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About these slides

I Temporary version of the slides

I Please check the course website for updates

I Please report any typo and error found !
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The threat of quantum computers
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Isogeny Problems

I Recently proposed for post-quantum cryptography

I Classical and quantum algorithms still exponential time

I Some history, e.g. David Kohel’s PhD thesis in 1996

I Natural problems from a number theory point of view
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Elliptic curves

I Set of rational points satisfying some cubic equation

I Group structure given by chord and tangent rule
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Elliptic curve discrete logarithm problem (ECDLP)

I Given an elliptic curve E over a finite field K ,
Given P ∈ E (K ), given Q ∈ G :=< P >,
Find x ∈ Z such that Q = xP .

I Underlies strongest cryptosystems today
Elliptic Curve Diffie-Hellman, ECDSA, . . .

I Best solvers are generic DLP algorithms in general

I But : easily broken with a quantum computer
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Isogenies

I Rational maps from one curve to another

φ : E0 → E1 : (x , y)→ φ(x , y)

I Group homomorphisms

φ(P + Q) = φ(P) + φ(Q)

I If E1 = E0 we say φ is an endomorphism of E0

I Examples : scalar multiplications, Frobenius
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Isogenies

I In fact we can write

φ(x , y) =

(
ϕ(x)

ψ2(x , y)
,
ω(x , y)

ψ3(x , y)

)
where ψ2 only depends on x , and ω/ψ3 = ys(x)/t(x)

I deg φ = max{degϕ, degψ2}

I Kernel ker φ = {P ∈ E0 : φ(P) = O}
I (x , y) ∈ ker φ \ {O} ⇔ ψ(x , y) = 0
I G = ker φ is a cyclic subgroup of E0[deg φ]
I Often we write E1 = E0/G
I For separable isogenies deg φ = # ker φ
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First computational aspects

I Given G = ker φ can compute φ with Vélu’s formulae

φ(P) =

xP +
∑

Q∈G\{O}

(xP+Q − xQ), yP +
∑

Q∈G\{O}

(yP+Q − yQ)


using O(#G ) operations

I Often the isogeny required has large (exponential) degree,
so need some non trivial representation

I If deg φ = n1n2 then φ = φ1 ◦ φ2 with ni = deg φi
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Structure of the endomorphism ring

I Ring structure : if φ1, φ2 are endomorphisms of E then
so are φ1 + φ2 and φ1 ◦ φ2

I Ordinary curves : order in a quadratic imaginary field K

I K = Q(π) with π2 + tπ + p = 0 where ∆ = t2 − 4p < 0
I Contains scalar multiplications and the Frobenius π

I Supersingular curves : maximal order in the quaternion
algebra Bp,∞ ramified at p (characteristic of K ) and R

I Bp,∞ = Q(i , j) with i2 = −q, j2 = −p, k = ij = −ji
I q prime and under GRH we can take q = O(log p).
I Contains scalar multiplications, the Frobenius π and a

third element φ such that φπ 6= πφ
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Endomorphism ring computation

I Ring structure : if φ1, φ2 are endomorphisms of E then
so are φ1 + φ2 and φ1 ◦ φ2

I Endomorphism ring computation :
Given an elliptic curve E defined over a finite field K ,
compute the endomorphism ring of E

I Output = some efficient representation of basis elements

I Problem considered by David Kohel in his PhD thesis
(Berkeley 1996)

I Explicit version of Deuring correspondence (1931)
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Isogeny graphs

I Over K̄ the `-torsion E [`] (points of order dividing `)
is isomorphic to Z` × Z`

I There are ` + 1 cyclic subgroups of order `, each one
corresponding to one isogeny

I `-isogeny graph : each vertex is a j-invariant over K̄ ,
each edge corresponds to one degree ` isogeny

I Undirected graph : to every φ : E1 → E2 corresponds
a dual isogeny φ̂ : E2 → E1 with φφ̂ = [deg φ]

I In supersingular case all j and isogenies defined over Fp2

and graphs are Ramanujan (optimal expansion graphs)
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Kohel’s algorithm for supersingular curves

