New protocol based on endomorphism ring New identification protocol
computation (Galbraith-P-Silva Vélon)

» Choose Eq special such that End(Ep) is known

» Choose ¢ of degree large enough such that E; is

» Goal is to rely solely on the endomorphism ring ) e
uniformly distributed

computation problem
» Secret : knowledge of isogeny ¢ between Ey and E;.

» Proof is actually closer to graph isomorphism proof ) - ¢
Equivalently, knowledge of the endomorphism ring of E;

Ec—— & » Prover chooses random © with degree large enough so
that E, is uniformly distributed, and commits with E;.
0 ¥ Verifier challenges with one bit. Depending on this bit
Prover answers either with ¢ or with an isogeny
E2 . E() — E
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Security Properties Achieving Zero-Knowledge
» Correctness is clear » Algorithm to compute 7 :
» Soundness based on a “standard” isogeny problem 1. Let Oy =~ End(Ep) with Oy C By oo
» Note that the isogeny 7j = 1) o ( cannot be returned by 2. Compute Op-left ideal / corresponding to fj = ¢ o ¢

3. Apply quaternion powersmooth isogeny algorithm

Prover, as it would reveal the secret ¢
4 (variant of ANTS 2014) to get another Op-left ideal J in

Eo E; the same class as /
4. Compute isogeny 7 corresponding to J
\ ‘¢ » Remarks
E » Steps 2 and 4 use knowledge of End(Ep)
» Powersmooth requirement for efficiency
» To achieve zero-knowledge Prover needs to compute a » We prove 7 is independent of 7}, except for the fact that
“fresh” isogeny from Eq to E,, independent of ¢ and v they connect the same curves
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Signature schemes Signature schemes

» Can use Fiat-Shamir transform (or any alternative) to

» Alice chooses two keys PK and SK turn the above ID protocols into signature schemes,

» She publishes PK and keeps SK secret in the random oracle model

» She signs messages with SK » Secret key is isogeny ¢ ; public key is E;

» Signatures can be verified with PK » Signature on m : repeat the identification protocol, with

challenge bits replaced by the hash of the message and
commitments. The signature contains the commitments
and the responses. (Or the hash and responses.)

» Security property : existential unforgeability under chosen
message attacks

» To verify, recompute the hash and check all responses
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Outline Charles-Goren-Lauter hash function

Hash of the Future?

Have you ever struggled to solve a maze? Then imagine trying to find a
path through a tangled, three-dimensional maze as large as the Milky
Way. By incorporating such a maze into a hash function, Kristin
Lauter of Microsoft Research in Redmond, Washington, is betting
that neither you nor anyone else will solve that problem.
Technically, Lauter’s maze is called an “expander
graph” (see figure, right). Nodes in the graph corre-
spond to elliptic curves, or equations of the form y? =
6 +ax+b. Each curve leads o three other curves by~ (o)

\
a mathematical relation, now called isogeny, that “Yn‘

Pierre de Fermat discovered while trying o prove
his famous Last Theorem.

To hash a digital file using an expander
graph, you would convert the bits of data
into directions: 0 would mean “turn right,”
1 would mean “turn left.” In the maze
illustrated here, after the initial step 1-2,

H the blue path encodes the directions 1, 0, 1, 1, 0,
Cryptanalysis Results 0.0,0,1encinga o 24, uhich voul b e
digital signature of the string 101100001 The red

AttaCkS on CG L h aSh ﬂJ nCtiOn loop shows a collision of two paths, which would be
practically impossible to find in the immense maze

. envisioned by Lauter.

Asia crypt attac ks on key exchan ge Although her hash function (developed with coleagues
Denis Charles and Eyal Goren) is provably secure, Lauter admits
that it is not yet fast enough to compete with iterative hash func-
tions. However, for applications in which speed i less of an issue—
for example, where the files to be hashed are relatively small—Lauter
believes it might be a winner —D.M.
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www.sciencemag.org on March 13, 2008
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Strategy to break CGL hash CGL attack on special initial points

» Deuring correspondence (1931) : bijection from

supersingular curves over I, (up to Galois conjugacy) » What : collision attack for special parameters
to maximal orders in the quaternion algebra B, o, compute an endomorphism of Eq of degree (¢
(up to conjugation) when End(E) is known
E — O =~ End(E) » Compute a € Oy of norm (¢
» Strategy to break CGL : constructive correspondence » Deduce [; = Opar + Ool’, i =1,... e
» Translate collision and preimage resistance properties in » For each i

the quaternion world » Compute J; &~ I; with powersmooth norm

» Break collision and preimage resistance properties » Compute corresponding isogeny o; and j-invariant j;
in the quaternion world

» Translate the attacks (as much as possible)
back to the elliptic curve world

» Deduce a collision path (jo, j1,---,Jje =Jo)
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A trapdoor collision attack Outline

» What : compute genuine-looking parameters together
with a collision trapdoor

» Choose a random path from jy, ending at j;

» Reveal j; as initial point in the graph

» Keep the path as a trapdoor

» Use collision attack on jp Cryptanalysis Results

» Combine paths to produce collision on j; Attacks on CGL hash function

) ] ) Asiacrypt attacks on key exchange
» Note : using the trapdoor will reveal it
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Supersingular key agreement protocol Adaptive attack on supersingular key agreement

(Galbraith-P-Shani-Ti)

Eo/{Ra) » What : if Alice uses static secret key Ry = aaPa + baQa,
ba run key agreement protocol several times and deduce R4
/ \ » Normal execution : on input (Eg, ¢5(Pa), 258(Qa)),
Eo Eo/(Ra, Rs) Alice returns Eag = Eg/{aatds(Pa) + badp(Qa))
\ / » Adaptive attack : make Alice compute Eg/{aaU; + baV;)
?8 for well-chosen U;, V;, and recover the secret piecewise

» Sometimes Alice only returns a hash of j(Eag) : hence
adversary does not get corresponding Eag but can still
vary inputs and observe when outputs change
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Attack when (4 = 2 Other results on key agreement

» Can assume Ry = Pa + aQa with a = >~ ;2" € (Zoe)*

» Send U; = ¢g(a;Pa + biQa) and V; = ¢g(ciPa + diQa) » The degree condition on the isogeny problems could a
in query i such that priori have made them harder to break. We prove this is
1. (Ui + aV;) = {(ai + aci)Pa + (b; + ad;)Qa) is equal not the case : computing the endomorphism rings of both
to (Pa+ aQa) if and only if a; =0 curves is enough to break the isogeny problems in
2. U;j and V; both have order 2" supersingular key agreement protocol.

3. en(U;, Vi) = exn(¢8(Pa), 98(Qa)) = ex(Pa, Qa)*"
» First condition to distinguish o; = 0 from o; = 1;
second and third conditions to pass validity checks

» Side-channel attack recovering a static key from partial
leakage of shared keys

» See Asiacrypt paper for how to choose a;, b;, ¢;, d;
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Outline Conclusion

» Endomorphism ring computation & pure isogeny problems
are natural problems with some history but
» More classical and quantum cryptanalysis needed
» Beware of variants

» We can build some crypto protocols on isogeny problems
(key exchange, public key encryption, signatures) with
reasonable efficiency. Other protocols ?

Conclusion
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