I From now on only supersingular curves, defined over Fp2

I Fix a small `. Given a curve E , compute all its neighbors
in the graph. Compute all neighbors of neighbors, etc,
until a loop is found, corresponding to an endomorphism

I Complexity O(
√
p)
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Isogeny computation

I Isogeny computation :
Given elliptic curves E0,E1 defined over a finite field K ,
compute an isogeny φ : E0 → E1

I For the problem to be hard then deg φ must be large,
so φ cannot be returned as a couple of rational maps

I Same hardness as endomorphism ring computation,
at least heuristically (see later)

I May impose some conditions on the degree, for example
deg φ = `e for some e, with same hardness heuristically

I Can be solved in O(
√
p) with two trees from E0 and E1

in the isogeny graph
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Special isogeny problems

I In Jao-de Feo-Plût protocols special problems are used

1. A special prime p is chosen so that p = 2e23e3f ± 1
with 2e2 ≈ 3e3 ≈ √p

2. There exists an isogeny of degree O(
√
p) power of 2/3

instead of O(p) in general
3. Extra information provided : search for φ : E0 → E1

of degree 2e2 knowing φ(P) for all P ∈ E0[3e3 ]

I Point 2 improves tree-based attacks to O(p1/4)

I Point 3 allows adaptive attacks on key exchange protocol
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Deuring correspondence

I Deuring correspondence (1931) : bijection from
supersingular curves over F̄p (up to Galois conjugacy)
to maximal orders in the quaternion algebra Bp,∞
(up to conjugation)

E → O ≈ End(E )

I Under this correspondence translate isogeny ϕ : E1 → E2

into ideal I , both left ideal of O1 and right ideal of O2,
with degree ϕ = norm of I
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Explicit Deuring correspondence

I Given supersingular invariant, return corresponding order

= Endomorphism ring computation problem
→ Believed to be hard

I Given a maximal order, compute corresponding invariant

= Inverse endomorphism ring computation problem
→ Heuristic polynomial time algorithm

I Candidate one-way function !
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Quaternion ` power isogeny algorithm

I Input : two maximal orders O0 and O1 in Bp,∞

I Output : a O0-left ideal J = Iq with `-power norm, where
I is a O0-left ideal and a O1-right ideal, and q ∈ B∗p,∞

I Following Deuring’s correspondence this corresponds to
computing an isogeny ϕ : E0 → E1 with power of ` degree
where End(E0) ≈ O0 and End(E1) ≈ O1

I ANTS 2014 heuristic algorithm (Kohel-Lauter-P-Tignol)
solves the problem with e = log` n(I ) ≈ 7

2
log p

I Can be adapted to powersmooth norms
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Explicit Deuring correspondence

I Given a maximal order O0 and a O0 left ideal I , one can
translate the ideal into an isogeny provided

I We know E0 and a basis for End(E0) ≈ O0

I The norm of I is powersmooth

(achieved by comparing kernels modulo prime powers)

I Reverse operation also possible under same conditions

I This constructs Deuring correspondence : given O1,

1. Compute an ideal between O0 and O1

2. Apply quaternion powersmooth isogeny algorithm
3. Translate powersmooth ideal to isogeny
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Endomorphism ring vs Isogeny computation

I Given an algorithm to compute isogenies between random
curves, given E

1. Perform 2 random walks from E to E1 and E2

2. Compute an isogeny from E1 and E2

3. Composition gives an endomorphism of E
4. Heuristically 3 endomorphisms give a small index subring

I Given an algorithm to compute endomorphism ring of
random curves, given E1 and E2

1. Perform 2 random walks from E1 and E2 to E ′1 and E ′2
2. Compute endomorphism ring of E ′1 and E ′2
3. Deduce endomorphism ring of E1 and E2

4. Use quaternion isogeny algorithms to compute a
powersmooth isogeny between them
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Hash function

H : {0, 1}∗ → {0, 1}n

I Collision resistance :
hard to find m,m′ such that H(m) = H(m′)

I Preimage resistance :
given h, hard to find m such that H(m) = h

I Second preimage resistance :
given m, hard to find m′ such that H(m′) = h

I Popular ones use block cipher like compression functions
and Merkle-Damg̊ard ; not based on maths problems
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Charles-Goren-Lauter hash function

Katholieke Universiteit Leuven in Belgium.

Anticipating such a breakdown, Microsoft in

2005 banned both SHA-1 and MD5 from

new products and has removed MD5 from all

its current products, says Kristin Lauter, head

of the Cryptography Group at Microsoft

Research in Redmond, Washington. Fortu-

nately, a good backup is already available. In

2004, NIST issued several new standards,

collectively called SHA-2, which are more

secure than SHA-1 because they produce

longer hashes (up to 512 bits instead of 160).

But NIST worries that SHA-2 could even-

tually fall, too. “Everything that has been

attacked is in the same family,” says William

Burr of NIST’s Security Technology Group.

“It may turn out that they aren’t broken or

can’t be broken, but we didn’t want to get

caught out on the wrong side.”

After extensive debate, including two

international workshops in 2005 and 2006,

NIST decided that a new competition could

turn up completely new approaches to hash

functions. “We’ll be reluctant to pick some-

thing that looks just like SHA-2,” says Burr.

“We want some biodiversity.”

Although no designs have been formally

submitted yet—the deadline is in October—

experts predict that most entrants will con-

tinue to be iterative algorithms subtly

retooled to defeat the new kinds of attacks.

For instance, Preneel’s RIPEMD—one of the

few f irst-generation hash functions still

standing—performs two parallel iterations,

making it difficult for an attacker to figure

out which one to attack.

A second approach, called “provably

secure” hash functions, derives its presump-

tive security from math problems that are

considered to be hard to crack (see sidebar,

above). This type of algorithm typically does

not require multiple iterations, but it does

require cryptologists to put their faith in a

mathematical “black box.” Also, such algo-

rithms tend to be slower than iterative algo-

rithms because they require a more elaborate

calculation—even though it is performed

only once. Speed is at a premium for hash

functions, as they are typically used to tag a

document in the split-second it’s electroni-

cally transmitted.

Not surprisingly, mathematicians love

provably secure systems, whereas cryptolo-

gists have little use for them. “They are typi-

cally only provable with respect to one prop-

erty but are weak with respect to other proper-

ties,” says Joan Daemen of STMicroelectron-

ics, co-winner of the AES competition. For

instance, a “provably secure” hash developed

by Lenstra and his colleagues, called Very

Smooth Hash (VSH), was compromised last

year when Markku-Juhani Saarinen at a Span-

ish company called Kinamik showed that it

was easy to find “near-collisions” in VSH. In

practice, engineers often truncate a long hash

value to a shorter one, assuming that the trun-

cated hash will inherit the long one’s security.

Saarinen’s result means that they can’t count

on that with VSH.

In the final analysis, what makes it so

hard to come up with good hash func-

tions—and prove they work—is that they

are expected to do so many things. “You

expect them to do everything and blame

them when they don’t work,” says Preneel.

Perhaps a 4-year bake-off will be just what

the chef ordered to make some new hash

that will satisfy everybody’s tastes.

–DANA MACKENZIE

Dana Mackenzie is a freelance writer in Santa Cruz, 
California.

www.sciencemag.org SCIENCE VOL 319 14 MARCH 2008 1481
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Hash of the Future?

Have you ever struggled to solve a maze? Then imagine trying to find a
path through a tangled, three-dimensional maze as large as the Milky
Way. By incorporating such a maze into a hash function, Kristin
Lauter of Microsoft Research in Redmond, Washington, is betting
that neither you nor anyone else will solve that problem.

Technically, Lauter’s maze is called an “expander
graph” (see figure, right). Nodes in the graph corre-
spond to elliptic curves, or equations of the form y2 =
x3 + ax + b. Each curve leads to three other curves by
a mathematical relation, now called isogeny, that
Pierre de Fermat discovered while trying to prove
his famous Last Theorem.

To hash a digital file using an expander
graph, you would convert the bits of data
into directions: 0 would mean “turn right,”
1 would mean “turn left.” In the maze
illustrated here, after the initial step 1-2,
the blue path encodes the directions 1, 0, 1, 1, 0,
0, 0, 0, 1, ending at point 24, which would be the
digital signature of the string 101100001. The red
loop shows a collision of two paths, which would be
practically impossible to find in the immense maze
envisioned by Lauter.

Although her hash function (developed with colleagues
Denis Charles and Eyal Goren) is provably secure, Lauter admits
that it is not yet fast enough to compete with iterative hash func-
tions. However, for applications in which speed is less of an issue—
for example, where the files to be hashed are relatively small—Lauter
believes it might be a winner. –D.M.

Published by AAAS
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Charles-Goren-Lauter hash function

H : {1, . . . , `}∗ → {supersingular j-invariants over Fp2}
I Let p, ` be prime numbers, ` 6= p, p = 1 mod 12

I For every j , define its neighbour set Nj

I For two neighbours ji−1, ji and for mi+1 ∈ {1, . . . , `},
define a rule σ(ji−1, ji ,mi+1) = ji+1 ∈ Nji \ {ji−1}

I Let j0 ∈ Fp2 be a supersingular j-invariant,
and let j−1 be one of its neighbours

I To hash a message, start from j−1, j0, compute ji+1 with
σ recursively, return last j-invariant
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Properties

I Uniform output distribution for large enough messages

I Preimage problem for CGL hash function :
Let E0 and E1 be two supersingular elliptic curves over
Fp2 with |E0(Fp2)| = |E1(Fp2)| = (p + 1)2.
Find e ∈ N and an isogeny of degree `e from E0 to E1.

I Collision problem for CGL hash function :
Let E0 be a supersingular elliptic curve over Fp2 . Find
e1, e2 ∈ N, a supersingular elliptic curve E1 and two
distinct isogenies (i.e. with distinct kernels) of degrees
respectively `e1 and `e2 from E0 to E1.
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Cryptanalysis

I Collision algorithm for special j0 (see later)

I Trapdoor collision attack : NSA can choose parameters
such that they can compute collisions without solving the
hard problem (however the collision will leak the trapdoor)

I Still secure for random and honestly generated j0 : relies
on endomorphism ring computation
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Key agreement

I Alice and Bob want to agree on a common secret key

I They only exchange public messages

I Eve can see all messages exchanged, yet she should not
be able to infer the secret key
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Diffie-Hellman Key Exchange

I Choose g generating a cyclic group

I Alice picks a random a and sends g a

I Bob picks a random b and sends gb

I Alice computes (gb)a = g ab

I Bob computes (g a)b = g ab

I Eve cannot compute a, b or g ab from g a and gb

(discrete logarithm, Diffie-Hellman problems)
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Supersingular key agreement protocol

I Choose `A, `B small, distinct primes.
Choose p = `eAA `

eB
B f ± 1 prime and E0/Fp2 supersingular.

For i = A,B choose Pi ,Qi with 〈Pi ,Qi〉 = E0[`eii ].

I Alice chooses RA = aAPA + bAQA with order `eAA ; she
computes φA : E0 → EA = E0/〈PA〉 and sends EA to Bob.
She also computes and sends ϕA(PB) and ϕA(QB).
Bob proceeds similarly.

I Upon receiving EB , ϕB(PA) and ϕB(QA), Alice computes
ϕB(RA) = aAϕB(PA) + bAϕB(RA), then she computes
EAB = EB/〈ϕB(RA)〉 = E0/〈RA,RB〉 = EA/〈ϕA(RB)〉
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Supersingular key agreement protocol

E0

E0/〈RA〉

E0/〈RB〉

E0/〈RA,RB〉

φA

φB
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Remarks

I Choice of p ensures that E0[`eii ] is defined over Fp2 ,
can be generalized at an efficiency cost

I There is φi of “small” degree `eii ≈
√
p from E0 to Ei ,

implies more efficient isogeny tree attacks ;
can be avoided at an efficiency cost

I Extra data φA(PB), φA(QB) leads to active attacks
(Galbraith-P-Shani-Ti, Asiacrypt 2016) ;
impact on passive attacks remains unclear
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Public Key Encryption

I Alice chooses keys SK , PK

I She publishes PK but keeps SK secret

I Boc can use PK to encrypt messages for Alice

I Alice can decrypt using SK

I Eve sees PK , yet they cannot distinguish encryptions of
any two chosen messages
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Public Key Encryption

I Diffie-Hellman-like key exchange protocol leads to
ElGamal-like public key encryption

I RA is secret key and (EA, φA(PB), φA(QB)) is public key
I Encryption of m is (c1, c2) where

I c1 = (EB , ϕB(PA), ϕB(QA))
I c2 is some one-time pad of m with shared key EAB

I To decrypt : first recompute the shared key then undo
one-time pad
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Identification protocol / proof of knowledge

I Prover wants to prove knowledge of a secret to Verifier
without revealing it (can be used for authentication)

I Often 3-round protocol, with commitment, challenge
and answer messages

I Security requirements :
I Correctness : if Prover knows the secret then

he can convince Verifier
I Soundness : if Prover convinces the Verifier then

he must know the secret
I Zero-knowledge : nothing is leaked about the secret
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Jao-de Feo-Plût identification protocol

I Proof of knowledge of an isogeny φ between two given
curves E0 and E1

I Proof inspired by classical proof for graph isomorphism,
and commutative diagram in key agreement protocol

E0 E1

E2 E3

φ

ψ′ψ

φ′

I 3-round protocol : Prover commits with E2 and E3 ;
Verifier answers with one bit ; depending on this bit
Prover either reveals φ′ or Prover reveals both ψ and ψ′
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Jao-de Feo-Plût identification protocol

I Correctness : clear

I 2-special soundness : answer for both bit values gives
φ̃ = ψ̂′ ◦ φ′ ◦ ψ̂. Compute ker φ = E0[`eAA ] ∩ ker(φ̃).

E0 E1

E2 E3

φ

φ̃

ψ′ψ

φ′

I Zero-knowledge : relies on ad hoc isogeny problems
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New protocol based on endomorphism ring

computation (Galbraith-P-Silva Vélon)

I Goal is to rely solely on the endomorphism ring
computation problem

I Proof is actually closer to graph isomorphism proof

E0 E1

E2

ϕ

ψ
η
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New identification protocol

I Choose E0 special such that End(E0) is known

I Choose ϕ of degree large enough such that E1 is
uniformly distributed

I Secret : knowledge of isogeny ϕ between E0 and E1.
Equivalently, knowledge of the endomorphism ring of E1

I Prover chooses random ψ with degree large enough so
that E2 is uniformly distributed, and commits with E2.
Verifier challenges with one bit. Depending on this bit
Prover answers either with ψ or with an isogeny
η : E0 → E2
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Security Properties

I Correctness is clear
I Soundness based on a “standard” isogeny problem
I Note that the isogeny η̃ = ψ ◦ ϕ cannot be returned by

Prover, as it would reveal the secret ϕ

E0 E1

E2

ϕ

ψ
η

I To achieve zero-knowledge Prover needs to compute a
“fresh” isogeny from E0 to E2, independent of ϕ and ψ
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Achieving Zero-Knowledge

I Algorithm to compute η :

1. Let O0 ≈ End(E0) with O0 ⊂ Bp,∞
2. Compute O0-left ideal I corresponding to η̃ = ψ ◦ ϕ
3. Apply quaternion powersmooth isogeny algorithm

(variant of ANTS 2014) to get another O0-left ideal J in
the same class as I

4. Compute isogeny η corresponding to J

I Remarks
I Steps 2 and 4 use knowledge of End(E0)
I Powersmooth requirement for efficiency
I We prove η is independent of η̃, except for the fact that

they connect the same curves
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Signature schemes

I Alice chooses two keys PK and SK

I She publishes PK and keeps SK secret

I She signs messages with SK

I Signatures can be verified with PK

I Security property : existential unforgeability under chosen
message attacks
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Signature schemes

I Can use Fiat-Shamir transform (or any alternative) to
turn the above ID protocols into signature schemes,
in the random oracle model

I Secret key is isogeny ϕ ; public key is E1

I Signature on m : repeat the identification protocol, with
challenge bits replaced by the hash of the message and
commitments. The signature contains the commitments
and the responses. (Or the hash and responses.)

I To verify, recompute the hash and check all responses
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Charles-Goren-Lauter hash function

Katholieke Universiteit Leuven in Belgium.

Anticipating such a breakdown, Microsoft in

2005 banned both SHA-1 and MD5 from

new products and has removed MD5 from all

its current products, says Kristin Lauter, head

of the Cryptography Group at Microsoft

Research in Redmond, Washington. Fortu-

nately, a good backup is already available. In

2004, NIST issued several new standards,

collectively called SHA-2, which are more

secure than SHA-1 because they produce

longer hashes (up to 512 bits instead of 160).

But NIST worries that SHA-2 could even-

tually fall, too. “Everything that has been

attacked is in the same family,” says William

Burr of NIST’s Security Technology Group.

“It may turn out that they aren’t broken or

can’t be broken, but we didn’t want to get

caught out on the wrong side.”

After extensive debate, including two

international workshops in 2005 and 2006,

NIST decided that a new competition could

turn up completely new approaches to hash

functions. “We’ll be reluctant to pick some-

thing that looks just like SHA-2,” says Burr.

“We want some biodiversity.”

Although no designs have been formally

submitted yet—the deadline is in October—

experts predict that most entrants will con-

tinue to be iterative algorithms subtly

retooled to defeat the new kinds of attacks.

For instance, Preneel’s RIPEMD—one of the

few f irst-generation hash functions still

standing—performs two parallel iterations,

making it difficult for an attacker to figure

out which one to attack.

A second approach, called “provably

secure” hash functions, derives its presump-

tive security from math problems that are

considered to be hard to crack (see sidebar,

above). This type of algorithm typically does

not require multiple iterations, but it does

require cryptologists to put their faith in a

mathematical “black box.” Also, such algo-

rithms tend to be slower than iterative algo-

rithms because they require a more elaborate

calculation—even though it is performed

only once. Speed is at a premium for hash

functions, as they are typically used to tag a

document in the split-second it’s electroni-

cally transmitted.

Not surprisingly, mathematicians love

provably secure systems, whereas cryptolo-

gists have little use for them. “They are typi-

cally only provable with respect to one prop-

erty but are weak with respect to other proper-

ties,” says Joan Daemen of STMicroelectron-

ics, co-winner of the AES competition. For

instance, a “provably secure” hash developed

by Lenstra and his colleagues, called Very

Smooth Hash (VSH), was compromised last

year when Markku-Juhani Saarinen at a Span-

ish company called Kinamik showed that it

was easy to find “near-collisions” in VSH. In

practice, engineers often truncate a long hash

value to a shorter one, assuming that the trun-

cated hash will inherit the long one’s security.

Saarinen’s result means that they can’t count

on that with VSH.

In the final analysis, what makes it so

hard to come up with good hash func-

tions—and prove they work—is that they

are expected to do so many things. “You

expect them to do everything and blame

them when they don’t work,” says Preneel.

Perhaps a 4-year bake-off will be just what

the chef ordered to make some new hash

that will satisfy everybody’s tastes.

–DANA MACKENZIE

Dana Mackenzie is a freelance writer in Santa Cruz, 
California.

www.sciencemag.org SCIENCE VOL 319 14 MARCH 2008 1481
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Hash of the Future?

Have you ever struggled to solve a maze? Then imagine trying to find a
path through a tangled, three-dimensional maze as large as the Milky
Way. By incorporating such a maze into a hash function, Kristin
Lauter of Microsoft Research in Redmond, Washington, is betting
that neither you nor anyone else will solve that problem.

Technically, Lauter’s maze is called an “expander
graph” (see figure, right). Nodes in the graph corre-
spond to elliptic curves, or equations of the form y2 =
x3 + ax + b. Each curve leads to three other curves by
a mathematical relation, now called isogeny, that
Pierre de Fermat discovered while trying to prove
his famous Last Theorem.

To hash a digital file using an expander
graph, you would convert the bits of data
into directions: 0 would mean “turn right,”
1 would mean “turn left.” In the maze
illustrated here, after the initial step 1-2,
the blue path encodes the directions 1, 0, 1, 1, 0,
0, 0, 0, 1, ending at point 24, which would be the
digital signature of the string 101100001. The red
loop shows a collision of two paths, which would be
practically impossible to find in the immense maze
envisioned by Lauter.

Although her hash function (developed with colleagues
Denis Charles and Eyal Goren) is provably secure, Lauter admits
that it is not yet fast enough to compete with iterative hash func-
tions. However, for applications in which speed is less of an issue—
for example, where the files to be hashed are relatively small—Lauter
believes it might be a winner. –D.M.
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Strategy to break CGL hash

I Deuring correspondence (1931) : bijection from
supersingular curves over F̄p (up to Galois conjugacy)
to maximal orders in the quaternion algebra Bp,∞
(up to conjugation)

E → O ≈ End(E )

I Strategy to break CGL : constructive correspondence
I Translate collision and preimage resistance properties in

the quaternion world
I Break collision and preimage resistance properties

in the quaternion world
I Translate the attacks (as much as possible)

back to the elliptic curve world
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CGL attack on special initial points

I What : collision attack for special parameters
compute an endomorphism of E0 of degree `e

when End(E0) is known

I Compute α ∈ O0 of norm `e

I Deduce Ii = O0α + O0`
i , i = 1, . . . , e

I For each i
I Compute Ji ≈ Ii with powersmooth norm
I Compute corresponding isogeny ϕi and j-invariant ji

I Deduce a collision path (j0, j1, . . . , je = j0)
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A trapdoor collision attack

I What : compute genuine-looking parameters together
with a collision trapdoor

I Choose a random path from j0, ending at j1
I Reveal j1 as initial point in the graph

I Keep the path as a trapdoor

I Use collision attack on j0
I Combine paths to produce collision on j1

I Note : using the trapdoor will reveal it
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Supersingular key agreement protocol

E0

E0/〈RA〉

E0/〈RB〉

E0/〈RA,RB〉

φA

φB
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Adaptive attack on supersingular key agreement

(Galbraith-P-Shani-Ti)

I What : if Alice uses static secret key RA = aAPA + bAQA,
run key agreement protocol several times and deduce RA

I Normal execution : on input (EB , φB(PA), φB(QA)),
Alice returns EAB = EB/〈aAφB(PA) + bAφb(QA)〉

I Adaptive attack : make Alice compute EB/〈aAUi + bAVi〉
for well-chosen Ui ,Vi , and recover the secret piecewise

I Sometimes Alice only returns a hash of j(EAB) : hence
adversary does not get corresponding EAB but can still
vary inputs and observe when outputs change
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Attack when `A = 2

I Can assume RA = PA + αQA with α =
∑
αi2

i ∈ (Z2e2 )∗

I Send Ui = φB(aiPA + biQA) and Vi = φB(ciPA + diQA)
in query i such that

1. 〈Ui + αVi 〉 = 〈(ai + αci )PA + (bi + αdi )QA〉 is equal
to 〈PA + αQA〉 if and only if αi = 0

2. Ui and Vi both have order 2n

3. e2n(Ui ,Vi ) = e2n(φB(PA), φB(QA)) = e2n(PA,QA)3
m

I First condition to distinguish αi = 0 from αi = 1 ;
second and third conditions to pass validity checks

I See Asiacrypt paper for how to choose ai , bi , ci , di
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Other results on key agreement

I The degree condition on the isogeny problems could a
priori have made them harder to break. We prove this is
not the case : computing the endomorphism rings of both
curves is enough to break the isogeny problems in
supersingular key agreement protocol.

I Side-channel attack recovering a static key from partial
leakage of shared keys
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Conclusion

I Endomorphism ring computation & pure isogeny problems
are natural problems with some history but

I More classical and quantum cryptanalysis needed
I Beware of variants

I We can build some crypto protocols on isogeny problems
(key exchange, public key encryption, signatures) with
reasonable efficiency. Other protocols ?
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